
A Continuous Information Gain Measure to Find
the Most Discriminatory Problems for AI

Benchmarking
Matthew Stephenson

Department of Data Science and
Knowledge Engineering
Maastricht University

Maastricht, the Netherlands
matthew.stephenson@maastrichtuniversity.nl

Damien Anderson
Computer and Information

Sciences Department
University of Strathclyde

Glasgow, UK
damien.anderson@strath.ac.uk

Ahmed Khalifa
Game Innovation Lab

Tandon School of Engineering
New York University

New York, USA
ahmed.khalifa@nyu.edu

John Levine
Computer and Information

Science Department
University of Strathclyde

Glasgow, UK
john.levine@strath.ac.uk

Jochen Renz
Research School of
Computer Science

Australian National University
Canberra, Australia

jochen.renz@anu.edu.au

Julian Togelius
Game Innovation Lab

Tandon School of Engineering
New York University

New York, USA
julian@togelius.com

Christoph Salge
Game Innovation Lab

Tandon School of Engineering
New York University

New York, USA
c.salge@herts.ac.uk

Abstract—This paper introduces an information-theoretic
method for selecting a subset of problems which gives the most
information about a group of problem-solving algorithms. This
method was tested on the games in the General Video Game
AI (GVGAI) framework, allowing us to identify a smaller set
of games that still gives a large amount of information about
the abilities of different game-playing agents. This approach
can be used to make agent testing more efficient. We can
achieve almost as good discriminatory accuracy when testing
on only a handful of games as when testing on more than
a hundred games, something which is often computationally
infeasible. Furthermore, this method can be extended to study
the dimensions of the effective variance in game design between
these games, allowing us to identify which games differentiate
between agents in the most complementary ways.

Index Terms—Information Gain, General Video Game AI

I. INTRODUCTION

Competitions and challenges are regularly used within AI as
a way of evaluating algorithms, and also for promoting interest
into specific problems. One design strategy to keep algorithms
from over-specializing is to have competitions that are an
ensemble of several different games or problems. Examples
of challenges where this is the case include the GVGAI [1],
ALE [2] and many of the numerous Kaggle competitions [3],
each of which have hundreds of separate problems. There are
also other sets of machine learning benchmarks that contain a
multitude of disparate tasks, such as the OpenAI Gym [4] or
the UCI repository of supervised learning tasks [5].

However, this collection-of-problems approach has its own
challenges. For large sets of possible problems it can be
impractical, expensive or even impossible to evaluate a new
algorithm on every instance within this set. Comparing a new

algorithm with the state of the art on the full set of problems
can require immense computational resources, which are not
available to many researchers. So, what is a good subset of
an existing collection that preserves the discriminatory power
of the original test set? Another consideration is that several
of the mentioned competitions like to include new problems
every round to keep things interesting. But do the added
problems really provide new and interesting challenges, or are
they redundant compared to the existing set of tasks? Can we
develop a formal way to test if a new problem adds something
to the current field of the competition?

In this paper we will try to address these questions in
general - and provide an application to the General Video
Game AI (GVGAI) framework as an example and test of
our method. The GVGAI library includes more than 100 mini
video games [6], and several dozen agents that can play these
games [7]–[11] have been submitted to the associated GVGAI
competition [12].

Looking at the actual playing performance for a range of
AIs and games allows us to make an important point: While
the GVGAI competition produces a winner every year, it is
not trivial to determine which of the competitors is the best
algorithm in general. As we shall demonstrate later in this
paper, there are games which produce a score distribution that
is heavily anti-correlated to the majority of games in the set. A
simple singular value decomposition [13] allows us to select a
set of games that makes nearly every participating algorithm
win, i.e. the selection of games can control which algorithms
perform best. Furthermore, we need to keep in mind that the
circa 100 games in the GVGAI game repository are only a
subset of all possible games, so who is to say that they do

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

not offer an extremely biased subset that favours a particular
approach to AI? This problem is not easily solvable, and we
bring it up mainly to demonstrate that asking for a subset that
helps us identify the best algorithm is somewhat ill posed,
if we have no guarantees that the larger set is at least a
representative sample of all possible games. What we can do,
though, is to find the subset that is best at differentiating among
the set of existing algorithms. This selects a set of interesting
problems, i.e. those that are best at producing different results
for the current state of the art, and as such should also be of
interest to those testing variations of existing AIs, wanting a
quick check in comparison to existing problems.

To this end we propose an information-theoretic measure
for determining which problems are best at telling a given set
of algorithms apart; a measure that also takes into account
the concept of noise when analyzing performance measures.
By recursively applying this measure, we can find problems
that are maximally informative considering previously selected
problems, meaning that we can identify problems that dis-
criminate among a set of algorithms in different ways [14].
We should point out that our proposed measure is different in
both motivation and procedure to those used in item response
theory (IRT) [15], [16], as IRT aims to estimate how good
a given problem is at measuring the performance of an
algorithm, while our approach seeks to identify problems that
discriminate the most between different algorithms.

This measure should also be able to assist with the design
of new problems for existing challenge collections. If a new
problem adds little in terms of discrimination for an active field
of algorithms, it remains doubtful that it impacts the challenge
in any meaningful way. In contrast, a good addition should be
placed highly in our ranking of discriminatory problems, or at
least provide some new information about the existing set of
algorithms.

