Integrated Learning Method for Anomaly Detection Combining KLLSH and
Isolation Principles

Hongchun Qu
College of Automation
Chongqing University of Posts and

Zonglan Li
College of Automation
Chongqing University of Posts and

Jingjing Wu
College of Automation
Chongqing University of Posts and

Telecommunications Telecommunications Telecommunications
Chongqing, China Chonggqing, China Chonggqing, China
hechyu@gmail.com 1217292567@qq.com 2734801096(@qq.com

Abstract—Aiming at the problem that the Isolated Forest
(iForest) has low local anomaly detection accuracy in high-
dimensional and massive data sets, this paper proposes an
anomaly detection method that combines locality-sensitive
hashing algorithm based on Gaussian Kernel Function (KLSH)
and means-optimized iForest algorithm. In this method
(KLSH+iForest), the kernel function is used to map the data
from the linearly indivisible data space to the linearly
separable feature space, and local anomalies are converted into
global anomalies. Based on above, iForest is constructed to
perform anomaly detection on the Kernelized data sets. To
solve the problem of how to select the optimal segmentation
attributes and values for iForest, this paper proposes a mean
optimization strategy. While maintaining the ability of iForest
to detect global anomalies, KLSH+iForest also improves the
accuracy of local anomaly detection. We compare
KLSH+iForest with the LOF algorithm and the improved
algorithms based on LSH on public data sets. Experimental
results show that KLSH+iForest has significantly improved the
accuracy and efficiency of anomaly detection in high-
dimensional and massive data sets.

Keywords-component; anomaly detection; isolated forest;
locality-sensitive hashing; kernel function

L INTRODUCTION

With the development of information technology, data
sets with large-volume, high-dimensional, heterogeneous,
geographically distributed pose considerable challenge on
the anomaly detection field in the current big data era. There
are many anomaly detection algorithms, anomaly detection
based on clustering [1], anomaly detection based on distance
[2], anomaly detection based on density [3] and anomaly
detection based on angle [4]. One can refer to [5] for more
details. Anomaly detection has become an important
research direction in the fields of data mining and machine
learning and has led to numerous applications in a wide
range of domains, such as detecting fraud in bank transaction
data[6]; detecting intrusion protocol problems in network
security data[7]; monitoring patients' vital signs in the
abnormal detection framework of medical wireless sensor
network[8]; detecting abnormal vehicle trajectories in traffic
trip data[9]; detecting abnormal high temperature data to
prevent forest fires in environmental sensing data[10];
detecting merchants' violations in the e-commerce sales
data[11]; detecting the factors that affect blueberry
pollination efficiency in the agricultural data[l12] etc.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Although researches on anomaly detection have started
earlier and various methods have emerged, the time
complexity of the algorithms in these methods is relatively
high. Therefore, it is necessary to accurately and quickly
detect anomalies from high-dimensional massive data sets.

In order to detect abnormal points quickly, Liu [13], [14]
proposed the iForest based on the idea of isolation. Among
many anomaly detection algorithms, iForest has low time
complexity and good detection effect. However, this
algorithm also has some problems: (1)IForest uses a global
anomaly score that is not sensitive to local data distribution
of the dataset to measure the degree of global anomaly.
When the local outliers are close to the normal cluster,
iForest cannot effectively detect local anomalies. (2)[Forest
builds itree based on randomization technology. It is unclear
how to choose the appropriate segmentation attributes and
segmentation values [15]. This may cause the attributes
related to the outliers to be missed, which reduces the
reliability of iForest.

Facing the above problems of iForest, this paper proposes
an anomaly detection method that combines KLSH and
means-optimized iForest. The contribution of this paper is as
follows: (1)The isolation method works better with a small
sample size. Massive data sets can reduce iForest's ability to
isolate anomalies.Therefore, the technique of random non-
repeating subsampling provides a favorable environment for
the good work of iForest. (2)In order to improve the
detection accuracy of local anomalies in iForest, this paper
uses the LSH algorithm based on the Gaussian kernel
function to map data sets from the data space to the feature
space, and build an isolated forest by using kernelized sub-
sampling data sets. (3)Different from iForest's method of
randomly selecting segmentation attributes and segmentation
values to construct itree, this paper proposes a mean
optimization strategy to select appropriate segmentation
attributes and segmentation values.Through the above three
methods, the detection accuracy and efficiency of the iForest
are significantly improved.

