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Abstract—Due to the curse of dimensionality, two main issues
remain challenging for applying evolutionary algorithms (EAs)
to large-scale multiobjective optimization. The first issue is how
to improve the efficiency of EAs for reducing computation cost.
The second one is how to improve the diversity maintenance
of EAs to avoid local optima. Nevertheless, these two issues are
somehow conflicting with each other, and thus it is crucial to
strike a balance between them in practice. Thereby, we propose
an iterated problem reformulation based EA for large-scale mul-
tiobjective optimization, where the problem reformulation based
method and the decomposition based method are used iteratively
to address the aforementioned issues. The proposed method is
compared with several state-of-the-art EAs on a variety of large-
scale multiobjective optimization problems. Experimental results
demonstrate the effectiveness of our proposed iterated method
in large-scale multiobjective optimization.

Index Terms—Evolutionary algorithm, multiobjective opti-
mization, large-scale optimization, problem reformulation

I. INTRODUCTION

Multiobjective optimization problems (MOPs) are widely

seen in real-world applications. In an MOP, there are two

or more conflicting objectives which should be optimized

simultaneously [1]. Due to the conflicting property of the mul-

tiple objectives, the Pareto dominance relationship is usually

adopted to distinguish the qualities of two candidate solutions

of an MOP. For two candidate solutions x1 and x2 in an MOP,

if all the objective values of x1 are not worse than those of

x2, and at least one objective value of x1 is strictly better

than that of x2, x1 Pareto dominates x1 [2]. Consequently, if

a candidate solution is not dominated by any solution of an

MOP, it is called a Pareto optimal solution; the collection of

all the Pareto optimal solutions is called the Pareto optimal set

(PS); the projection of the PS in the objective space is called

the Pareto optimal front (PF).

To solve MOPs, a variety of evolutionary algorithms (EAs)

have been proposed in the past decades. Thanks to the pop-

ulation based property of EAs, multiobjective EAs (MOEAs)

are capable of obtaining a set of representative solutions in a

single run for solving MOPs effectively. Existing MOEAs can

be roughly divided into three categories [3], i.e., the dominance

based MOEAs, the decomposition based MOEAs, and the

indicator based MOEAs. The first category adopts the domi-

nance based relationships, e.g., the ε-dominance [4] and the

strength Pareto dominance [5], [6], to distinguish the qualities

of different solutions. The second category first decomposes

an MOP into several subproblems by some weight (reference)

points (vectors), and then optimize the subproblems simulta-

neously. Typical algorithms include the decomposition (DE)

based MOEA (MOEA/D) [7] and its variations, such as the

differential evolution based MOEA/D (MOEA/D-DE) [8]. As

for the third category, it adopts the performance indicators to

assess the contribution of a candidate solution to the quality

of the population, such as the indicator based EA (IBEA) [9],

the dominated hypervolume based MOEA (SMS-EMOA) [10],

and the enhanced inverted generational distance based MOEA

(MOEA/IGD-NS) [11]. There are still some MOEAs that do

not fall into the above three categories, e.g., the local search

based MOEA (NSLS) [12] and the collaborative neurodynamic

based method (MONO) [13].

Despite the promising performance in solving MOPs, con-

ventional MOEAs fail to handle MOPs with a large number of

decision variables, a.k.a., large-scale MOPs (LSMOPs) [14].

On one hand, LSMOPs are challenging to conventional

MOEAs due to the curse of dimensionality [15]. As the

increase in the number of decision variables, the volume and

complexity of the search space increase exponentially [16].

Consequently, conventional MOEAs will have to use a huge

number of function evaluations for obtaining a set of accept-

able solutions. On the other hand, LSMOPs widely exist in

real-world applications, such as the optimization of power

dispatch in the power system [17] and the critical point

detection in complex network [18]. Thus, there is a growing

demand for effective large-scale MOEAs for handling real-

world LSMOPs.

Some large-scale MOEAs have been proposed in recent
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years, which can be divided into two different types [19]. The

first type is known as the decision variable analysis based

approaches [20], which classify the decision variables into

different groups and then the original LSMOP is decomposed

into several simpler sub-MOPs. Typical algorithms include the

decision variable analysis based MOEA (MOEA/DVA) [21]

and the decision variable clustering-based large-scale EA

(LMEA) [16]. The second type consists of the problem

transformation/reformulation based approaches, which trans-

form/reformulate the original LSMOP into a simpler problem,

and then optimize the transformed/reformulated problem to

obtain some promising candidate solutions of the original

problem. The weighted optimization framework (WOF) [22]

and the problem reformulation based large-scale framework

(LSMOF) [19] are two representative algorithms. Moreover,

some MOEAs also show promising scalability due to their

special reproduction operators, despite that they are not tai-

lored for solving LSMOPs. These MOEAs use some effi-

cient/effective offspring generation methods, e.g., the particle

swarm optimization based method. For instance, the competi-

tion mechanism proposed in single-objective optimization [23]

is used in solving LSMOPs. Typical algorithms include the

competition mechanism based multi-objective particle swarm

algorithm (CMOPSO) [24] and the efficient large-scale com-

petitive swarm optimizer (LMOCSO) [25]. Despite the differ-

ent mechanisms, the two types of large-scale MOEAs intend

to maintain the convergence and diversity independently. As

a consequence, MOEAs of the first type could be inefficient

in terms of computation time or function evaluations, while

those of the second type could be ineffective due to the greedy

convergence enhancement.

Despite that most existing large-scale MOEAs have

achieved remarkable results in handling LSMOPs, the bal-

ance between effectiveness and efficiency should be further

improved. To better strike a balance between the effectiveness

and efficiency, we propose an iterated problem reformulation

based algorithm, termed iLSMOA, for large-scale multiobjec-

tive optimization. To be more specific, we use the problem

reformulation method to enhance the convergence and the

decomposition based method for diversity maintenance in

an iterated manner. Different from conventional two-stage

based strategies, the iterated strategy is effective in balancing

the convergence and diversity dynamically. The proposed

algorithm is compared with different categories of MOEAs

on a variety of LSMOPs, and the experimental results have

indicated its encouraging performance.

The rest of this paper is organized as follows. In Section II,

we briefly recall some background of related works, including

the problem reformulation, MOEA/D-DE, and the improved

strength Pareto based selection. The details of the proposed

algorithms are presented in Section III. Experimental com-

parisons between our proposed method and the state-of-the-

art algorithms on the benchmark problems are presented in

Section IV. Finally, we draw the conclusions in Section V.