The rest of the paper is structured as follows. We first
introduce the GVGAI competition, and the methods used for
data collection. We then provide a simple correlation analysis
for both score and win rates to illustrate the structure of this,
and potentially other, problem sets. This should convince the
reader that a discriminatory subset is the best we can do.
We then introduce the Information Gain Analysis method for
finding such a subset - and argue that this is one principled and
unbiased way to do this - given the stated assumptions. We also
discuss how this method extends to arbitrary measures beyond
score and win rate. Finally, we apply said method to the
GVGAI dataset, and determine the top 10 most discriminatory
problems, for a given set of games and algorithms. We then
discuss the implications and limitations of this approach. Here
it is important to keep in mind, that this measure addresses
a specific question - and that it has specific features that we
list. Other measures exist, or could be designed, that have a
different set of features, and it is very much up to the aims
of each particular researcher which measures are relevant to
them.

II. BACKGROUND

The GVGAI competition has been running annually since
2014 and provides a Video Game Description Language
(VGDL) with which to quickly design games [17], and a
common API for agents to access those games [18]. Each
year ten games are selected to evaluate the submitted agents,
which often covers a wide range of game types from role-
playing to puzzle games [1]. One of the key elements of this
competition is that the games being played by the agents for
each year’s competition are unknown to both the developers
and agents beforehand. Many of the GVGAI games and agents
include some form of stochasticity, meaning that performance
evaluation is inherently noisy. Playing a GVGAI game also
gives two signals of performance, whether an agent won the
game or not and what score was obtained. The competition
currently offers multiple tracks, including a planning track [1],
which provides a forward model for analyzing future game
states, and a learning track which removes the forward model
but allocates a training time to agents before submission [19].
For this paper, we only consider the games and agents used
in the single-player planning track.

One of the main observations when evaluating GVGAI
agents across multiple games is that they typically produce
very different performance distributions [6]. It is also the case
that there exist some games where nearly all agents either
win or lose, in which case the score each agent achieved for
the game would be the deciding value. Conceptually, it seems
that games which offer a large spread of performance values
would be best at discriminating between good and bad agents
in a competition, but it was also clear from this prior analysis
that not all games are won by the same agents. While a few
previous papers have investigated the performance of agents
on certain GVGAI games [6], [20], none have investigated
the different discrimination profiles presented by the full game
corpus, or how this information could be used to help design
better agents and games in the future. The fact that different
GVGAI games pose different types of problems to agents, may
lead to biases towards a particular type of algorithm when
selecting game subsets. Understanding what bias may exist
in a given set of games, and being able to select ten games
which minimize any particular bias, is desirable for ensuring
that the GVGAI competition is genuinely evaluating general
problem-solving capabilities.

III. DATA COLLECTION

The first step towards analyzing different GVGAI games is
to collect data from various playthroughs using a collection of
agents. We used 27 commonly available agents, which were
some of the top performing entries in the previous GVGAI
competitions over the last five years. Table 1 provides the
names of these agents. The games that were used consist of the
full corpus of 102 GVGAI games that are currently available
(at the time of writing), plus an additional six deceptive
GVGAI games introduced by Anderson et al. [21], giving a
total of 108 games.

Similar to the GVGAI competition format, each agent
has 40 milliseconds to perform each action and runs for
at most 2000 time steps. To replicate the competition envi-
ronment, we ran the agents using 243 CPU cores with 2.6
GHz and 8 GB of memory. Each successful playthrough of
a game that resulted in either a win or loss without any
crashes produces one unit of data, containing the information
[agent, game, score, win/lose]. Unfortunately, some of the
agents occasionally crashed on certain games due to changes
that the GVGAI framework has received over the years, so not
all the agents have the same amount of the generated data.
A total of 3,990,760 successful playthroughs were recorded
across all agents and games, with an average of 1,368.6 data
samples per game-agent pair. The number of data samples
obtained for each agent, averaged across all games, is shown
in Table 1.

Agent Name Average Data per Game
jaydee 1,202.7
MH2015 4,184.9
mrtndwrd 1,029.8
CatLinux 1,588.8
ICELab 857.8
thorbjrn 1,358.4
TomVodo 1,030
sampleRHEA 1,447.9
NovelTS 1,307.3
evolutionStrategies 1,390.7
simulatedAnnealing 1,361.8
adrienctx 1,117.6
sampleMCTS 1,184.1
SJA862 2,416.2
greedySearch 1,421.4
AtheneAI 731
muzzle 1,414.5
YBCriber 1,037.6
NovTea 1,296.2
MaastCTS2 1,364.3
Return42 1,261.7
aStar 1,226.2
SJA86 1,130.8
bladerunner 994.1
TeamTopbug 1,243.7
Number27 1,183.1
hillClimber 1,514.1
Minimum 731
Average 1,368.6
Maximum 4,184.9

TABLE I: The average number of data samples (playthroughs)
per game obtained for each agent during data collection.

IV. CORRELATION ANALYSIS

Before describing our information-theoretic method we first
present a preliminary analysis into the correlations between
games in terms of agent performance, using both win-rate and
score as performance measures. This helps to contextualize
the problem space more and to visualize that different games
measure different things, as games which have similar perfor-
mance patterns should have similar problem characteristics.
The resulting correlation matrices are then used for clustering,
and these clusters are analyzed for meaningful similarities

between games. While this approach does have several lim-
itations that make it impractical for selecting a subset of
highly discriminatory problems, this initial analysis has its
own benefits and applications beyond simply providing a better
domain understanding.