The remainder of this paper is organised as follows.
Section II reviews the related research work. In Section III,
we explained iForest and explained our approach in detail.
We give experimental comparisons in Section IV and
analyze the results. We conclude his paper in Section V.

II. RELATED WORK

Aiming at the two problems of iForest, there are many
articles to optimize it. For example, in order to improve the
local anomaly detection rate, Aryal [16] proposed to replace
the global ranking method based on path length with a local
quality method based on relative quality. Ding [17] proposed
iForestASD, which used a sliding window frame to process
stream data and considered the concept drift phenomenon.
The algorithm can effectively detect abnormal instances of
stream data. Shen [18] proposed EGITree based on three
heuristic ideas by choosing the dimension with the smallest
entropy as the segmentation attribute. Bandaragoda [19]
proposed an isolation-based KNN method, which was more
efficient than an anomaly detection algorithm based on
distance or density and can detect local anomalies. However,
the calculation efficiency of this algorithm is lower than
iForest due to the calculation of hypersphere. Marteau [20]
proposed HiForest, which used the unsupervised nature of
iForest to improve the effectiveness of anomaly detection.
Liu [21] used hyperplane to -effectively detect local
anomalies. Due to the hyperplane calculation, the calculation
efficiency of this algorithm is lower than iForest. Yu [22]
proposed an algorithm combining iForest and LOF, which
improved the accuracy and stability of the algorithm. Xu [23]
improved the calculation efficiency by deleting some itrees
with poor detection performance, and used the fast
convergence of the simulated annealing optimization
algorithm to improve the efficiency of anomaly detection.
Zhang [24] proposed an isolation-based LSHiForest
algorithm, which used different distance measurements to
construct different LSH forests to satisfy anomaly detection
under different data distributions. Liao [25] proposed E-
iForest, which introduced dimensional entropy as the basis
for selecting segmentation attributes and segmentation points,
and adopted three isolation strategies to construct itree.
Experiments proved that this algorithm was more stable than
iForest.

Based on the above analysis, this paper proposes an
anomaly detection method that combines KLSH and iForest.
Under the premise of maintaining the global anomaly
detection capability of iForest, use kernel functions to map
data to feature space to effectively divide local anomalies. In
order to improve the detection accuracy and efficiency of the
algorithm, a random non-repeating subsampling technique
and a mean optimization strategy are used. Experimental
analysis shows that our method can effectively solve the two
problems of iForest.

III. ISOLATED FOREST AND IMPROVEMENT

A. Isolated Forest (iForest)

Definition 1: Isolation tree (iTree).Given a sample of data
X ={x,x,,..,x,} of n instances from a d variate
distribution, to build an isolation tree(iTree), recursively
divide X by randomly selecting an attribute ¢ and a split
value p. Divide the data of X ,<P into the left subtree 7,,

and the data of % 2P into the right subtree 7, . Where

x;,, represents the i-th sample point on the segmentation

attribute ¢ in dataset X .Tree building stops until any one
of the following conditions is met: (1) the tree reaches a
limited height; (2) there is only one sample on the node; (3)
all datain X have the same values [21].

Definition 2: Path Length. /(x) is the number of edges
that the sample point X traverses from the root node of the
itree to the leaf nodes. Given a dataset containing n
samples, the average path length of the tree is:

c(n)=2H(n-1)=2(n-1)/n (D

where H() is the harmonic number and it can be
estimated by 7n(i)+0.5772 (Euler’s constant). As c¢(n) is
the average of h(x)
h(x) [13].
Definition 3: The anomaly score S of the sample point
X is defined as:

given n , we use it to normalise

—E(h(x))
s(x,n)=2 %(”) 2)

where E(i(x)) is the expected path length of the sample
X in a batch of itrees. When E(h(x))—c(n) , s—0.5: it is
unclear whether X is an outlier. When E(#(x)) > 0,s > 1:X
is determined to be abnormal.When E (#(x)) - n-1,5s >0 :X
is determined to be normal.

