
Handling Constrained Multi-Objective Optimization
with Objective Space Mapping to Decision Space

Based on Extreme Learning Machine
1st Hao Zhang1,2,3, 2nd KuTao1,2,3, 3rd Lianbo Ma4,*, 4th Yibo Yong4

1: Key Laboratory of Networked Control Systems, Chinese Academy of Sciences
2: Shenyang Institute of Automation, Chinese Academy of Sciences

3: Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences
4: Software College, Northeastern University

Shenyang, China
zhanghao@sia.cn, kutao@sia.cn, malb@swc.neu.edu.cn, yyb@swc.neu.edu.cn

Abstract—Constrained multi-objective optimization is fre-
quently encountered from the point of view of practical problem
solving. The difficulty of constrained multi-objective optimization
is how to offer guarantee of finding feasible optimal solutions
within a specified number of iterations. To address the issue,
this paper proposes an innovative optimization framework with
objective space mapping to decision space for constrained multi-
objective optimization and a novel multi-objective optimization
algorithms are proposed based on this framework. Extreme
learning machine implements prediction of decision variables
from modified objective values with distance measure and adap-
tive penalty. This algorithm employs the framework of artificial
bee colony to divide this optimization process into two phases: the
employed bees and the onlooker bees. In the phase of employed
bees, multi-objective strategy employs fast non-dominant sort and
crowded distance to push the population toward Pareto front.
In the phase of onlooker bees, multi-objective strategy employs
Tchebycheff approach to enhance the population diversity. The
experimental results on a series of benchmark problems suggest
that our proposed algorithm is quite effective, in comparison to
other state-of-the-art constrained multi-objective optimizers.

Index Terms—constrained multi-objective optimization, ex-
treme learning machine, artificial bee colony, decomposition, non-
domination

I. INTRODUCTION

A majority of real world optimization problems involve si-
multaneous optimization of several objectives and constraints.
Generally, these objective functions are competing and con-
flicting. Their constraints are various and noncommensurable.
The constrained multi-objective optimization problem are dif-
ficult to solve, as finding a feasible and optimal solution may
require substantial computational resources. In recent years, an
increasing number of researchers in this respect pay attention
to constrained multi-objective optimization problems [1]- [5].
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Generally, constrained multi-objective optimization problem
considered is defined as:

minimize F (x) = (f1(x), f2(x), · · · , fm(x))T

subject to gj(x) ≤ 0, j = 1, · · · , p
hj(x) = 0, j = p, · · · , q
x ∈ Ω

(1)

where, x = (x1, · · · , xD)T is a D-dimensional candidate solu-
tion. Ω represents the decision space, and F : Ω→ Rm consists
of m conflicting objective functions and Rm represents the
objective space. gj(x) and hj(x) represent the jth inequality
and equality constraint respectively.

For two vectors xa and xb in the decision space of
constrained multi-objective optimization problem, if fi(xa) ≤
fi(xb) for ∀i ∈ {1, 2, · · · ,m} and fi(xa) < fi(xb) for
∃i ∈ {1, 2, · · · ,m}, then xa is said to dominate xb, which
is denoted as xa ≺ xb. The set of optimal trade-offs forms
the solution set which is called the Pareto optimal set which
is denoted by P ∗. The set PF ∗ = {F (x)|x ∈ P ∗} is called
the Pareto front.

Constrained multi-objective optimization problems are fre-
quently encountered in science, engineering or finance fields.
An increasing number of real-world applications are formulat-
ed as constrained multi-objective optimization problems. In re-
cent years, some novel multi-objective optimization algorithms
are proposed [6] [7]. In [8], an agent-based model is proposed
to improve the electricity market efficiency by using different
demand response programs and a market power index and the
operation cost are used to evaluate the market efficiency by
using a multi-objective decision-making approach. In [9], a
stochastic framework for day-ahead scheduling of microgrid
energy storage systems in the context of multi-objective opti-
mization is presented and the non-dominated sorting genetic
algorithm II is employed to effectively cope with the optimiza-
tion problem. In [10], a multi-objective airships deployment
optimization model is proposed considering path loss, user
demand, and inner structure and a similarity-based algorithm
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is proposed to optimize this model under the framework of
the multi-objective evolutionary algorithm based on decompo-
sition. In [11], an innovative hybrid multi-objective artificial
bee colony algorithm is proposed for the nonlinear constrained
multi-objective burdening optimization model, which achieves
good results. In [12], a multi-objective evolutionary algorithm
is designed to solve the multi-commodity capacitated network
design problem that is a very complex network design problem
variation. These real-world constrained multi-objective opti-
mization problems usually contain more than one objective
functions and several diverse constraints.