In the video game industry, similar video games are usually
grouped under a specific category that is defined by common
gameplay characteristics, referred to as a game genre. Games
in the GVGAI framework are mostly ports of known video
games, meaning that we can often find genre relations between
them. However, attempting to group games by their genres
does not necessarily indicate that similar problem-solving
capabilities are required to solve them. We, therefore, took a
more formal and robust approach for identifying correlations
between games based on agent performance.

For this analysis, we calculated the correlation matrix be-
tween all 108 games in our sample using either the agents’
win-rates or scores. Figure 1 shows these correlation matrices
where blue means high correlation, red means high anti-
correlation, and white means no correlation. To simplify the
task of analyzing such a large matrix, we clustered their values
using an agglomerative hierarchical clustering algorithm -
using the inverse of covariance matrix values as distance and a
threshold 0.8 - and selected clusters that minimize the variance
between the games within each cluster. The different clusters
are represented by the black vertical or horizontal lines and
are ordered (and subsequently referred to) in terms of their
location from the left/top of the matrix.

Figure 1a shows the correlation matrix using the agents’
win-rates. Using this, we can see that games in the fifth cluster
have a low anti-correlation to the rest of the games in the
framework. These games are characterized by either being very
hard to beat (plants) or not having a winning condition (invest).
By analyzing the clusters row by row, we can see that the win-
rates of most games are not highly correlated except for the
first three clusters. Most of the games within these first three
clusters appear to be puzzle games (zenpuzzle, sokoban, etc.).
These types of games are typically characterized by the need
for long-term planning to solve them, which likely causes their
win-rates to be highly similar.

Figure 1b shows the correlation matrix using the agents’
scores. Using this, we can see that the score distributions
between most of the games are similar (the matrix is mostly
blue). This was not surprising as we already know that most
of the games in the framework are designed to have a score
distribution that reflects the progress of the agents in the
game (good states have high scores, while bad states have
low scores). The only exception to this is the first three
clusters, which are highly anti-correlated with every game in
the framework that isn’t within its own cluster. These games
appear to be characterized by a delayed score distribution
(score only received near the end of the game) which makes
them very different from the other games that provide rewards
for incremental steps closer to the solution.

While our presented correlation matrices could be used to
roughly identify a collection of games with decent discrimina-