II. BACKGROUND

A. Problem Reformulation

The problem reformulation is proposed to reformulate the

LSMOP into a low-dimensional single-objective optimization

problem for accelerating the convergence rate of existing

MOEAs [19]. To begin with, it selects some reference solu-

tions in the decision space to construct several bi-directional

reference vectors. Note that this selection is usually achieved

by some strategies with strong capabilities in selecting well-

distributed solutions, e.g., the improved strength Pareto based

selection [5]. Then the step sizes from the ideal/nadir points

in the decision space to the PS are defined as the decision

variables of the reformulated problem. Finally, the objective

space is reformulated by a performance indicator, e.g., the

hypervolume (HV) indicator [26], where the obtained value is

used as the fitness of the reformulated problem. Assuming that

s1 = (x1, . . . , xD) is a reference solution in the D-dimensional

decision space; o and t are the ideal and nadir boundary points

of the decision space; vl and vu are vectors starting from o
and t and pointing to s1 respectively:

vl = s1 − o, (1)

vu = t− s1, (2)

where lmax=||t− o|| is the maximum diagram length in the

decision space. Supposing that p1,p2 are two solutions on

vectors vl and vu respectively, and the distances from o to

p1 and t to p2 are λ11 × vl

||vl|| lmax and λ12 × vu

||vu|| lmax,

respectively. Thus, two solutions p1 and p2 can be obtained:

p1 = o+ λ11 × vl

||vl|| lmax, (3)

p2 = t− λ12 × vu

||vu|| lmax, (4)

where λ11 and λ11 are two weight variables. Afterwards, r
reference solutions are used to construct 2r subproblems. For

example, two subproblems constructed on the basis of s1 are

z11(λ11) = F (o+ λ11 × vl

||vl|| lmax), (5)

z12(λ12) = F (t− λ12 × vu

||vu|| lmax). (6)

The constructed objective functions are Z ′(Λ) = {z11(λ11),
z12(λ12), . . . ,zr1(λr1), zr2(λr2)}, and the decision space is

Λ={λ11, λ12, . . . , λr1, λr2}. Once the subproblems are re-

constructed, the optimization of the decision vector x in the

original decision space is transformed to the optimization of

Λ in the reconstructed decision space. Correspondingly, the

new optimization problem can be reformulated as

Maximize G(Λ) =H(Z ′(Λ)) (7)

subject to Λ ∈ �2r,

where H is the HV indicator.



B. MOEA/D-DE

MOEA/D-DE is a variation of MOEA/D, which uses the dif-

ferential evolution (DE) operator for offspring generation [8],

as presented in Algorithm 1. In this algorithm, the parent

solutions are selected from the neighborhood with a proba-

bility of δ, and then a DE operator is adopted for offspring

generation. Specifically, three parent solutions are used for

offspring generation. Assuming that x1, x2, and x3 are three

parent solutions, an offspring solution x′ can be generated by

x′ = x1 + F × (x2 − x3), (8)

where F is a control vector, and the polynomial mutation

operation [27] is used after this crossover. Here, another

control parameter (CR) for determining the use of DE is

not mentioned as it is set to one as recommended in [8].

Next, the Tchebycheff aggression method is used to construct

subproblems for assessing the quality of each solution, which

can be formulated as (9).

minimize g(x|γ, z∗) = max
1≤i≤M

{γi|fi(x)− z∗i |}, (9)

where γ =(γ1, . . . , γM ) is a weight vector (M is the num-

ber of objectives), fi is the ith objective value of solu-

tion x, and z∗ =(z∗1 , . . . , z
∗
M ) is the reference point with

z∗i =min{fi(x)|x ∈ Ω} (Ω is the decision space).

Algorithm 1 The main framework of MOEA/D-DE.

Input: N (population size), δ (probability of choosing parents

locally).

Output: P (final population).

1: P,W,E ← Initialization(N) /*P is the initial population,

W is the weight vector set, and E is the neighborhood

index set*/

2: while termination criterion is not fulfilled do
3: for i ← 1 : N do
4: if rand < δ then
5: Randomly choose two solutions x2,x3 from the

neighborhood Ei /*Ei denotes the neighborhood

index set of the ith solution in P*/

6: else
7: Randomly choose x2,x3 from P
8: end
9: x′ ← Offspring Generation (Pi,x2,x3) /*Pi denotes

the ith solution in P*/

10: g1, g2, g3 ← Tchebycheff Aggression(x′,x2,x3)
11: for j ← 2 : 3 do
12: Pi ← x′ if gj > g1
13: end
14: end
15: end

C. Improved Strength Pareto Based Selection

The improved strength Pareto based EA (SPEA2) [5] incor-

porated a tailored fitness assignment strategy, a density esti-

mation technique, and an enhanced truncation method. In the

tailored fitness assignment strategy, the dominance relationship

between the pairwise candidate solutions is first detected, and

then a strength value is assigned to each candidate solution.

It can be formulated as

Str(xi) = |{j|xj ∈ P ∧ xi ≺ xj}|, (10)

where P is the population and xi,xj are the candidate

solutions in it. Then, the raw fitness can be calculated by

Raw(xi) =

N∑

xj∈P∧xj≺xi

Str(xj). (11)

Besides, the additional density information, termed Den, is

used to discriminate the candidate solutions having identical

raw fitness values as

Den(xi) =
1

σk
i + 2

, (12)

where k is the square root of the population size, and σk
i

denotes the kth nearest Euclidean distance from xi to the

candidate solutions in the population. Finally, the fitness

function is

Fit(xi) = Raw(xi) +Den(xi). (13)

This selection strategy is capable of obtaining a set of rep-

resentative solutions from a population even on MOPs with

complex PFs.

III. THE PROPOSED ALGORITHM

The main scheme of the proposed iterated problem refor-

mulation based large-scale multiobjective algorithm, termed

iLSMOA, is presented in Algorithm 2. Generally, the pro-

posed algorithm uses the problem reformulation based single-

objective optimization (Steps 3–4) and the decomposition

based multiobjective optimization (Steps 5–6) in an iterated

manner. To begin with, a population of size N is randomly

generated from the original LSMOP (Step 1). Then we select

r solutions as the reference solutions by the environmental

selection strategy in SPEA (as given in Section II-C), and the

problem reformulation based single-objective optimization (as

given in Section II-A) is conducted to obtain a set of solutions

A (Step 4). Afterwards, the same environmental selection

strategy is adopted to select N well-distributed solutions from

A (Step 5), where the selected solutions are used as the initial

population of MOEA/D-DE. Note that our empirical results

on a variety of LSMOPs indicate that it is essential to select a

set of evenly distributed solutions as the initial population of

MOEA/D-DE; if only the convergence criterion is considered

for obtaining the initial population, MOEA/D-DE could trap in

local optima easily. Finally, the above procedures are repeated

in an iterated manner until the termination criterion is fulfilled.