B. Related Algorithm

Locality-Sensitive Hashing (LSH): Compared with data
instances that are far away, LSH hashes data instances that
are close to each other into the same bucket with a high
probability to build indexes for similarity search [26].
Definition 1: A set of data points based on the distance
function DI . For any data point p,qeR‘, the function
family H ={h,h,,..h,} 1is called (1,7,p,,p,) -sensitive to
the distance function DI(|p-4f), the following conditions:
1).d(p.q) <1 = Pry[h(q)=h(p)]= p;
2).d(p.q) <1, = Pry[h(q)=h(p)]= p,.

In order to make a family of Locality-Sensitive Hashing
functions available, the condition 7 <r,,p, > p, must be
satisfied. When p,q are sufficiently similar, the probability
of mapping to the same hash value is greater. A hash
function that meets the above two conditions is called
(1,75, Py, Py) -Sensitive.

The process of hashing a dataset to generate one or more
hash tables is called Locality-sensitive Hashing(LSH). LSH
can arbitrarily pull p, and p, faraway while keeping 7|
and 7, unchanged, which shows that LSH can improve the
quality of similarity search as much as possible [27], [28].
Kernel function: The kernel function can map data set to a
high-dimensional feature space, thereby improving the
computing power of machine learning algorithms [29], [30].

Definition 2: Given a data set X = {x,,x,,....,x,} . Let H
be the feature space. If there is a mapping from X to H:
H:X—>H , for all x,x;ex , K(xi,xj):<¢(xl.)-(xj)> .
K(x,,x,) is called the kernel function, and ¢#(x) represents
the mapping function from the original input space to the
feature space. Where (¢(x)-(x))) is the inner product of
#(x) and ¢(x)).

Gaussian kernel function: The following is the formula of
Gaussian kernel function. The adjustable parameter 7
controls its width.

2
K(x,x,)= exp(—]/"x,. -x, ") 3)
C. Details of The Improvement Process

Like iForest, KLSH+iForest is divided into two phases:
in the training stage, 7f number of KLSH trees are
generated by Algorithm 1; in the evaluation phase, the
abnormal score of the data instance after kernelized is
calculated by Algorithm 4.

segmentation results of H in [24] were more accurate. Line
8 is the calculation of the kernel function, see Algorithm 3.
Line 9 is the itree building process, see Algorithm 2.

Algorithm 2: KLSH ITree(S;, J, H, avg)

Algorithm 1: KLSH_iForest(X, S, nt, ts)

Input: X - dataset; S - sub_sample sets; nt - number of KLSH
ITrees; ts - size of train data.

Output: A forest of KLSHtrees {itree;|[1<i<nt }.

1: X « klsh format the X

2: avg; < Calculate the average of the dimensions of X
3:fori« 1,ntdo

4 Si < variable subsamping(X);
5 H <« 2loga(sub_size)+0.8327, sub_size is size of Sj;
6: Si < klsh format the S;;

7: train_data < Select ts from S;

8 S; «— Calculate_kernel(train_data, S;T)

9 itree; «— build ITree: KLSH_ITree(S;, J, H, avg), J is
current height limit;

10: return {itree;}.

Input: S; - sub_sample set; J - current height limit; H -
height limit; avg:- the average of the dimensions of X.
Output: A tree of KLSH.

1: If length of S; = 0 then

2. return null;

3: else if J>= H or length of S; = / then

4: return itreefleft_itree «— T}, right itree «— 77},

5: sub_avgi« Calculate the average of the dimensions of
Si

6: index « Select the dimension with the greatest
difference between avg; and sub_avg;

7:V «— avgindex , v 1s the split property value

8: for row « S;do

9: if roWindex < v then

10: left itree{row}
11: else
12: right_itree{row}

13: KLSH ITree(itree, J+1, Havg:)

Algorithm 1 describes the process of recursively
constructing KLSH iForest by kernelized subsamples S, e.x .