co
ps

fir
ec

as
te

r
x-

ra
ce

r
th

es
no

wm
an

en
em

yc
ita

de
l

fir
em

an
ca

ta
pu

lts
ch

ai
nr

ea
ct

io
n

re
al

so
ko

ba
n

ze
np

uz
zle

wr
ap

so
ko

ba
n

ch
ip

sc
ha

lle
ng

e
clu

st
er

s
eg

go
m

an
ia

wa
te

rg
am

e
m

od
al

ity
te

rc
io

co
ok

m
ep

as
ta

ba
it

do
or

ko
ba

n
vo

rte
x

br
ai

nm
an

so
ko

ba
n

th
ec

ita
de

l
co

lo
ur

es
ca

pe
su

pe
rm

an
es

ca
pe

ov
er

lo
ad

ze
ld

a
fro

gs
wa

itf
or

br
ea

kf
as

t
hu

ng
ry

bi
rd

s
la

by
rin

th
po

rta
ls

ice
an

df
ire

la
by

rin
th

du
al

ca
m

el
Ra

ce
fa

ct
or

ym
an

ag
er

riv
er

s
de

fle
ct

io
n

ei
gh

th
pa

ss
en

ge
r

la
se

rs
pa

cm
an

wi
tn

es
sp

ro
te

ct
ed

ik
ar

ug
a

fir
es

to
rm

s
ru

n
th

em
ol

e
bo

lo
ad

ve
nt

ur
es

ca
ky

ba
ky

cr
os

sf
ire

av
oi

dg
eo

rg
e

ch
as

e
pl

an
ts

po
ke

m
on

do
nk

ey
ko

ng
su

rro
un

d
wa

fe
rth

in
m

in
ts

in
ve

st
as

se
m

bl
yl

in
e

flo
we

r
be

ltm
an

ag
er

bo
m

be
rm

an
sis

te
rs

av
io

r
an

ge
lsd

em
on

s
bo

m
be

r
so

la
rfo

x
le

m
m

in
gs

ga
rb

ag
ec

ol
le

ct
or

re
al

po
rta

ls
isl

an
ds

th
es

he
ph

er
d

gh
os

tb
us

te
r

gy
m

kh
an

a
in

fe
ct

io
n

pl
aq

ue
at

ta
ck

m
iss

ile
co

m
m

an
d

wi
ld

gu
nm

an
wi

tn
es

sp
ro

te
ct

io
n

m
irr

or
s

ro
gu

el
ik

e
bo

ul
de

rc
ha

se
bo

ul
de

rd
as

h
du

ng
eo

n
ki

llB
illV

ol
1

bl
ac

ks
m

ok
e

di
gd

ug
la

se
rs

2
wa

ve
s

ja
ws

se
aq

ue
st

ro
ad

fig
ht

er
ra

ce
be

t
ra

ce
be

t2
de

ce
pt

ico
in

s
al

ie
ns

pa
in

te
r

sh
er

iff
sh

ip
wr

ec
k

fre
ew

ay
in

te
rs

ec
tio

n
de

ce
pt

ize
ld

a
su

rv
iv

ez
om

bi
es

de
fe

m
wh

ac
ka

m
ol

e
bu

tte
rfl

ie
s

ch
op

pe
r

de
fe

nd
er

cops
firecaster

x-racer
thesnowman

enemycitadel
fireman

catapults
chainreaction

realsokoban
zenpuzzle

wrapsokoban
chipschallenge

clusters
eggomania
watergame

modality
tercio

cookmepasta
bait

doorkoban
vortex

brainman
sokoban

thecitadel
colourescape

superman
escape

overload
zelda
frogs

waitforbreakfast
hungrybirds

labyrinth
portals

iceandfire
labyrinthdual

camelRace
factorymanager

rivers
deflection

eighthpassenger
lasers

pacman
witnessprotected

ikaruga
firestorms

run
themole

boloadventures
cakybaky
crossfire

avoidgeorge
chase
plants

pokemon
donkeykong

surround
waferthinmints

invest
assemblyline

flower
beltmanager
bomberman
sistersavior

angelsdemons
bomber
solarfox

lemmings
garbagecollector

realportals
islands

theshepherd
ghostbuster

gymkhana
infection

plaqueattack
missilecommand

wildgunman
witnessprotection

mirrors
roguelike

boulderchase
boulderdash

dungeon
killBillVol1

blacksmoke
digdug
lasers2
waves

jaws
seaquest

roadfighter
racebet

racebet2
decepticoins

aliens
painter
sheriff

shipwreck
freeway

intersection
deceptizelda

survivezombies
defem

whackamole
butterflies

chopper
defender

(a) Win-rate correlation matrix.