Although many researchers have a consensus that heuristic
algorithms based on biological evolution are a promising way
to deal with constrained multi-objective optimization problems
[13], there are still some shortcomings that can be improved
in these algorithms as follows:

* current biological heuristic algorithms rarely consider the
influence of variables and constraints in the objective
space on decision variables;

* current constraint handling methods can rarely keep a
good balance between convergence and diversity within
the feasible region.

Therefore, these algorithms might be easily trapped into
some locally optimal or locally feasible regions, or offer
no guarantee of finding feasible optimal solutions within a
specified number of iterations, especially when the feasible
regions are scattered or narrow in the search space.

In this paper, an novel multi-objective algorithm with a
innovative optimization framework is proposed that performs
objective space to decision space mapping for constrained
multi-objective optimization. Extreme learning machine is
employed to implement prediction of decision variables from
modified objective values with the constraint handling tech-
nique of distance measure and adaptive penalty. A two-phase
framework in this algorithm is proposed on the basis of
artificial bee colony [14], which divides this optimization
process into the employed bee phase and the onlooker bee
phase. In the phase of employed bees, multi-objective strategy
employs fast non-dominant sort and crowded distance to push
the population toward Pareto front. In the phase of onlooker
bees, multi-objective strategy employs Tchebycheff approach
to enhance the population diversity. This algorithm can be
called CMOABC-ELM for short.

The rest of this paper is organized as follows. The technical
details of CMOABC-ELM are described in Section II. The
experimental setup is introduced in Section III. Subsequently,
Section IV shows the effectiveness and competitiveness of
the proposed algorithm that is compared with other multi-
objective algorithms [15] on various benchmark problems.
Finally, Section V concludes this paper.

II. PROPOSED APPROACH

A. Objective Space to Decision Space Mapping for Constraint
Handling

To solve constrained multi-objective optimization problems
generically, a search strategy is proposed that enhances local

search in the objective space by means of mapping several
certain objective vectors back to their corresponding decision
vectors in this paper. Fig. 1 shows how to generate candidate
solutions in decision space from objective space using this
search strategy.
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Fig. 1. The actions of this search strategy that map objective vectors in
feasible region back to their corresponding decision vectors.

Firstly, the computed objective values by decision variables
are updated in the objective space using a method inspired
from artificial bee colony [16]. The set of objective vectors is
defined as F = {fi|i = 1, 2, · · · , n}, where n is the number
of individuals. A objective vector is defined as f = {fj |j =
1, 2, · · · ,m}, where m is the number of objective functions.
A new objective value f ′i,j is calculated by the following
expression:

f ′i,j = fi,j + γi,j(fi,j − fr,j) (2)

where r ∈ {1, 2, ...,m}, r is a chosen index randomly, but
r 6= i and fi,j > fr,j that can keep objective values moving
in a good direction; γi,j is random real number in the range
of [−1, 0].

In this paper, all original objective values are replaced by
modified objective function values with a self-adaptive penalty
function [17] to handle the constraints in constrained multi-
objective optimization problem. The approach determines the
amount of penalty added to infeasible individual by means of
the number of feasible individuals of the colony and evolves
feasible optimal solutions not only from the feasible space but
also from the infeasible space. The search in the infeasible
space is designed to encourage those individuals with better
objective value and low constraint violation. The number of
feasible individuals in the population is employed to guide the
search process toward finding more feasible optimal solutions.
More details are described in [17].