Notably, it is out of several considerations that we choose

MOEA/D-DE as the optimizer to spread the quasi-optimal

solutions over the approximate PF. First, due to the explicit

directional guidance of the weight vectors, MOEA/D-DE will

stick to some subspaces/subproblems even if the current can-

didate solutions are not promising. It substantially maintains



Algorithm 2 The proposed iLSMOA.

Input: Z (original LSMOP), N (population size), r (number

of reference solutions), gmax (maximum iteration).

Output: P (final population).

1: P ← Initialization(N,Z)
2: while termination criterion is not fulfilled do
3: Z ′ ← Problem Reformulation(P, r, Z)

4: A ← Single Objective Optimization(Z ′, gmax)

5: P ← Environmental Selection(A,N)
6: P ← Evolve by MOEA/D-DE(P,N, gmax)
7: end

the diversity of the population and will also enhance the global

search ability of the problem reformulation based optimization.

Second, since the decomposition based method generates

offspring solutions from neighborhood solutions, it enhances

the local search ability of the algorithm for convergence

enhancement. Third, the DE operation enables the proposed

algorithm to handle problems with complex PSs as suggested

in [8].

Moreover, there are two motivations for adopting the

iterated framework instead of the two-stage strategy in

LSMOF [19]. First, the quash-optimal solutions obtained by

the problem reformulation based optimization can be local

optima, while the iterated strategy enables the population to

escape from them. Second, the iterated strategy provides the

problem reformulation optimization some dynamic reference

solutions, which also enhances the global search ability of the

proposed algorithm.

IV. EMPIRICAL STUDIES

To empirically investigate the performance of the pro-

posed iLSMOA, six representative MOEAs, namely, IBEA [9],

CMOPSO [24], GDE3 [28], LMEA [16], MOEA/D-DE [8],

and LSMOF [19], are compared on eight test problems from

the LSMOP test suite [14]. Each algorithm is run for 30

times on each test problem independently, and the Wilcoxon

rank-sum test [29] is used to compare the results obtained

by the proposed iLSMOA and the compared algorithms at a

significance level of 0.05. Symbols ‘+’, ‘−’, and ‘=’ indi-

cate that the compared algorithm is significantly better than,

significantly worse than, and statistically tied by iLSMOA.

A. Experimental Settings

For fair comparisons, we adopt the recommended parameter

settings for the compared algorithms that have achieved the

best performance as reported in the literature. All the com-

pared algorithms are implemented in PlatEMO [30].

1) Reproduction Operators. In this work, the simulated

binary crossover (SBX) [31] and the polynomial mutation

(PM) [27] are adopted in the compared algorithms for off-

spring generation in IBEA and LSMOF. The distribution index

of crossover is set to nc=20 and that of mutation is set to

nm=20, as recommended in [31]. The crossover probability

pc is set to 1.0 and the mutation probability pm is set to 1/D,

where D is the number of decision variables. In MOEA/D-

DE and GDE3, the DE operator [32] and PM are used for

offspring generation, where the control parameters are set to

CR=1, F=0.5, pm=1/D, and η=20 as recommended in [8].

As for CMOPSO, the particle swarm operator [33] and PM

are used, where parameters R1 and R2 are randomly selected

from [0, 1] with γ set to 10 as recommended in [24].

2) Population Size. The population size is set to 100 for test

instances with two objectives and 105 for test instances with

three objectives.

3) Specific Parameter Settings in Each Algorithm. In

MOEA/D-DE, the neighborhood size T is set to 20, the

probability of choosing parents locally δ is set to 0.9, and

the maximum number of solutions replaced by each offspring

nr is set to 2. Meanwhile, NSGA-II is embedded in LSMOF,

the number of reference solutions r is set to 10, the population

size for the single-objective optimization is set to 30, and

the mutation factor F in DE is set to 0.8. In iLSMOA, the

number of reference solutions and the population size of the

reformulated problems are set to 10, and gmax is set to 150.

4) Termination Condition. A total number of 500000 FEs is

adopted as the termination condition for all the test instances.

5) Performance Indicator. In the experiments, two widely

used performance indicators, the inverted generational distance

(IGD) [34] indicator and the HV [26] indicator, are adopted

for evaluating the performance of the compared algorithms.

Both the IGD and HV indicators can assess both the

convergence and diversity of the solution set, the size of

reference points is set to 10000 (or a close number) for the IGD

calculations. Note that, a smaller value of IGD will indicate

better performance of the algorithm; in contrast, a greater value

of HV will indicate better performance of the algorithm.

B. Results on Bi-Objective LSMOPs

Here, we present the experimental results achieved by the

seven compared algorithms on 24 bi-objective LSMOPs. The

statistics of IGD and HV values are given in Table I and

Table II, respectively. It can be observed from these two tables

that iLSMOA has achieved the most best results (10 and 11 of

24 respectively), followed by MOEA/D-DE, LSMOF, GDE3,

and CMOPSO. Moreover, iLSMOA has outperformed LSMOF

on most of the test instances, indicating the effectiveness of the

proposed iterated problem reformulation method in large-scale

multiobjective optimization.

The final non-dominated solutions obtained by the com-

pared algorithms on bi-objective LSMOP2 and LSMOP9 with

1000 decision variables in the run associated with the median

IGD value are displayed in Fig. 1 and Fig. 2, respectively. It

can be observed that iLSMOA has obtained the most evenly

distributed solutions converged to the PF, indicating the superi-

ority of our proposed iLSMOA in handling LSMOPs in terms

of both convergence enhancement and diversity maintenance.

C. Results on Tri-Objective LSMOPs

The experimental results achieved by the seven compared

algorithms on 24 tri-objective LSMOPs are presented. The
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Fig. 1. The final non-dominated solutions obtained by the compared algorithms on bi-objective LSMOP2 with 1000 decision variables in the run associated
with the median IGD value.
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Fig. 2. The final non-dominated solutions obtained by the compared algorithms on bi-objective LSMOP9 with 1000 decision variables in the run associated
with the median IGD value.

Fig. 3. The final non-dominated solutions obtained by the compared algorithms on tri-objective LSMOP2 with 1000 decision variables in the run associated
with the median IGD value.



TABLE I
THE STATICS OF IGD RESULTS ACHIEVED BY SEVEN COMPARED ALGORITHMS ON 24 BI-OBJECTIVE TEST INSTANCES FROM LSMOP TEST SUITE.