do
nk

ey
ko

ng
ro

ad
fig

ht
er

ra
ce

be
t

ra
ce

be
t2

pa
in

te
r

bu
tte

rfl
ie

s
pl

an
ts

po
ke

m
on

as
se

m
bl

yl
in

e
la

se
rs

la
se

rs
2

riv
er

s
flo

we
r

ze
np

uz
zle

al
ie

ns
wa

fe
rth

in
m

in
ts

in
ve

st
co

ps
su

rro
un

d
isl

an
ds

sh
ip

wr
ec

k
sis

te
rs

av
io

r
so

la
rfo

x
bo

m
be

rm
an

m
irr

or
s

an
ge

lsd
em

on
s

su
rv

iv
ez

om
bi

es
gy

m
kh

an
a

bo
m

be
r

gh
os

tb
us

te
r

wi
tn

es
sp

ro
te

ct
ed

bl
ac

ks
m

ok
e

re
al

po
rta

ls
ov

er
lo

ad
ze

ld
a

in
fe

ct
io

n
wi

ld
gu

nm
an

wi
tn

es
sp

ro
te

ct
io

n
pl

aq
ue

at
ta

ck
fir

ec
as

te
r

ja
ws

m
iss

ile
co

m
m

an
d

se
aq

ue
st

di
gd

ug
du

ng
eo

n
ki

llB
illV

ol
1

th
es

he
ph

er
d

ro
gu

el
ik

e
bo

ul
de

rc
ha

se
bo

ul
de

rd
as

h
be

ltm
an

ag
er

de
ce

pt
ize

ld
a

ei
gh

th
pa

ss
en

ge
r

fir
em

an
eg

go
m

an
ia

wa
te

rg
am

e
m

od
al

ity
te

rc
io

x-
ra

ce
r

en
em

yc
ita

de
l

th
es

no
wm

an
bo

lo
ad

ve
nt

ur
es

ch
ip

sc
ha

lle
ng

e
clu

st
er

s
br

ai
nm

an
wr

ap
so

ko
ba

n
re

al
so

ko
ba

n
so

ko
ba

n
th

ec
ita

de
l

vo
rte

x
ba

it
co

ok
m

ep
as

ta
do

or
ko

ba
n

sh
er

iff
ch

op
pe

r
wa

ve
s

de
fle

ct
io

n
de

fe
m

th
em

ol
e

wh
ac

ka
m

ol
e

ch
ai

nr
ea

ct
io

n
co

lo
ur

es
ca

pe
es

ca
pe

le
m

m
in

gs
av

oi
dg

eo
rg

e
fir

es
to

rm
s

ik
ar

ug
a

fa
ct

or
ym

an
ag

er
fre

ew
ay

ca
m

el
Ra

ce
in

te
rs

ec
tio

n
de

fe
nd

er
ga

rb
ag

ec
ol

le
ct

or ru
n

ca
ky

ba
ky

cr
os

sf
ire

ch
as

e
pa

cm
an

ca
ta

pu
lts

de
ce

pt
ico

in
s

su
pe

rm
an

hu
ng

ry
bi

rd
s

la
by

rin
th

wa
itf

or
br

ea
kf

as
t

fro
gs

po
rta

ls
ice

an
df

ire
la

by
rin

th
du

al

donkeykong
roadfighter

racebet
racebet2

painter
butterflies

plants
pokemon

assemblyline
lasers

lasers2
rivers
flower

zenpuzzle
aliens

waferthinmints
invest

cops
surround

islands
shipwreck

sistersavior
solarfox

bomberman
mirrors

angelsdemons
survivezombies

gymkhana
bomber

ghostbuster
witnessprotected

blacksmoke
realportals

overload
zelda

infection
wildgunman

witnessprotection
plaqueattack

firecaster
jaws

missilecommand
seaquest

digdug
dungeon

killBillVol1
theshepherd

roguelike
boulderchase
boulderdash
beltmanager
deceptizelda

eighthpassenger
fireman

eggomania
watergame

modality
tercio

x-racer
enemycitadel
thesnowman

boloadventures
chipschallenge

clusters
brainman

wrapsokoban
realsokoban

sokoban
thecitadel

vortex
bait

cookmepasta
doorkoban

sheriff
chopper

waves
deflection

defem
themole

whackamole
chainreaction
colourescape

escape
lemmings

avoidgeorge
firestorms

ikaruga
factorymanager

freeway
camelRace

intersection
defender

garbagecollector
run

cakybaky
crossfire

chase
pacman

catapults
decepticoins

superman
hungrybirds

labyrinth
waitforbreakfast

frogs
portals

iceandfire
labyrinthdual

(b) Score correlation matrix.

Fig. 1: Correlation matrices between every game in the framework. Figure 1a is based on the agents’ win-rates, while Figure 1b
is based on the agents’ scores. The games are sorted based on the result of a hierarchical clusterging algorithm.

tory performance by selecting a game from each cluster, this
approach has several limitations. Not only is it difficult to tell
which games in each cluster would provide the most informa-
tion, but neither the fact that certain agent’s performance on
the same game can vary dramatically between attempts, nor
that two distinct performance measures are available, are taken
into account. However, these correlation results can certainly
be useful in other areas, such as for allowing game designers to
detect which games are similar in terms of agent performance.
Identifying games that present unique performance distribu-
tions could help in designing additional games that fit entirely
new or underrepresented clusters. Accomplishing this would
increase the overall discrimination potential of our total game
set, and thus also increase the total amount of information
that could be achieved from a subset of games (i.e. allows
our information-theoretic measure proposed in the following
section to be even more effective).

V. INFORMATION GAIN ANALYSIS

In this section, we analyze the information provided by each
of our 108 sample games. Information here is used in the sense
of Shannon Information Theory [22], and the information gain
of a game is the average reduction in uncertainty regarding
what algorithm we are testing, given the score and/or win-rate
performance of that algorithm. This information gain measure
can then be used to identify a benchmark set of games that
provides us with the maximum information about our agents.

While it is possible to compute information gain on dis-
cretized data by first binning the mean performances of the
different agents, this is problematic for two reasons. First, as
long as all the agents’ results are at least somewhat different, it
would be theoretically possible to obtain all information from
just a single game. This situation would make calculating the
information gain highly redundant, as nearly all of the games
would give us the same, maximal amount of information. Sec-
ond, this approach disregards any noise within the measuring
process. As an example, if we assume that the average results
for two agents are .49 and .50 when playing a specific game,
then a discretized information gain analysis would give these
as two separate outcomes (assuming we binned to the nearest
.01 value). This approach does not take into account the
fact that repeated measurements would likely produce slightly
different results, varied by some noise. Consequently, a game
that gives us average results for two agents of .1 and .9, rather
than our previous example of .49 and .50, would be much
better suited to tell two agents apart, as the scores are likely to
be significantly different even when taking noise into account.
In essence, games with agent results that are furthest apart and
with the lowest noise, provide the most information.

The following information gain formalism is an attempt
to accurately measure this difference by modelling the noise
within the agents’ performances as a Gaussian distribution.
This approach calculates the information gain for a specific
game g. Let us first define a few terms:

• A: The set of all algorithms, a

• an: A specific algorithm, having an average performance
of µn, with a variance of σn, for the game in question.

We assume that A is equally distributed, p(a) = 1/|A|,
so everything else being equal we have a similar chance to
encounter any of the algorithms in A, and our a priori assump-
tion about A reflects this. This allows us to approximate the
conditional probability p(a2|a1). This probability expresses
how likely it is that we are observing the result of algorithm
a2, if we are in fact observing the average performance for
algorithm a1. In other words, how well does a2 work as an
explanation for what we see from a1.

Equation 1 approximates this probability. It assumes that
observations of specific performances are normally distributed,
parameterised by the means and variances from their actual re-
sults. The upper part of the equation is the probability density
function for a normal distribution based on a2, computing how
likely a result equal to the mean of a1 is. The denominator
is a normalization sum over all possible algorithms, ensuring
that the overall probabilities sum to one.

p(a2|a1) ≈

exp

(
− (µ1−µ2)2

2(σ2+σ1)2

)
√

2π(σ2+σ1)
2∑

a∈A

(
exp
(
− (µ1−µa)2

2(σa+σ1)2

)
√

2π(σa+σ1)
2

) (1)

Computing the probabilities for all pairwise combinations of
algorithms allows us to define a confusion matrix C between
n different algorithms as:

C =

p(a1|a1) p(a2|a1) · · · p(an|a1)
p(a1|a2) p(a2|a2) · · · p(an|a2)

...
...