Then, a prediction model is trained by extreme learning ma-
chine (described in Section II-B) to produce decision variables
vectors according to the improved objective vectors. The exact
data results from earlier evaluations of objective functions at
the same generation during the search. If these new produced
decision variable vectors are out-of bounds, they are replaced
by their nearest boundary values in feasible region of decision
space.



Finally, the new decision vectors compete with the exist
decision vectors. The better solutions will be retained and the
others will be abandoned.

The constraint handling techniques can push the whole
population toward the feasible region as much as possible and
consider the balance between convergence and diversity within
the feasible region simultaneously.

B. Decision Variable Prediction with Extreme Learning Ma-
chine

Extreme learning machine was proposed by Huang et al.
in 2004 and is a fast and efficient training algorithm for
single-hidden layer feed forward neural network [18]. In this
paper, extreme learning machine is employed to predict the
corresponding decision vectors from the data of several certain
objective vectors for the enhancements to the whole population
due to its good generalization performance and fast training
speed.

Single-hidden layer feed forward neural network with at
most n hidden neurons can learn n distinct samples with zero
error by adopting any bounded nonlinear activation function.
For the set of new objective vectors F ′ = (f ′1,f

′
2, · · · ,f ′n)

that are calculated by Expression (2), given an independent
and identically distributed training set {(f ′1, t1), ..., (f ′n, tn) ⊂
RK × Rs}, standard single-hidden layer feed forward neural
networks with K hidden nodes are mathematically formulated
as follows [19]:

K∑
k=1

βkgk(f ′i) =

K∑
k=1

βkgk(wk · f ′i + bk) = oi, i = 1, ..., n (3)

where g(f ′) is an activation function, wk = [w1
k, w

2
k, ..., w

K
k ]T

is input weight vector connecting input nodes and the kth
hidden node, βk = [β1

k, β
2
k, ..., β

s
k]T is the output weight vector

connecting output nodes and the kth hidden node, bk is bias
of the kth hidden node.

The hidden layer output matrix H of a standard single-
hidden layer feed forward neural network with N hidden
nodes is invertible and ‖Hβ − T ‖= 0 with probability one,
which is proved for N arbitrary distinct samples and any
(wk, bk)randomly chosen from RK × Rs according to any
continuous probability distribution if the activation function
g(x) is infinitely differentiable in any interval [20]. Then
given (wk, bk), training a single-hidden layer feed forward
neural network equals finding a least-squares solution of the
following equation:

Hβ = T (4)

where

H =

g(w1 · f ′1 + b1) · · · g(wK · f ′1 + bK)
...

. . .
...

g(w1 · f ′n + b1) · · · g(wK · f ′n + bK)


n×K

β = [β1, ..., βK ]T T = [t1, ..., tK ]T

Considering most cases that K � N , β cannot be computed
through the direct matrix inversion. Therefore, the smallest
norm least-squares solution is calculated as follows:

β̂ = H†T (5)

where H† is the Moore-Penrose generalized inverse of matrix
H . According to Bartletts theory that the generalization per-
formance of single-hidden layer feed forward neural network
will be improved by minimizing training errors as well as
the norm of output weights, β̂ can theoretically pledge the
generalization ability of single-hidden layer feed forward
neural network.

Based on the above analysis, the framework of extreme
learning machine is as follows:

Step 1. Randomly generate input weight and bias (wk, bk),
i = k, ...,K.

Step 2. Compute the hidden layer output matrix H .
Step 3. Compute the output weight β̂ = H†T : Therefore,

the output of single-hidden layer feed forward neural network
can be calculated by (wk, bk)and β̂:

x(f ′i) =

K∑
k=1

βkgk(wk · f ′i + bk) = β̂ · h(f ′i) (6)

where, x(f ′i) is a new corresponding decision vectors that is
mapped from the objective vector f ′i . At this point, the new
decision vectors are generated.

C. A Two-Phase Multi-Objective Strategy

In CMOABC-ELM, a two-phase framework is proposed on
the basis of artificial bee colony to handle multiple objectives
simultaneously. This framework divides optimization process
into two phases: the employed bee phase and the onlooker
bee phase. In the phase of employed bees, a fast nondom-
inated sorting procedure, a fast crowded distance estimation
procedure, and a simple crowded comparison operator [21]
are employed to push the population toward Pareto front
and accelerate the convergence of the whole population. In
the phase of onlooker bees, multi-objective strategy employs
Tchebycheff approach [15] to improve the population diversity.