Problem D IBEA CMOPSO GDE3 LMEA MOEA/D-DE LSMOF iLSMOA

LSMOP1
200 2.5198e-1 (7.03e-2) - 2.1175e-1 (4.06e-2)- 9.6936e-3 (8.50e-4) = 5.0654e-1 (4.89e-1)- 4.2729e-3 (1.50e-4) + 5.1178e-1 (5.06e-2)- 9.4559e-3 (5.85e-4)
500 2.7042e-1 (6.29e-2)- 2.4426e-1 (2.39e-3)- 3.5996e-1 (1.47e-2)- 8.1454e+0 (3.81e+0)- 2.4239e-1 (5.63e-3)- 5.8458e-1 (3.67e-2)- 9.0907e-2 (1.16e-2)
1000 5.6997e-1 (2.96e-2)- 2.6044e-1 (2.99e-3)- 1.0485e+0 (6.19e-2)- 9.5576e+0 (2.76e+0)- 4.7337e-1 (3.09e-2)- 6.2352e-1 (2.32e-2)- 1.5589e-1 (4.67e-3)

LSMOP2
200 5.9069e-2 (2.98e-3)- 7.1472e-2 (3.40e-3)- 7.6401e-2 (4.68e-3)- 1.2715e-1 (1.57e-2)- 6.7485e-2 (4.62e-3)- 3.6640e-2 (4.84e-3)- 1.2989e-2 (1.19e-3)
500 4.4650e-2 (1.45e-3)- 5.3040e-2 (1.09e-3)- 4.6716e-2 (7.12e-4)- 7.3208e-2 (2.44e-3)- 4.2944e-2 (1.09e-3)- 2.4521e-2 (1.86e-3)- 1.2148e-2 (2.98e-4)
1000 2.9728e-2 (5.32e-4)- 3.6781e-2 (1.01e-3)- 2.8326e-2 (4.26e-4)- 4.0621e-2 (3.42e-4)- 2.5279e-2 (6.78e-4)- 1.9026e-2 (3.42e-4)- 8.3608e-3 (1.94e-4)

LSMOP4
200 8.0944e-2 (3.69e-3)- 9.0600e-2 (6.05e-3)- 2.1677e-2 (4.89e-4)- 1.2916e-1 (2.15e-2)- 1.6077e-2 (7.93e-4) = 9.6697e-2 (8.63e-3)- 1.5735e-2 (8.11e-4)
500 6.0860e-2 (1.02e-3)- 7.3844e-2 (2.39e-3)- 5.6064e-2 (5.70e-3)- 1.2929e-1 (1.38e-2)- 6.8900e-2 (5.45e-3)- 5.7244e-2 (5.31e-3)- 2.0903e-2 (1.86e-3)
1000 3.9911e-2 (6.37e-4)- 6.7472e-2 (9.93e-4)- 5.2558e-2 (7.59e-4)- 7.6263e-2 (3.78e-3)- 5.1241e-2 (8.41e-4)- 3.9428e-2 (2.27e-3)- 2.1165e-2 (3.11e-4)

LSMOP5
200 3.4242e-1 (3.12e-7) = 3.4112e-1 (3.63e-4) = 8.4394e-3 (9.53e-4)+ 6.7184e-1 (1.06e+0)- 3.0886e-2 (1.34e-1)+ 7.4209e-1 (1.13e-16)- 3.3779e-1 (8.79e-3)
500 3.4149e-1 (7.63e-4)- 3.3522e-1 (7.71e-4)+ 7.1452e-1 (9.41e-2)- 2.3140e+1 (6.56e-1)- 3.1759e-1 (5.48e-3)+ 7.4209e-1 (1.13e-16)- 3.3979e-1 (1.25e-2)
1000 4.6862e-1 (3.00e-2)- 8.6448e-1 (6.88e-1)- 2.3129e+0 (1.86e-1)- 2.4012e+1 (5.26e-1)- 8.1039e-1 (5.22e-2)- 7.4209e-1 (1.13e-16)- 3.3977e-1 (8.84e-3)

LSMOP6
200 1.1790e+0 (1.39e-1)- 5.9087e-1 (2.73e-1)+ 5.9651e-1 (1.01e-1) = 3.4361e+0 (6.59e+0)- 7.4240e-1 (2.22e-4)- 3.5761e-1 (3.74e-3)+ 6.1155e-1 (1.46e-2)
500 1.0323e+0 (5.64e-2)- 4.5314e-1 (6.55e-2)+ 5.5133e-1 (1.25e-1)+ 1.9444e+3 (1.51e+3)- 7.3382e-1 (5.13e-2)- 3.1987e-1 (8.56e-4)+ 6.5781e-1 (1.14e-2)
1000 2.0751e+0 (5.96e-1)- 4.8573e-1 (1.29e-1)+ 5.9818e-1 (1.27e-1) = 2.7388e+3 (2.37e+3)- 7.3992e-1 (4.45e-2)- 3.1267e-1 (1.11e-3)+ 6.7023e-1 (1.88e-2)

LSMOP7
200 1.8708e+0 (5.44e-1)- 1.2786e+0 (3.65e-1)+ 1.4243e+0 (6.90e-1) = 8.5527e+0 (1.11e+1)- 1.2929e+0 (3.24e-1)+ 1.3388e+0 (1.54e-1) = 1.4133e+0 (1.85e-2)
500 2.8632e+0 (5.94e-1)- 1.9421e+0 (2.39e-1)- 2.6717e+0 (6.64e-1)- 8.2086e+4 (3.96e+3)- 1.6908e+0 (2.17e-1)- 1.4977e+0 (1.91e-3)- 1.4917e+0 (7.89e-3)

1000 4.6098e+0 (6.91e-1)- 3.0587e+0 (2.03e+0)- 4.1317e+1 (4.60e+0)- 8.6965e+4 (3.59e+3)- 2.3039e+0 (1.77e-1)- 1.5078e+0 (6.81e-4) = 1.5099e+0 (4.92e-3)

LSMOP8
200 3.4548e-1 (9.79e-4)- 2.8622e-1 (8.70e-2)- 5.3672e-2 (2.73e-3) = 1.6457e-1 (1.03e-1)- 4.0598e-2 (4.68e-3)+ 7.4209e-1 (1.13e-16)- 4.7619e-2 (1.26e-2)
500 3.4720e-1 (8.60e-4)- 3.1401e-1 (3.71e-2)- 6.3451e-2 (6.95e-3)- 1.9658e+1 (6.19e-1)- 2.7007e-2 (1.03e-3)+ 7.4209e-1 (1.13e-16)- 3.6966e-2 (4.02e-3)
1000 3.3120e-1 (2.83e-3)- 9.6596e-1 (1.40e-1)- 1.6454e+0 (1.27e-1)- 2.0165e+1 (3.66e-1)- 2.5620e-2 (8.99e-4)+ 7.4209e-1 (1.13e-16)- 2.6138e-1 (4.20e-2)