. . .
...

p(a1|an) p(a2|an) · · · p(an|an)

 (2)

Each row of the matrix sums to 1, and each entry in the first
row indicates our best guess for the actual algorithm given
that we observed the mean of algorithm a1. The matrix of
conditional probabilities can then be seen as an error matrix
for a channel defined by using the game in question as a
measurement device. This allows us to compute the mutual
information for this channel,assuming that the a priori distribu-
tion for A is an equal distribution (as stated earlier). This value
is equivalent to the amount of information we get about what
algorithm is used from observing the average performance
result. Formally, we can define this as the mutual information
between your belief distribution Â and the distribution A of
the actual algorithm a ∈ A, expressed in Equation 3.

I(Â;A) = H(Â)−H(Â|A)

= log2(|Â|)−
∑
a∈A

p(a)
∑
â∈A

−p(â|a) log2 p(â|a) (3)

The a priori distribution of our beliefs Â, is an equal
distribution. If we observe the average performance of the
algorithm a we get a distribution of Â|a, as defined by the
confusion matrix. The average information gain of observing
these results is the average difference in the entropy before

observation H(Â) and after observation, H(Â|A). The equal
distribution reduces to the log of the states, so we only need to
compute the conditional entropy. A higher value here is more
desirable, as the best games should provide us with the most
information.

Note also, that this algorithm is not designed to actually
determine the algorithm in question, but to give us one scalar
value that expresses how good, on average, a specific game
would be at determining this.

A. Information gain for multiple games

The previous formalism allows us to quantify how much
information a single specific game can provide us with about
what algorithm is being used, but the information gained from
looking at two games is always less than or equal to the sum
of the information gain from both games individually. This
is because the performance in both games could provide us
with similar information. Instead of using a naive Bayesian
approach, which would count these contributions twice, we
can directly compute a confusion matrix for a pair or any
larger set of games g ∈ G by extending the definition of the
conditional probability to that presented in Equation 4.

p(a2|a1) ≈

exp

(
−

∑
g∈G

(
(µ1,g−µ2,g)

2

2(σ2,g+σ1,g)
2

))
∏
g∈G

(√
2π(σ2,g+σ1,g)2

)
∑
a∈A

(
exp

(
−

∑
g∈G

(
(µ1,g−µa,g)2

2(σa,g+σ1,g)
2

))
∏
g∈G

(√
2π(σa,g+σ1,g)2

)) (4)

This does rely on the assumption though, that the noise
added to both performance measures is independently dis-
tributed. While the average performances of the algorithms
might be correlated (which this measure accounts for), the
independence of noise is a relatively safe assumption. The n-th
performance measure of an algorithm in one game is unlikely
to affect the n-th performance measure in another game. This
is an issue when combining the measure for score and win-
rate, as it is likely that these two measurements are correlated.
A more faithful, but also more complex, approximation could
be achieved by using the Mahalanobis distance [23] instead of
the sum of variances - but this has not been realized for our
data here.

Using this new conditional probability definition allows us
to compute the information gain for any subset of games, by
just picking a suitable set G. The mutual information for the
resulting confusion matrix is computed as usual. This means
that the theoretical maximum information gain that any set of
games could give is equal to log2(|A|). In general, those games
that offer different kinds of information lose less information
due to redundancy.

B. Combine win-rate and score together

Using the previous equations, we can calculate the informa-
tion gain for a particular game or set of games, using either
the win-rate or score as the measure of performance. However,

it is also possible to calculate the total information gain based
on both win-rate and score combined. To do this, we treat
each of these cases as a separate game (i.e., for a particular
game gi there are two variants, one where the win-rate is used
as the measure of performance gi,w and one where the score
is used gi,s). Since the distance is scaled by the variance,
both win-rate and score can be translated in the same way
as information. We can then use Equation 4 to calculate the
total combined information gain of the game gi by setting
G = [gi,w, gi,s]. This means we can create a single confusion
matrix for each game that encompasses both the win-rates and
scores of all agents. The first six columns of Table II show
the 10 games with the highest information gain when using
either the win-rate, score, or both of these combined as the
measure of performance. In general, this approach allows for
the combination of any scalar values expressed by the game,
and can, therefore, be applied to a range of different gaming
benchmarks, even those where games have entirely different
performance measures.

C. Top ten games

By initially selecting the game that provides the largest
information gain (based on both win-rate and score combined)
and then recursively selecting the game that adds the most
information to the already selected games, we can create a set
of 10 games that provide the most information possible. The
rightmost two columns of Table II provide the 10 games that
were chosen for this set in the order they were selected, along
with the total cumulative information gain of the set after each
game was added. These 10 games are also highlighted in red
in Figure 1, and we can see that the selected games mostly
come from different clusters.

The theoretical maximum information gain that any set of
games could give is roughly 4.75 = log2(27), so we can
see from these results that after selecting only 3 or 4 games
we can already get the majority of information about which
agent is playing. It is worth noting that this set of games is
not simply the ten games that individually provide the most
information, as some of these games likely provide the same
“kind” of information. For example, the game intersection had
the third highest information gain when looking at each game
individually but was not selected for our top 10 games set.
This is likely because it provides the same information as one
of the previously selected games. By looking at how this game
is played and our correlation matrices in Figure 1, it would
appear that this game is very close to that of the game freeway
and would likely give similar information.