Artificial bee colony is a newly proposed optimization
algorithm by Karaboga [16] and applied widely [22]. In
the first step, a randomly distributed population is initialized
which includes n/2 solutions with D-dimensional vector
x = {xi,j |i = 1, 2..., n; j = 1, 2, ..., D}, where n denotes
the size of population. The solution xi is conducted by

xi,j = xmin,j + rand(0, 1)(xmax,j − xmin,j) (7)

where xmin,j and xmax,j are lower and upper bounds of
solution xi,j , respectively.

In artificial bee colony, employed bees of the food source
generate a new candidate solution vi from xi using the
following equation:

vi,j = xi,j + γi,j(xi,j − xr,j) (8)

where r ∈ {1, 2, ..., n}, r 6= i, r is a chosen index randomly;
γji is random real number in the range of [-1,1].



In this phase, these new candidate solutions and old ones
are combined into a composite set H . Then, fast non-dominant
sort and crowded distance are used to sorting H into different
nondomination levels. The crowded distance of each solution
is estimated and a crowded comparison operator is performed.
Finally, a new population is generated with n individuals.

Unlike the employed bees, the onlookers select a food
source to visit by means of calculating the probability values
pi for the solutions using fitness as follows:

pi =
fitnessi∑n/2
i=1 fitnessi

(9)

where fitnessi denotes the fitness value of the solution xi.
After the above process, each onlooker generates a new so-

lution by Expression (8) and Tchebycheff approach is applied
in order to decide that the new or old solution will be kept.

In CMOABC-ELM, a predefined parameter called ”limit”
is used to improve the diversity of the population and avoid
trapping in local optimum. That is foraging process of a scout.
If a solution cannot be improved after ”limit” iterations, the
corresponding food source is abandoned and the employed bee
becomes the scout. The scout will find a new food source by
Expression (7).

D. Proposed Algorithm

The flowchart of CMOABC-ELM algorithm is shown in
Fig. 2 and its performance procedure is given as follows:

Step 1: Set maximum number of cycles T and ”limit” value;
Step 2: Initialize n individuals that construct a random initial

population P using Expression (7);
Step 3: Set t = 1;
Step 4: Loop over each individual
1) Generate new solutions as set EPt for the employed

bees by Expression (8) and then form a new combined
population NEPt = Pt ∪ EPt;

2) Calculate modified objective function values with dis-
tance measure and adaptive penalty for all individuals,
and then the bee colony EPt is sorted according to
nondomination;

3) Select exactly n best individuals as new Pt from NEPt

using the crowded-comparison operator;
4) Generate new solutions as set OPt for the onlooker bees

by Expression (8) and form a new combined population
NOPt = Pt ∪OPt;

5) Calculate modified objective function values with dis-
tance measure and adaptive penalty for all individuals,
and then select exactly n best individuals as new Pt

from NEPt using Tchebycheff approach;
6) Predict new decision vectors as set PPt with extreme

learning machine and then form a new combined popu-
lation NEPt = Pt ∪ PPt;

7) Select exactly n best individuals as new Pt from PPt

using fast non-dominant sort and crowded distance;
8) If there is no improvement of an individual after the

”limit” number of cycles, it will be discarded and a new
one is randomly generated using Expression (7);

INITIALIZATION

SORT  THE BEE COLONY USING FAST 
NONDOMINATED SORTING PROCEDURE 

STOP CRITERION STOP

GENERATE NEW SOLUTIONS FOR THE 
EMPLOYED BEES

SELECT THE BEE COLONY USING   
CROWDED DISTANCE ESTIMATION

GENERATE NEW SOLUTIONS FOR THE 
ONLOOKER BEES

SELECT THE BEE COLONY USING 
TCHEBYCHEFF APPROACH

PREDICT THE NEW DECISION VECTORS 
WITH EXTREME LEARNING MACHINE

 IS A SOLUTION IMPROVED 

AFTER THE “LIMIT ”NUMBER 

OF CYCLES?