LSMOP9
200 8.1004e-1 (8.82e-16)- 8.1004e-1 (7.04e-16)- 3.4718e-1 (1.00e-1)+ 9.5738e-1 (4.14e-1) = 6.2908e-2 (6.14e-2)+ 8.1004e-1 (3.39e-16) = 8.1004e-1 (3.39e-16)
500 8.1121e-1 (2.43e-3)- 8.1880e-1 (2.07e-2) = 2.4712e-1 (9.44e-2)+ 4.5385e+1 (2.07e+1)- 1.7551e-1 (8.04e-3)+ 8.0922e-1 (5.21e-4)- 7.5028e-1 (1.98e-1)
1000 9.5720e-1 (5.66e-3)- 9.9859e-1 (7.19e-3)- 2.7692e-1 (1.85e-1)+ 5.2523e+1 (1.65e+1)- 1.0076e-1 (1.03e-3)+ 8.0692e-1 (7.32e-4)- 6.3344e-1 (3.24e-1)

+/-/= 0/23/1 5/19/2 5/14/5 0/23/1 10/13/1 3/18/3

’+’, ’-’ and ’=’ indicate that the result is significantly better, significantly worse and statistically similar to that obtained by iLSMOA, respectively. The
best result in each row is highlighted.

TABLE II
THE STATICS OF HV RESULTS ACHIEVED BY SEVEN COMPARED ALGORITHMS ON 24 BI-OBJECTIVE TEST INSTANCES FROM LSMOP TEST SUITE.

Problem D IBEA CMOPSO GDE3 LMEA MOEA/D-DE LSMOF iLSMOA

LSMOP1
200 2.9149e-1 (8.17e-2)- 2.9453e-1 (4.56e-2)- 5.7237e-1 (1.11e-3) = 2.1791e-1 (1.45e-1)- 5.8040e-1 (3.09e-4)+ 1.1153e-1 (5.79e-3)- 5.7289e-1 (7.59e-4)
500 2.6114e-1 (6.74e-2)- 1.9960e-1 (3.02e-3)- 2.0722e-1 (1.19e-2)- 0.0000e+0 (0.00e+0)- 3.1233e-1 (5.27e-3)- 1.0923e-1 (6.29e-3)- 4.6290e-1 (1.75e-2)
1000 6.6189e-2 (1.59e-2)- 1.7366e-1 (2.95e-3)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 1.3485e-1 (2.00e-2)- 1.0490e-1 (5.27e-3)- 3.5600e-1 (8.28e-3)

LSMOP2
200 5.0631e-1 (3.64e-3)- 4.9301e-1 (4.58e-3)- 4.8645e-1 (5.80e-3)- 4.2546e-1 (1.72e-2)- 4.9845e-1 (5.63e-3)- 5.3752e-1 (5.75e-3)- 5.6827e-1 (1.47e-3)
500 5.2617e-1 (1.84e-3)- 5.1605e-1 (1.38e-3)- 5.2348e-1 (8.87e-4)- 4.8762e-1 (3.57e-3)- 5.2846e-1 (1.36e-3)- 5.5273e-1 (2.33e-3)- 5.6928e-1 (3.77e-4)
1000 5.4562e-1 (7.06e-4)- 5.3689e-1 (1.31e-3)- 5.4768e-1 (5.74e-4)- 5.2873e-1 (9.50e-4)- 5.5170e-1 (8.89e-4)- 5.5999e-1 (4.46e-4)- 5.7416e-1 (2.57e-4)

LSMOP4
200 4.6602e-1 (3.91e-3)- 4.6758e-1 (6.94e-3)- 5.5672e-1 (6.17e-4)- 4.2325e-1 (2.27e-2)- 5.6400e-1 (1.03e-3) = 4.5675e-1 (1.14e-2)- 5.6445e-1 (1.10e-3)
500 5.0359e-1 (1.12e-3)- 4.9013e-1 (2.97e-3)- 5.1167e-1 (7.21e-3)- 4.2331e-1 (1.69e-2)- 4.9665e-1 (6.52e-3)- 5.0863e-1 (6.32e-3)- 5.5766e-1 (2.42e-3)
1000 5.3155e-1 (8.35e-4)- 4.9955e-1 (1.22e-3)- 5.1583e-1 (9.41e-4)- 4.8440e-1 (6.28e-3)- 5.1784e-1 (1.01e-3)- 5.3305e-1 (2.75e-3)- 5.5755e-1 (4.08e-4)

LSMOP5
200 1.7354e-1 (3.00e-6)+ 1.7354e-1 (2.18e-5)+ 3.3891e-1 (1.48e-3)+ 3.0585e-2 (2.40e-2)- 3.3435e-1 (4.60e-2)+ 9.0909e-2 (7.06e-17)- 1.6971e-1 (2.71e-3)
500 1.6856e-1 (9.49e-4)+ 1.7215e-1 (3.48e-4)+ 2.0860e-6 (1.14e-5)- 0.0000e+0 (0.00e+0)- 1.3779e-1 (3.42e-3)- 9.0909e-2 (7.06e-17)- 1.6391e-1 (1.16e-2)
1000 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 9.0909e-2 (7.06e-17)- 1.6232e-1 (7.25e-3)

LSMOP6
200 0.0000e+0 (0.00e+0)- 2.9099e-2 (2.49e-2)- 2.1392e-3 (7.14e-3)- 0.0000e+0 (0.00e+0)- 9.0057e-2 (6.34e-5)+ 3.1489e-2 (7.77e-3)- 8.1316e-2 (2.61e-3)
500 0.0000e+0 (0.00e+0)- 2.8729e-2 (9.60e-3)- 3.0488e-2 (1.06e-2)- 0.0000e+0 (0.00e+0)- 8.4753e-2 (1.05e-3)+ 3.5892e-2 (2.85e-3)- 7.9234e-2 (3.21e-3)
1000 0.0000e+0 (0.00e+0)- 4.1955e-2 (4.62e-3)- 5.5831e-2 (2.04e-3)- 0.0000e+0 (0.00e+0)- 7.2626e-2 (2.12e-3)- 6.9943e-2 (1.14e-3)- 7.4072e-2 (2.31e-3)