A similar effect also appears when we look at both score
and win-rate for the same game, as these two values are often,
but not always, correlated. We can compare the information
gain provided by just the win-rate or score for certain games,
versus the combined information gain from using both. When
looking at each of these performance measures separately it
appears that Invest has the highest information gain, which is
likely due to the large variation in possible scores that agents
could achieve. However, as agents will always lose this game,

Game Name
(win-rate)

Information
gain

Game Name
(score)

Information
gain

Game Name
(combined)

Information
gain

Game Name
(top 10)

Information gain
(cumulative)

freeway 1.17484168 invest 1.62405816 freeway 1.89430152 freeway 1.89430152
labyrinth 1.10088062 intersection 1.13955416 invest 1.62405816 invest 3.08236771
tercio 1.10018133 freeway 1.13619392 intersection 1.59362941 labyrinthdual 3.81992620
labyrinthdual 1.08531707 tercio 1.10018133 chopper 1.48524965 tercio 4.22563462
iceandfire 1.07275305 watergame 0.89206793 tercio 1.44693431 sistersavior 4.40856274
chopper 1.06542656 cops 0.88658183 labyrinthdual 1.42090667 avoidgeorge 4.54036694
doorkoban 0.98911214 flower 0.86746818 iceandfire 1.32455879 escape 4.60252506
hungrybirds 0.91886839 waitforbreakfast 0.80128373 hungrybirds 1.32100004 whackamole 4.64444512
watergame 0.89206793 labyrinth 0.78021437 waitforbreakfast 1.28983481 chopper 4.67138328
escape 0.87721725 realportals 0.73246317 doorkoban 1.28593860 watergame 4.68457480

TABLE II: The games with the highest information gain (using win-rate, score or both combined as measure of performance),
as well as the top 10 games which collectively provide the highest information gain.

either by spending too much money or the time limit expiring,
the win-rate provides no information gain at all. Freeway, on
the other hand, has a high information gain when using either
win-rate or score, allowing it to have a combined information
gain that is higher than Invest. It is worth reiterating that the
combined information gain for a game is not simply the sum of
its individual parameters, as some information may be shared
between the different performance measures (calculation for
combined information gain is sub-additive).

VI. CONCLUSIONS

In this paper, we present an information-theoretic method
for selecting which problems to evaluate a given algorithm
on. We extend the notion of information gain to combine
two feedback signals (win-rate and score) and to work on
continuous values with modelled noise. This method selects
problems that are both discriminating by themselves, i.e. the
performance of the different algorithms is evenly distributed,
and also measure different agent properties compared to
the other selected problems, i.e. the performances between
problems are not highly correlated. This is beneficial for
constructing a suitable set of discriminatory problems, as it
allows us to identify if we already have several problems that
provide similar challenges. This is particularly useful for the
many cases where it is computationally infeasible to test a new
algorithm on all benchmark problems. Our method is generally
applicable to any situation where algorithms need to be tested
on many problems and is especially useful when the problems
are noisy and/or have multiple performance metrics.

As part of developing this method, we analyzed the discrim-
inatory capabilities of the games in the GVGAI framework,
as well as the correlations between games in terms of agent
performance. Our correlation analysis shows that there are
substantial variations in agent performance between different
GVGAI games, and the resulting correlation matrices can
be used to cluster certain games together. Developing new
GVGAI games that do not fit within these identified clusters
would present an entirely new challenge for the current
selection of agents, making them highly desirable. Games
that have different discriminatory profiles from those that
already exist would likely be more useful for investigating
agent performance than those with similar profiles to previous

games. In this way, our approach could also help to design
new additions to existing challenges. Finally, our approach can
also provide us with a better understanding of the structure of
a given problem set. For example, analyzing the set of GVGAI
games reveals that several of them have “deceptive” qualities,
where the score is not strongly correlated with the win-rate.

We also demonstrate how this measure can be applied
recursively to find a small set of games that gives us almost
as much information about an agent as the full set of games
would have. This will hopefully allow future developers and
researchers to accurately compare the performance of their
new agent against the current set of evaluated agents without
the need for exhaustive testing on the full GVGAI corpus. New
agents can be tested on a set of “exploratory experiments”
to help gauge how well the agent may perform on more
detailed experiments that consider the entire GVGAI game
set. This will be especially important in the future as more and
more games are added to the GVGAI game library, resulting
in significantly increased benchmark evaluation times. The
proposed approach can also be used to evaluate games that
are selected for future GVGAI competitions, to ensure that
they present a diverse range of problems.

A. Considerations

It is important to note that we do not propose that all
researchers replace testing on complete benchmark sets with
only using a subset; rather, we propose an approach for finding
the right subset of benchmark problems when conducting
initial studies. Such studies will, of course, need to be fol-
lowed up by more extensive testing using larger benchmark
sets. We also acknowledge that in some cases, other more
tailored subsets will need to be used in order to test specific
hypotheses.

We should also point out that the selected subset of games
depends both on the original complete set of games and also
the set of algorithms studied. Having a different set of agents
could mean different games, that might previously have been
too hard, would suddenly be more discriminatory. Similarly,
adding additional games can affect which games provide us
with redundant information. Because of this, while the specific
games identified here are interesting today, they might very
well change in the future. It is therefore meaningless to ask for

the “true” set of most discriminatory games, as that will always
be relative to the agents available. However, we believe the
more important contribution of this paper is the methodology
we propose to select these games.