Line 4 uses the subsampling technique [31]. Different from
[31], we use a random non-repeated sampling technique. The
specific process is: randomly and non-repetitively generate
nt (nt = 100) subsets S, from X . The size of S, is
sub_size , sub_sizee[len(X)/2,len(X)) . In order to make
the itree height distribution balanced and reduce the
calculation cost, this paper uses a uniform distribution as
F(log,,(0.1/d),log,,(1.0/d)) . In line 5, H is the height

limit, and /A can save computing costs during the
construction of KLSH itree. The impact of H on the
division of normal instances is not significant, because the
depth of normal instances is generally deeper than that of
abnormal instances. LSH will hash two close data instances
into the same bucket. Therefore, / must be long enough to
fully separate the two instances. This paper cites
H =2log:(sub _size)+0.8327 in [24] and compared it with the
height limit in [21] in experiments. We found that the

Different from iForest in selecting segmentation
attributes and segmentation values based on randomization
technology, we propose a mean optimization strategy to
construct KLSH itree. The specific steps are as follows:
(1)Calculate the dimensional mean of the kernelized dataset
X, and record it as: avg; (1<i<d). (2)Randomly sample n#
subsets S, from the kernelized data. (3)Calculate the mean
of the dimensions of each sample subset, written as:
sub_avg; . (4)Calculate the difference between avg, and
sub _avg; : diff; =| avg,- sub _avg;|. (5)Select the | dimension
corresponding to the maximum value of diff; as the
segmentation attribute, sub_avg; as the segmentation value.
(6)Compare x ;; (jelen(S), Sex) With sub_avg, , if
x;;<sub_avg,, put the j-th sample vector into the left subtree,

otherwise, into the right subtree. (7)When the sample subset
S, 1is divided, an itree is constructed. Repeat the above steps
for the nf sample subsets in order to obtain #»f itrees. nf
itrees form an iForest.

In order to improve the accuracy of iForest to detect local
anomalies, this paper uses a Gaussian kernel function,
referring to (3), where the tunable parameter 7 refers to [24].
The rationale is that local anomalies in the original space can
be mapped as global anomalies in the kernelised space and
become more susceptible to be isolated and detected [24].
Kernel functions are used for the first and sixth lines in
Algorithm 1, and the first line in Algorithm 5.

Algorithm 3: Calculate kernel function(X, Y)

Input: X, Y - train_data.

Output: The kernel matrix K.

1: squared_diff «— Calculate the square difference

2: Xo < a matrix of 1xn_Y, all of element are 1, n_Y is
size of ¥

3: part X — Xo.T-Xo
of the dimensions of X.7?
4: Yy < a matrix of n_Xx1, all of element are 1, n X is
size of X

5: part Y — XoY2.T
of the dimensions of Y.7?
6: squared_diff = part X+part Y -2-X-Y.T

7: kernel _kwds < Calculate the uniform distribution

8: kernel _kwds «—10F, F € [logi0(0.1/d),logio(1.0/d)), d is
dimension of Y

9: K « (kernel_kwds -squared_diff)~0.5

X> « Calculate the summation

Y> « Calculate the summation

Algorithm 5: Calculate Path Length(R, S,itrees,nt)

Input: R - a row of dataset; S - sub_sample sets; itrees; nt -

number of KLSHTrees.

Output: Path Length.