LSMOP7
200 0.0000e+0 (0.00e+0) = 7.5507e-4 (3.11e-3) = 8.9751e-4 (3.07e-3)+ 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0)
500 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0)
1000 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0)

LSMOP8
200 1.5421e-1 (5.01e-3)- 1.5375e-1 (3.81e-2)- 2.7710e-1 (3.25e-3)- 1.7090e-1 (6.19e-2)- 2.9727e-1 (4.53e-3)- 9.0909e-2 (7.06e-17)- 3.0594e-1 (6.59e-3)
500 1.4311e-1 (4.47e-3)- 9.9071e-2 (4.47e-2)- 2.6492e-1 (8.82e-3)- 0.0000e+0 (0.00e+0)- 3.1307e-1 (1.41e-3)+ 9.0909e-2 (7.06e-17)- 3.0528e-1 (2.89e-3)
1000 2.2380e-2 (1.06e-2)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 3.1560e-1 (1.18e-3)+ 9.0909e-2 (7.06e-17)- 1.5370e-1 (1.94e-2)

LSMOP9
200 9.0909e-2 (2.75e-16)- 9.0909e-2 (1.37e-16)- 1.2117e-1 (1.54e-2)+ 5.0302e-2 (2.47e-2)- 2.1379e-1 (2.70e-2)+ 9.0909e-2 (7.06e-17) = 9.0909e-2 (7.06e-17)
500 9.0540e-2 (6.73e-4)- 8.8550e-2 (5.42e-3) = 1.4451e-1 (1.19e-2)+ 0.0000e+0 (0.00e+0)- 1.6402e-1 (2.88e-3)+ 9.0993e-2 (5.23e-5)- 1.0135e-1 (3.40e-2)
1000 5.2897e-2 (1.41e-3)- 4.2505e-2 (1.79e-3)- 1.5783e-1 (2.26e-2)+ 0.0000e+0 (0.00e+0)- 1.9473e-1 (4.24e-4)+ 9.1291e-2 (9.39e-5)- 1.2066e-1 (5.48e-2)

+/-/= 2/19/3 2/18/4 5/16/3 0/21/3 10/10/4 0/20/4

’+’, ’-’ and ’=’ indicate that the result is significantly better, significantly worse and statistically similar to that obtained by iLSMOA, respectively.

statistics of IGD and HV values are given in Table III and

Table IV, respectively. It can be observed that iLSMOA

has achieved the most best results (9 and 14 out of 24

respectively), followed by LSMOF, IBEA, and MOEA/D-DE.

Thus, iLSMOA has shown its competitive performance in

comparison with state-of-the-arts.

The final non-dominated solutions obtained by the com-

pared algorithms on tri-objective LSMOP2 with 1000 decision

variables in the run associated with the median IGD value

are displayed in Fig. 3. It can be observed that iLSMOA has

obtained the most evenly distributed solutions converged to the

PF, demonstrating the effectiveness of our proposed iLSMOA

in handling LSMOPs.

V. CONCLUSION

In this work, we have proposed an iterated problem re-

formulated based EA for large-scale multiobjective optimiza-

tion. The basic idea is to adopt the reformulation based

single-objective optimization and the decomposition based



TABLE III
THE STATICS OF IGD RESULTS ACHIEVED BY SEVEN COMPARED ALGORITHMS ON 24 TRI-OBJECTIVE TEST INSTANCES FROM LSMOP TEST SUITE.

Problem D IBEA CMOPSO GDE3 LMEA MOEA/D-DE LSMOF iLSMOA

LSMOP1
200 2.8015e-1 (8.35e-2)+ 5.6450e-1 (1.42e-1)- 4.5507e-1 (1.15e-1)- 2.3396e-1 (1.56e-1)+ 3.8721e-1 (2.55e-2)= 2.2044e-1 (1.98e-3)+ 3.6433e-1 (5.84e-2)
500 3.3940e-1 (8.39e-2)+ 7.1589e-1 (3.05e-1)- 2.2043e+0 (2.04e-1)- 1.0272e+1 (2.93e+0)- 1.2956e+0 (1.22e-1)- 2.4511e-1 (6.47e-3)+ 3.8725e-1 (4.12e-2)

1000 9.7374e-1 (1.76e-1)- 1.0664e+0 (1.20e-1)- 2.9007e+0 (2.47e-1)- 1.0985e+1 (1.63e+0)- 1.6348e+0 (1.52e-1)- 4.6671e-1 (1.57e-2)- 3.9434e-1 (3.73e-2)

LSMOP2
200 6.9216e-2 (1.76e-3)+ 1.2829e-1 (1.35e-3)- 1.3519e-1 (1.39e-3)- 1.0861e-1 (1.30e-2)- 1.0226e-1 (2.15e-3)- 1.4419e-1 (3.37e-3)- 8.2122e-2 (3.81e-3)
500 5.8267e-2 (8.67e-4)- 6.9321e-2 (5.19e-4)- 7.7044e-2 (1.48e-3)- 7.6191e-2 (5.82e-3)- 7.1028e-2 (5.99e-4)- 8.8067e-2 (3.55e-3)- 5.4155e-2 (1.07e-3)

1000 5.0042e-2 (6.66e-4)- 5.1527e-2 (3.80e-4)- 6.0000e-2 (1.51e-3)- 6.2756e-2 (2.67e-3)- 6.2599e-2 (4.61e-4)- 7.1666e-2 (3.87e-3)- 4.5826e-2 (7.18e-4)

LSMOP4
200 1.0821e-1 (8.62e-3)+ 3.1461e-1 (1.50e-2)- 3.7425e-1 (9.66e-3)- 1.9185e-1 (7.24e-2)+ 2.8530e-1 (9.48e-3)- 2.7341e-1 (8.05e-3)- 2.3526e-1 (1.26e-2)
500 9.1916e-2 (1.92e-3)+ 2.0022e-1 (3.70e-3)- 2.0717e-1 (3.52e-3)- 2.1371e-1 (8.60e-3)- 1.6393e-1 (1.87e-3)- 2.2041e-1 (5.27e-3)- 1.2076e-1 (4.76e-3)

1000 7.3730e-2 (1.08e-3)+ 1.2171e-1 (1.37e-3)- 1.2988e-1 (1.51e-3)- 1.3119e-1 (5.87e-3)- 1.0563e-1 (1.17e-3)- 1.4357e-1 (5.11e-3)- 8.0868e-2 (2.25e-3)