GENERATE NEW SOLUTIONS FOR 
THE SCOUTS

YES

NO

YES

NO

Fig. 2. Flow chart of CMOABC-ELM.

9) t = t+ 1;
10) When t >= T , stop the procedure; otherwise, go to step

4;
Step 5: Output: the population P .

III. EXPERIMENTAL SETUP

A. Benchmark Functions

The experiments on CMOABC-ELM contain four bench-
mark functions which are constrained multi-objective prob-
lems (C1-DTLZ1, C1-DTLZ3, C2-DTLZ2 and C3-DTLZ4)
[23]. All these test problems are scalable to any number of
objectives, where we set m = 12 here. The experiments
are performed to demonstrate the proposed algorithm is a
powerful search and optimization technique for constrained
multi-objective problems.

B. Performance Metrics

Three widely used indicators are chosen to assess the
performance of different algorithms in our experiments.

1) Inverted Generational Distance (IGD) [24]: Given P ∗

as a set of points uniformly sampled along the PF and



P as the set of solutions obtained from algorithms. The
IGD value of P is calculated as:

IGD(P ) =
1

|P ∗|
∑
z∈P∗

distance(z, P ) (10)

where, distance(z, P ) is the minimum Euclidean dis-
tance between z and its nearest neighbor in P . The
smaller the IGD value, the better the performance of
a constrained multi-objective optimization algorithm.

2) Hypervolume (HV) [25]: Let zr = (zr1 , · · · , zrm)T be
a worst point dominated by all the Pareto optimal
objective vectors. The HV of P is defined as the volume
of the objective space dominated by solutions in P and
bounded by zr:

HV (P ) = VOL(
⋃
z∈P

[z1, z
r
1 ]× · · · × [zm, z

r
m]) (11)

where VOL indicates the lebesgue measure. The larger
the HV value, the better the performance of a con-
strained multi-objective optimization algorithm.

3) Spacing (SP) [26]: SP numerically describes the spread
of the obtained nondominated set of solutions in the
Pareto Front. This Pareto noncompliant metric mea-
sures the distance variance of neighboring vectors in
PFknown, which is defined as follows:

SP =

√√√√ 1

n− 1

n∑
i=1

(d̄− di)2 (12)

and

di = min
j

(

M∑
k=1

|f ik − f
j
k |) (13)

where i, j = 1, ..., n, is the mean of all di, d̄ = 1
n

∑1
n di,

n is the number of the obtained nondominated solutions.
The smaller the SP value, the better the performance of
a constrained multi-objective optimization algorithm.

C. Parameter Settings

In order to prove the numerical correctness, efficiency
and superiority of CMOABC-ELM for constrained multi-
objective problems, The proposed algorithm is compared with
CMOABC without ELM, NSGAII [21] and MOEA/D [15].

The parameters of CMOABC-ELM were set as follows: the
number of hidden neurons H = 40, a colony of bee size N =
600, the maximum number of cycles MNC = 200 and LIMIT
= MNC × D/2 (D is the number of decision variables).
Twenty independent runs were performed with the means and
standard deviation being presented for benchmark functions.
For NSGAII, the population size, maximum number of gen-
erations, crossover and mutation probabilities are selected as
600, 200, 0.85 and 0.25. For MOEA/D, the population size and
maximum number of generations are selected as 200, 100. The
other parameters are the same with [15].

IV. RESULTS AND DISCUSSION

Fig. 3 shows comparative results of four algorithms on C1-
DTLZ1. It is seen from Fig. 3 that the four algorithms can
obtain Pareto Fronts with good distribution and they can find
three intersections between Pareto Fronts and three coordinate
axes. CMOABC-ELM can find more points in the intersection
lines between Pareto Fronts and three coordinate planes.

Fig. 4 shows comparative results of four algorithms on
C1-DTLZ3. It is seen from Fig. 4 that CMOABC-ELM and
MOEA/D can obtain Pareto Fronts with good distribution and
the points obtained by NSGA-II and CMOABC in Pareto
Fronts are sparser than the others. All of them can find three
intersections between Pareto Fronts and three coordinate axes.