1: row «—Calculate kernel(train_data, Zrow.T) , train_data

«select ts from Si, Zrow «<— Convert R to a matrix

2: for itree < itrees do

3: while itree = null do

if row[itree.splitAttrIndex] < itree.splitAttrValue then
return PathLength(s;, left_itree, path_length+1)

else row[itree.splitAttrIndex] >= itree.splitAttrValue
return PathLength(s, right itree, path_length+1)

end if

A A

We refer to the kernelized LSH method [32] and create
nt KLSH instances. The kernel-based LSH function is

defined as:

M) = sign(3, oDk (x,x) 4)

Where #(x) is the mapping function and k(x,x;) is
the kernel function, w=K"?¢,, e isan s x1vector, K is
the s;xs; centred kernel matrix. In order to construct a set
of LSH functions, a sample subset is randomly sampled from
the dataset x, , and the sample size is

t

s;, 5, emin(ylen(X:),300) . Since the running time of KLSH
increases significantly with sample size s;, s, takes the
minimum value. ¢ is arandom projection, ¢ e min(s, /4,30)

[32].

Algorithm 4: Calculate Anomaly Scores(X, zs, S)

Input: X - dataset; ¢s - size of train data; S - sub_sample sets.
Output: scores.

1: avg size « Calculate the average of S’s size

2: for row «— X do

avg_ehx < Calculate the average of PathLength

cn «—2(In(avg_size-1)+0.5772)-2(avg_size-1)/avg_size
index «— avg ehx/ca

scorerow «— 2 -index

7: scores «— {SCOT€row}

AN

IV. EXPERIMENTAL RESULTS AND ANALYSIS

All the code running environment of this paper is IntelliJ
IDEA, the programming language is python3, the operating
system is Micros Windows 10, the hardware environment
CPU is Intel (R) Core (TM) i7-6700HQ CPU @ 2.6GHz,
and the RAM is 4.00GHz. To explore the performance of the
proposed KLSH+iForest, we conduct an experimental study
which wusing Yoga dataset selects from the UCR
repository[33] and other datasets select from the UCI
machine learning repository as shown in Table I. All datasets
are normalized by the z-score normalization method, where
n is the sample size, d is the dimension, rate is the
anomaly rate, and ¢ represents the abnormal score
determination threshold. Table II shows the average AUC
(Area Under Curve) of all algorithms running 10 times. In
this paper, the iterative calculation method is used to put the
dataset into the model to calculate the model parameters with
the highest AUC value, such as the number of isolated trees,
the size of subsamples, and the size of the judgment
threshold of abnormal score. Then run all the datasets under
the optimal parameter 10 times to get the average of AUC
value. For each dataset, the leading values are highlighted.
The algorithms with highlighted values can be deemed to
have similar performance as their AUC difference is less
than 5%.

In the evaluation phase, the abnormal score of the data
instance after kernelized is calculated by Algorithm 4. In the
training phase, KLSH iforest is completed, and we further
evaluate the abnormal scores of the kernelized data instances.

In the first line of Algorithm 5, the kernelized data
instance is put into each itree, and the length of the path that
each data instance traverses all the itrees is recorded. In
Algorithm 4, the average path length is calculated in the
fourth line, referring to (1), and the fifth and sixth lines are
calculating the abnormal score, referring to (2).

TABLE 1. BASIC DESCRIPTION OF DATASETS.

Name n d Outlier vs. Inlier Labels rate ®
Glass 214 9 class 6 vs. others 4.2% 0.58
Yoga 3000 | 400 class 1 vs. class 2 46.4% | 0.59
Wilt 4339 5 class w vs. class n 1.68% | 0.59

Har 5744 561 class 3 vs. others 13.8% | 0.58
Musk 6598 166 39 molecules were classified 154% | 059

as musk vs. others
TABLE II. AUC OF ALL METHODS (%).

Meth | Kisev | iForest | LOF | ALSH | LISH | L2SH | KLSH
Glass | 80.40 | 62.67 | 59.67 | 88.83 79.67 | 77.12 | 83.46
Yoga | 53.35 | 50.05 52.11 | 50.11 53.26 | 52.33 | 52.28
Wilt 55.48 52.23 68.59 60.12 51.07 51.99 | 50.72
Har | 6448 | 54.87 | 51.09 | 64.04 69.30 | 52.16 | 50.33
Musk | 66.00 54.73 53.07 52.69 59.15 64.95 | 63.54