LSMOP5
200 4.8029e-1 (1.43e-5)- 3.7630e-1 (1.09e-1)= 2.4584e+0 (1.44e+0)- 5.5177e+0 (3.82e+0)- 5.3134e-1 (1.24e-2)- 4.8445e-1 (4.46e-2)- 3.5042e-1 (2.35e-2)
500 4.5555e-1 (3.85e-2)- 8.5919e-1 (6.80e-2)- 6.2034e+0 (6.29e-1)- 1.8764e+1 (3.47e+0)- 1.2976e+0 (4.88e-1)- 5.2359e-1 (2.46e-2)- 3.5819e-1 (2.78e-2)

1000 8.3798e-1 (5.99e-2)- 5.0869e+0 (4.04e+0)- 6.1954e+0 (8.59e-1)- 1.9979e+1 (7.13e-1)- 2.8023e+0 (2.24e-1)- 5.3908e-1 (5.78e-3)- 3.6679e-1 (3.59e-2)

LSMOP6
200 1.1726e+0 (3.20e-1)= 2.0063e+0 (5.99e-1)- 1.5981e+1 (1.36e+1)- 7.0272e+2 (2.44e+3)- 1.0922e+0 (1.59e-1)+ 8.0008e-1 (2.21e-1)+ 1.1598e+0 (1.01e-1)
500 2.1183e+0 (6.34e-1)- 4.8347e+0 (2.40e+0)- 9.7084e+1 (1.52e+2)- 2.7444e+4 (1.75e+4)- 1.6705e+0 (3.01e-1)- 7.1883e-1 (1.06e-1)+ 1.2837e+0 (1.47e-1)

1000 6.3596e+0 (7.48e+0)- 7.0079e+1 (6.15e+1)- 2.6498e+3 (6.82e+2)- 3.8392e+4 (5.48e+3)- 2.1176e+0 (2.95e-1)- 7.7849e-1 (1.51e-1)+ 1.3575e+0 (1.32e-1)

LSMOP7
200 1.1232e+0 (1.07e-1)- 1.3901e+0 (2.85e-1)- 1.4584e+0 (2.14e-1)- 3.3842e+0 (4.98e+0)- 9.3049e-1 (7.50e-2)- 9.4541e-1 (3.10e-2)- 8.2773e-1 (1.06e-2)
500 1.4500e+0 (5.74e-2)- 1.3305e+0 (1.07e-2)- 1.2558e+0 (8.46e-3)- 1.3391e+3 (1.04e+3)- 9.4609e-1 (3.97e-5)- 8.8794e-1 (7.07e-3)- 8.3832e-1 (4.99e-3)

1000 4.1276e+0 (7.09e-1)- 1.1213e+0 (3.01e-3)- 1.0821e+0 (1.98e-3)- 1.6670e+3 (1.81e+3)- 9.6206e-1 (5.86e-3)- 8.6210e-1 (2.69e-3)- 8.3855e-1 (2.50e-3)

LSMOP8
200 4.4399e-1 (5.35e-2)- 3.2610e-1 (4.77e-2)- 1.7919e-1 (4.86e-3)+ 2.0521e-1 (5.75e-2)+ 2.8105e-1 (6.08e-2)= 3.5433e-1 (2.13e-2)- 2.7723e-1 (4.67e-2)
500 4.8821e-1 (1.51e-3)- 3.3712e-1 (4.78e-2)+ 3.1323e-1 (1.62e-1)+ 7.7210e-1 (1.71e-1)- 5.4179e-1 (1.06e-2)- 3.4357e-1 (2.36e-2)= 3.3907e-1 (3.97e-2)

1000 4.8935e-1 (4.23e-4)- 2.8960e-1 (3.48e-2)+ 9.3916e-1 (4.78e-2)- 7.3129e-1 (8.99e-2)- 5.2533e-1 (7.33e-3)- 3.4560e-1 (1.80e-2)= 3.4162e-1 (3.96e-2)

LSMOP9
200 1.1101e+0 (1.42e-1)- 6.5832e-1 (1.68e-1)- 1.8979e+0 (1.66e-1)- 1.5160e+0 (1.12e+0)- 3.8831e-1 (1.39e-2)+ 1.4941e+0 (1.21e-1)- 6.0080e-1 (6.54e-3)
500 1.2093e+0 (4.27e-2)- 1.0625e+0 (5.01e-2)- 4.4051e+0 (2.21e+0)- 1.0897e+2 (5.52e+1)- 4.0453e-1 (3.98e-2)+ 1.4463e+0 (1.69e-1)- 5.9954e-1 (6.80e-3)

1000 1.5400e+0 (8.91e-3)- 9.1503e-1 (6.35e-3)- 2.0675e+1 (1.57e+0)- 1.2147e+2 (4.87e+1)- 5.5751e-1 (8.41e-2)+ 1.1711e+0 (9.97e-2)- 6.0855e-1 (1.99e-2)

+/-/= 6/17/1 2/21/1 2/22/0 3/21/0 4/18/2 5/17/2

’+’, ’-’ and ’=’ indicate that the result is significantly better, significantly worse and statistically similar to that obtained by iLSMOA, respectively.

TABLE IV
THE STATICS OF HV RESULTS ACHIEVED BY SEVEN COMPARED ALGORITHMS ON 24 TRI-OBJECTIVE TEST INSTANCES FROM LSMOP TEST SUITE.

Problem D IBEA CMOPSO GDE3 LMEA MOEA/D-DE LSMOF iLSMOA

LSMOP1
200 5.3504e-1 (9.97e-2)+ 1.7229e-1 (1.08e-1)- 2.8966e-1 (7.21e-2)- 5.4541e-1 (1.52e-1)+ 3.3301e-1 (4.21e-2)- 6.0196e-1 (4.38e-3)+ 4.2314e-1 (5.74e-2)
500 4.5195e-1 (9.34e-2)+ 7.0115e-2 (6.01e-2)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 4.8436e-5 (1.77e-4)- 5.7763e-1 (9.81e-3)+ 3.8404e-1 (2.57e-2)
1000 1.2532e-2 (3.23e-2)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 3.1644e-1 (2.85e-2)- 3.5781e-1 (2.18e-2)

LSMOP2
200 7.9339e-1 (5.66e-3)+ 7.2646e-1 (1.79e-3)- 7.0807e-1 (3.41e-3)- 7.4130e-1 (1.06e-2)- 7.2766e-1 (2.85e-3)- 6.9845e-1 (5.01e-3)- 7.8136e-1 (4.13e-3)
500 8.0749e-1 (1.28e-3)- 7.9704e-1 (3.21e-4)- 7.8207e-1 (3.06e-3)- 7.6918e-1 (1.37e-2)- 7.6665e-1 (9.37e-4)- 7.7118e-1 (3.94e-3)- 8.1610e-1 (1.42e-3)