Fig. 5 shows comparative results of four algorithms on
C2-DTLZ2.It is seen from Fig. 5 that CMOABC can obtain
Pareto Fronts with poor distribution and there is no significant
difference among the others. All of them can find three
intersections between Pareto Fronts and three coordinate axes.

Fig. 6 shows comparative results of four algorithms on C3-
DTLZ4. It is not easy to find Pareto Fronts of C3-DTLZ4
in the optimization process. It is seen from Fig. 4 that
only MOABC-ELM can obtain Pareto Fronts with the best
distribution. The other algorithms can only find the intersection
lines between Pareto Fronts and two coordinate planes.

It is seen from these four figures that CMOABC-ELM
obtains better convergence, diversity and feasibility, especially
for C3-DTLZ4. They prove feasibility and effectiveness of
CMOABC-ELM for solving constrained multi-objective prob-
lems.

Fig. 3. Comparative results on the 3-objective C1-DTLZ1.

Table I shows mean and deviation of the IGD, HV, and SP
metrics using four algorithms NSGA-II, MOEA/D, CMOABC,
and CMOABC-ELM for four benchmark functions with con-
straints. The best values have been marked in bold. It is seen
from Table I that CMOABC-ELM can obtain the best results
for most benchmark functions in terms of three indicators. The
detailed discussions are given below.



Fig. 4. Comparative results on the 3-objective C1-DTLZ3.

Fig. 5. Comparative results on the 3-objective C2-DTLZ2.

Fig. 6. Comparative results on the 3-objective C3-DTLZ4.

1) In terms of IGD, CMOABC-ELM beats the other al-
gorithms on four benchmark functions and consistently
obtain smaller IGD values except deviation values on
C1-DTLZ3 and C2-DTLZ2.

2) In terms of HV, CMOABC-ELM provides higher HV
values on each benchmark function than the other al-
gorithms except deviation values on C1-DTLZ1, C1-
DTLZ3 and C2-DTLZ2.

3) In terms of SP, CMOABC-ELM doesn’t perform well.
MOEA/D and NSGA-II obtain the best results on
mean values on C1-DTLZ3, C2-DTLZ2 and C3-DTLZ4,
respectively. MOEA/D and NSGA-II obtain the best
results on deviation values on C1-DTLZ1, C2-DTLZ2
and C3-DTLZ4, respectively.

In conclusion, CMOABC-ELM performs best of the four
algorithms, which proves its effectiveness for constrained
multi-objective problems. But it still need to be improved in
order to obtain the better SP metric.

V. CONCLUSION

In this paper, a novel constraint handling technique with
objective space mapping to decision space is proposed for
constrained multi-objective optimization to offer guarantee of
finding feasible optimal solutions within a specified number
of iterations. Due to its good generalization performance and
fast training speed, extreme learning machine is employed
to predict the corresponding decision vectors from the data
of several certain objective vectors. To obtain better feasible
optimal solutions with the novel constraint handling technique,
a two-phase framework is proposed on the basis of artificial
bee colony to handle multiple objectives simultaneously. This
framework divides optimization process into two phases: the
employed bee phase and the onlooker bee phase. In the phase
of employed bees, a fast nondominated sorting procedure,
a fast crowded distance estimation procedure, and a simple
crowded comparison operator are employed to push the pop-
ulation toward Pareto front and accelerate the convergence of
the whole population. In the phase of onlooker bees, multi-
objective strategy employs Tchebycheff approach to improve
the population diversity.

The four benchmark functions have been used to test
CMOABC-ELM in comparison with CMOABC without ELM,
NSGAII and MOEA/D. It is seen from the comparison that
CMOABC-ELM can obtain better results than CMOABC
without ELM, NSGAII and MOABC for constrained multi-
objective optimization problem with respect to the HV, IGD
and SP performance measures. With the properties of the two-
phase framework and efficient constraint handling technique,
CMOABC-ELM is very suitable for solving constrained multi-
objective optimization problem and should be applied in real
world problems in the near future.
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