Analyzing the relationship between dimensions and
AUC. Compared with iForest, the AUC of KLSH+iForest is
higher than iForest in the five datasets, which indicates that
KLSH+iForest has higher detection accuracy than iForest.
The reason is that KLSH+iForest is based on random
subsampling technology and mean optimization strategy to
construct itree. At the same time, combined with the
Gaussian kernel function, the detection accuracy of local
anomalies of iForest is improved. Compared with LOF, low-
dimensional dataset Wilt has higher AUC in LOF than
KLSH+iForest, but in KLSH+iForest, other datasets have
good detection results. The reason is that LOF is a distance-
based anomaly detection method. Therefore, Wilt has better
detection accuracy in LOF. In contrast, KLSH+iForest is
more ideal for detecting high-dimensional data. Compared
with ALSH, the AUC of the low-dimensional datasets Wilt
and Glass in ALSH are 60.12% and 88.83%, respectively.
The AUC of other high-dimensional datasets performs well
in KLSH+iForest. The reason is that ALSH is a locality-
sensitive hashing algorithm based on angle measurement.
This algorithm has better detection effect in low-dimensional
datasets where the spatial distribution angle is easy to divide.
Compared with L1SH, the AUC of high-dimensional dataset
Har in KLSH+iForest is 64.48%, which is only 5% lower
than L1SH. In the high-dimensional datasets Musk and Yogo,
the AUC of KLSH+iForest is higher than that of L1SH.
Overall, KLSH+iForest has better detection accuracy than
L1SH based on Manhattan distance. Compared with L2SH,
KLSH+iForest has higher AUC than L2SH. The reason is
that L2SH is based on Euclidean distance metric, while
KLSH+iForest is based on Gaussian kernel function LSH.
Kernel functions can improve the accuracy of anomaly
detection. Therefore, KLSH+iForest is better than L2SH in
detecting anomalies. Compared with KLSH, the AUC of
Glass in KLSH+iForest is 80.40%, which is only 3% lower
than KLSH. In the high-dimensional datasets Musk, Yogo
and Har, KLSH+iForest has higher AUC than KLSH.
Although KLSH and KLSH+iForest also use the kernel
function, KLSH+iForest uses a mean optimization strategy
to build the KLSH itree. KLSH only builds the LSH tree
based on the isolation idea, and doesn’t optimize the
selection of the optimal segmentation attributes and
segmentation values. Therefore, KLSH+iForest has better
detection accuracy than KLSH.

Analyzing the relationship between sample size 7
and AUC: In 5 datasets, although the AUC of Glass in
KLSH is higher than KLSH+iForest, KLSH+iForest is only
3% lower than KLSH. The AUC of the other 4 datasets in
KLSH+iForest are all higher than KLSH, indicating that with
the increase of sample size 7 , the detection effect of
KLSH+iForest is better than KLSH. To sum up, with the
increase of sample size 7 and dimension d , the AUC of
KLSH+iForest is generally higher than these reference
algorithms, which indicates that KLSH+iForest can be
applied to anomaly detection with a larger number of sample
points and higher dimensions. Experiments show that the
threshold value @ of the abnormal score of the proposed

method is basically around 0.58-0.59, and the variation range

is 0.01. It shows that KLSH+iForest can provide users with
an ideal threshold reference range for different datasets.

In KLSH+iForest, the Gaussian kernel function maps
datasets to the feature space, and then uses iForest to detect
the abnormal points in the feature space. The execution time
will increase significantly with the number of dimensions.
While ALSH, L1SH, and L2SH [24] have similar execution
times, they all construct LSH forests based on different
distance measures in the data space. Therefore, the running
time of KLSH+iForest is longer than ALSH, L1SH and
L2SH. Different from the process of KLSH constructing
LSH forest, KLSH+iForest is to build iForest based on
random non-repeated subsampling technology and mean
optimization strategy. Random non-repeated subsampling
technology reduces the sample size of the constructed itree.
The mean optimization strategy improves the efficiency of
KLSH+iForest by purposefully selecting segmentation
attributes and segmentation values. At the same time, iForest
has logarithmic time complexity. Compared to KLSH,
KLSH+iForest runs more efficiently.