1000 8.1938e-1 (1.47e-3)- 8.1943e-1 (3.56e-4)- 8.0596e-1 (2.83e-3)- 7.8396e-1 (7.60e-3)- 7.8262e-1 (1.18e-3)- 7.9514e-1 (5.10e-3)- 8.2797e-1 (1.11e-3)

LSMOP4
200 7.4058e-1 (1.61e-2)+ 4.8981e-1 (2.82e-2)- 3.9535e-1 (9.49e-3)- 6.2354e-1 (6.96e-2)+ 5.0335e-1 (1.08e-2)- 5.2197e-1 (1.08e-2)- 5.9470e-1 (1.74e-2)
500 7.6036e-1 (6.28e-3)+ 6.3412e-1 (4.64e-3)- 6.1308e-1 (3.98e-3)- 5.8486e-1 (2.19e-2)- 6.5314e-1 (2.48e-3)- 6.0328e-1 (7.35e-3)- 7.3918e-1 (5.77e-3)
1000 7.7837e-1 (4.30e-3)- 7.3479e-1 (1.45e-3)- 7.1367e-1 (3.67e-3)- 6.9882e-1 (1.51e-2)- 7.2351e-1 (1.52e-3)- 7.0373e-1 (6.51e-3)- 7.8375e-1 (3.04e-3)

LSMOP5
200 2.4855e-1 (1.35e-4)- 1.6381e-1 (5.45e-2)- 7.2946e-2 (1.42e-1)- 1.2598e-2 (2.13e-2)- 9.4708e-2 (6.40e-3)- 3.4636e-1 (2.11e-4)- 3.9438e-1 (8.27e-3)
500 1.4869e-1 (4.79e-2)- 2.8324e-3 (5.49e-3)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 7.9513e-3 (2.30e-2)- 3.4635e-1 (2.53e-4)- 3.8433e-1 (3.20e-2)
1000 1.6769e-4 (4.82e-4)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 3.4637e-1 (2.31e-4)- 3.5761e-1 (4.55e-2)

LSMOP6
200 1.1738e-2 (1.84e-2)+ 0.0000e+0 (0.00e+0)= 0.0000e+0 (0.00e+0)= 0.0000e+0 (0.00e+0)= 1.1951e-4 (5.39e-4)= 2.2056e-2 (1.72e-2)+ 6.6222e-6 (3.63e-5)
500 0.0000e+0 (0.00e+0)= 0.0000e+0 (0.00e+0)= 0.0000e+0 (0.00e+0)= 0.0000e+0 (0.00e+0)= 0.0000e+0 (0.00e+0)= 1.7361e-2 (9.76e-3)+ 1.2754e-4 (5.99e-4)
1000 0.0000e+0 (0.00e+0)= 0.0000e+0 (0.00e+0)= 0.0000e+0 (0.00e+0)= 0.0000e+0 (0.00e+0)= 0.0000e+0 (0.00e+0)= 9.6670e-3 (6.66e-3)+ 1.1670e-4 (6.39e-4)

LSMOP7
200 1.9447e-3 (1.07e-2)- 6.6533e-4 (3.34e-3)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 9.0818e-2 (3.30e-5)+ 0.0000e+0 (0.00e+0)- 4.4418e-2 (2.73e-2)
500 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 9.0581e-2 (7.75e-5)+ 0.0000e+0 (0.00e+0)- 6.2597e-2 (1.86e-2)
1000 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 6.1338e-2 (1.06e-2)- 0.0000e+0 (0.00e+0)- 7.5048e-2 (9.18e-3)

LSMOP8
200 2.5008e-1 (5.62e-2)- 2.6301e-1 (5.91e-2)- 3.0269e-1 (9.12e-3)- 3.0145e-1 (4.58e-2)- 2.8941e-1 (2.15e-2)- 3.6832e-1 (1.52e-2)- 3.8939e-1 (6.53e-3)
500 1.8762e-1 (1.04e-2)- 2.8316e-1 (3.81e-2)- 2.5561e-1 (7.77e-2)- 3.7624e-2 (1.32e-2)- 8.4670e-2 (4.73e-3)- 3.1664e-1 (6.88e-2)- 3.9545e-1 (3.91e-3)
1000 1.7715e-1 (2.74e-3)- 2.0457e-1 (3.74e-2)- 6.9951e-2 (4.27e-4)- 4.0528e-2 (2.30e-2)- 9.3089e-2 (4.44e-3)- 2.9546e-1 (7.27e-2)- 3.9711e-1 (2.58e-3)

LSMOP9
200 1.5042e-1 (1.12e-2)- 1.8068e-1 (1.20e-2)- 4.0445e-3 (2.92e-3)- 2.7140e-2 (1.49e-2)- 8.5088e-2 (4.58e-3)- 9.6974e-2 (1.73e-2)- 1.8707e-1 (1.30e-3)
500 1.3524e-1 (8.15e-3)- 6.0020e-2 (1.07e-2)- 8.5330e-3 (1.60e-2)- 0.0000e+0 (0.00e+0)- 9.6036e-2 (1.85e-2)- 1.0414e-1 (2.44e-2)- 1.8701e-1 (2.15e-3)
1000 7.6488e-2 (1.49e-3)- 9.3864e-2 (1.51e-3)- 0.0000e+0 (0.00e+0)- 0.0000e+0 (0.00e+0)- 6.3387e-2 (3.29e-3)- 1.4383e-1 (1.44e-2)- 1.8409e-1 (1.11e-2)

+/-/= 6/16/2 0/21/3 0/21/3 2/19/3 2/19/3 5/19/0

’+’, ’-’ and ’=’ indicate that the result is significantly better, significantly worse and statistically similar to that obtained by iLSMOA, respectively.

multiobjective optimization in an iterated manner. Despite its

simplicity, the proposed algorithm has revealed the superiority

of the iterated strategy over the static two-stage based strat-

egy in LSMOF for large-scale multiobjective optimization. It

could be attributed to the fact that the reformulation based

optimization is greedy in the original LSMOF, thus leading

to local optima. By contrast, in our proposed iLSMOA, the

reference solutions for problem reformulation are dynamically

updated, and thus the global search ability of the problem

reformulation based optimization is enhanced. Moreover, since

the computational complexity of iLSMOA is the same as that

of LSMOF, the computation cost of iLSMOA is comparable

to LSMOF. As indicated by the experimental results, the

effectiveness and efficiency of iLSMOA are well balanced for

solving large-scale multiobjective optimization problems.
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