V. CONCLUSION

IForest cannot effectively detect local anomalies in high-
dimensional and massive data sets. In this paper, we propose
an anomaly detection method (KLSH+iForest) that combines
locality-sensitive hashing algorithm based on Gaussian
Kernel Function (KLSH) and means-optimized Isolated
Forest algorithm. This method uses kernel functions to map
data sets to a high-dimensional feature space, converts local
anomalies into global anomalies, and then uses iForest to
perform anomaly detection on the kernelized data sets. In
order to quickly find the optimal segmentation attributes and
segmentation values, a mean optimization strategy is
proposed. Experiments on KLSH+iForest, LOF algorithm
and the improved algorithms based on LSH on public data
sets. Experimental results show that KLSH+iForest
outperforms iForest. Compared with KLSH, the detection
accuracy and efficiency of KLSH+iForest are better than
KLSH in most cases. The experimental analysis concludes
that KLSH+iForest can be applied to anomaly detection of
data sets with more sample points and higher dimensions.

ACKNOWLEDGMENT

Funding was received from the National Natural Science
Foundation of China (61871061) and Chongqing Research
Program of Basic Research and Frontier Technology
(cstc2017jcyjAX0453).

REFERENCES

[1] Lian Duan, Lida Xu, Ying Liu, and Jun Lee, "Cluster-based outlier
detection," Annals of Operations Research 168.1 (2009): 151-168.

[2] Sridhar Ramaswamy, Rajeev Rastogi, Kyuseok Shim, and Taejon
Korea, "Efficient algorithms for mining outliers from large data sets,"
ACM SIGMOD Records, vol. 29, no. 2, pp. 427-438, 2000.

[31 M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, "LOF:
Identifying density-based local outliers," ACM SIGMOD Record, vol.
29, no. 2, pp. 93-104, 2000.

[4]

[3]

[6]

(7

[8]

91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek, "Angle-
based outlier detection in high-dimensional data," Proceedings of the
14th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2008.

V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A
survey," ACM Computing Surveys (CSUR), vol. 41, no. 3, p. 15,
2009.

Bao-Hua Jiang, "Research on Withdrawal Behavior Pattern of Bank
Card Withdrawal Anomaly Detection Algorithm Based on
Rule," Computer Knowledge and Technology (2015).

Hongchun Qu, Zeliang Qiu, Xiaoming Tang, Min Xiang, and Ping
Wang, "Incorporating unsupervised learning into intrusion detection
for wireless sensor networks with structural co-evolvability," Applied
Soft Computing 71 (2018): 939-951.

Osman Salem, Alexey Guerassimov, Ahmed Mehaoua, and Anthony
Marcus, "Anomaly Detection in Medical Wireless Sensor Networks
using SVM and Linear Regression Models," International Journal of
E-Health and Medical Communications 5.1(2014):20-45.

Daqing Zhang, Nan Li, Zhi-Hua Zhou, Chao Chen, Lin Sun, and
Shijian Li, "iBAT : detecting anomalous taxi trajectories from GPS
traces," International Conference on Ubiquitous Computing ACM,
2011.

Yashwant Singh, Suman Saha, Urvashi Chugh, and Chhavi Gupta,
"Distributed Event Detection in Wireless Sensor Networks for Forest
Fires," Uksim International Conference on Computer Modelling &
Simulation IEEE, 2013.

Jagdish Ramakrishnan, Elham Shaabani, Chao Li, and Matyas A.
Sustik, "Anomaly Detection for an E-commerce Pricing System,"
(2019).

Hongchun Qu and Frank Drummond, "Simulation-based modeling of

wild blueberry pollination," Computers and Electronics in Agriculture
144(2018):94-101.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou, "Isolation forest,"
2008 Eighth IEEE International Conference on Data Mining. IEEE,
2008.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou, "Isolation-based
anomaly detection,"” ACM Transactions on Knowledge Discovery
from Data (TKDD) 6.1 (2012): 3.

Zhen Liu, Xin Liu, Jin Ma, and Hui Gao, "An optimized
computational framework for isolation forest," Mathematical
Problems in Engineering 2018 (2018).

Sunil Aryal, Kai Ming Ting, Jonathan R. Wells, and Takashi Washio,
"Improving iforest with relative mass," Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer, Cham, 2014.

Zhiguo Ding and Minrui Fei, "An anomaly detection approach based

on isolation forest algorithm for streaming data using sliding
window," IFAC Proceedings Volumes 46.20 (2013): 12-17.

Yanhui Shen, Huawen Liu, Yanxia Wang, Zhongyu Chen, and
Guanghua Sun, "A novel isolation-based outlier detection method,"
Pacific Rim International Conference on Artificial Intelligence.
Springer, Cham, 2016.

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32

—

133

[}

Tharindu Bandaragoda, Kai Ming Ting, David W. Albrecht, and Fei
Tony Liu, "Isolation-based anomaly detection using nearest-neighbor
ensembles:iNNE." Computational Intelligence 34.4 (2018): 968-998.

Pierre-Francois Marteau, Saeid SOHEILY-KHAH, and Nicolas
Béchet, "Hybrid Isolation Forest-Application to Intrusion Detection,"
arXiv preprint arXiv:1705.03800 (2017).

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou, "On detecting
clustered anomalies using SCiForest," Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer,
Berlin, Heidelberg, 2010.

Xiao Yu, Lu An Tang, and Jiawei Han, "Filtering and refinement: A
two-stage approach for efficient and effective anomaly detection,"
2009 Ninth IEEE International Conference on Data Mining. IEEE,
2009.

Dong Xu, Yanjun Wang, Yulong Meng, and Ziying Zhang, "An
Improved Data Anomaly Detection Method Based on Isolation
Forest,"” 2017 10th International Symposium on Computational
Intelligence and Design (ISCID). Vol. 2. IEEE, 2017.

Xuyun Zhang, Wanchun Dou, Qiang He, Rui Zhou, Christopher
Leckie, Kotagiri Ramamohanarao, et al, "LSHiForest: a generic
framework for fast tree isolation based ensemble anomaly analysis,"
2017 IEEE 33rd International Conference on Data Engineering
(ICDE). IEEE, 2017.

Liefa Liao and Bin Luo, "Entropy Isolation Forest Based on
Dimension Entropy for Anomaly Detection," International
Symposium on Intelligence Computation and Applications. Springer,
Singapore, 2018.

Indyk, Piotr, and Rajeev Motwani, "Approximate nearest neighbors:
towards removing the curse of dimensionality," Proceedings of the
thirtieth annual ACM symposium on Theory of computing. ACM,
1998.

Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji,
"Hashing for similarity search: A survey," arXiv preprint
arXiv:1408.2927, 2014.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni,
"Locality-sensitive hashing scheme based on p-stable distributions,"
Proceedings of the twentieth annual symposium on Computational
geometry. ACM, 2004.

Shutao Li, Kunzhong Zhang, Puhong Duan, and Xudong Kang,
"Hyperspectral Anomaly Detection With Kernel Isolation Forest,"
IEEE Transactions on Geoscience and Remote Sensing (2019).

K R. Miiller, S. Mika, G. Ratsch,K. Tsuda, and B. Scholkopf, "An
introduction to kernel-based learning algorithms," IEEE transactions
on neural networks 12.2 (2001): 181-201.

Kollios G, Gunopulos D, Koudas N, and Berchtold S, "Efficient
biased sampling for approximate clustering and outlier detection in
large data sets," IEEE Transactions on Knowledge and Data
Engineering 15.5 (2003): 1170-1187.

B. Kulis and K. Grauman, "Kernelized locality-sensitive hashing,"
IEEE TPAMI, vol. 34, no. 6, pp. 1092-1104, 2012.

Anthony Bagnall, Anh Dau, Jason Lines, and Michael Flynn, "The
UCR Time Series Archive," (2018).