B. Future Work

While this method has been applied here on GVGAI games,
it could also be used for other sets of problems and algorithms.
Our approach can be generalized from just win-rates and
scores to include any number of different outcome measures
from other domains. This could include problems outside of
the traditional game space, as long as the mean and variance
of each algorithm’s performance can be obtained. An obvious
future application would be to analyze the performance of
multiple deep reinforcement learning algorithms on the Atari
games in the Arcade Learning Environment (ALE) framework
and supervised learning algorithms tested on datasets asso-
ciated with Kaggle competitions. Regarding our specific use
case of applications for GVGAI, future work could involve
expanding the evaluation criteria to include additional data
from agent playthroughs, such as the time required to solve
a level or the number of moves used, which may help us to
better differentiate between agents.

Using the methods presented here to evaluate newly created
games by how well and uniquely they distinguish among algo-
rithms would also be worthwhile, yielding an iterative process
where games under development can be tuned so as to increase
their discriminative capacity. In the long run, this process could
even be automated, with a stochastic search algorithm finding
games that maximize unique discriminatory abilities. Previous
work has created games optimized for differentiating between
specific pairs of agents, and this procedure in combination
with the method proposed here could conceivably work for
differentiating among larger sets of agents [24]. This would
constitute significant progress towards automatically creating
relevant benchmarking problems.

ACKNOWLEDGEMENTS

Ahmed Khalifa acknowledges the financial support from
NSF grant (Award number 1717324 - “RI: Small: General
Intelligence through Algorithm Invention and Selection.”).

ONLINE RESOURCES

All data, results and code associated with this paper can be
accessed online at:

https://github.com/stepmat/ContinuousInformationGain

REFERENCES

[1] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas,
A. Couëtoux, J. Lee, C.-U. Lim, and T. Thompson, “The 2014 general
video game playing competition,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 8, no. 3, pp. 229–243, 2016.

[2] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Jour-
nal of Artificial Intelligence Research, vol. 47, pp. 253–279, 2013.

[3] J. Carpenter, “May the best analyst win,” Science (New York, N.Y.), vol.
331, pp. 698–699, 02 2011.

[4] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” CoRR, vol. abs/1606.01540,
2016.

[5] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
http://archive.ics.uci.edu/ml, 2017.

[6] P. Bontrager, A. Khalifa, A. Mendes, and J. Togelius, “Matching games
and algorithms for general video game playing,” in Twelfth Artificial
Intelligence and Interactive Digital Entertainment Conference, 2016, pp.
122–128.

[7] D. J. Soemers, C. F. Sironi, T. Schuster, and M. H. Winands, “En-
hancements for real-time Monte-Carlo tree search in general video game
playing,” in Computational Intelligence and Games (CIG), 2016 IEEE
Conference on, 2016, pp. 1–8.

[8] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana, “Rolling horizon evo-
lution enhancements in general video game playing,” in Computational
Intelligence and Games (CIG), 2017 IEEE Conference on, 2017, pp.
88–95.

[9] A. Weinstein and M. Littman, “Bandit-based planning and learning in
continuous-action markov decision processes,” in International Confer-
ence on Automated Planning and Scheduling, 2012.

[10] D. Pérez-Liébana, S. Samothrakis, J. Togelius, T. Schaul, and S. M.
Lucas, “Analyzing the robustness of general video game playing agents,”
in Computational Intelligence and Games (CIG), 2016 IEEE Conference
on, 2016, pp. 1–8.

[11] A. Mendes, J. Togelius, and A. Nealen, “Hyper-heuristic general video
game playing,” in Computational Intelligence and Games (CIG), 2016
IEEE Conference on, 2016, pp. 1–8.

[12] D. Perez-Liebana, S. Samothrakis, J. Togelius, S. M. Lucas, and
T. Schaul, “General video game AI: Competition, challenges and oppor-
tunities,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016,
pp. 4335–4337.

[13] “Data, results and code associated with this paper,”
https://github.com/stepmat/ContinuousInformationGain, accessed:
2020-05-11.

[14] F. Martınez-Plumed and J. Hernández-Orallo, “AI results for the Atari
2600 games: difficulty and discrimination using IRT,” EGPAI, Evaluat-
ing General-Purpose Artificial Intelligence, vol. 33, 2016.

[15] F. Martı́nez-Plumed, R. B. Prudêncio, A. Martı́nez-Usó, and
J. Hernández-Orallo, “Item response theory in AI: Analysing
machine learning classifiers at the instance level,” Artificial
Intelligence, vol. 271, pp. 18 – 42, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370219300220

[16] F. Martinez-Plumed and J. Hernandez-Orallo, “Dual indicators to anal-
yse AI benchmarks: Difficulty, discrimination, ability and generality,”
IEEE Transactions on Games, pp. 1–1, 2018.

[17] M. Ebner, J. Levine, S. Lucas, T. Schaul, T. Thompson, and J. Togelius,
“Towards a video game description language,” Artificial and Computa-
tional Intelligence in Games, pp. 1–17, 2013.

[18] J. Levine, C. Congdon, M. Ebner, G. Kendall, S. Lucas, R. Miikkulainen,
T. Schaul, and T. Thompson, “General video game playing,” Artificial
and Computational Intelligence in Games, vol. 6, pp. 77–83, 11 2013.

[19] D. Pérez-Liébana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and
S. M. Lucas, “General video game AI: a multi-track framework for
evaluating agents, games and content generation algorithms,” CoRR, vol.
abs/1802.10363, 2018.

[20] M. J. Nelson, “Investigating vanilla MCTS scaling on the GVG-AI
game corpus,” 2016 IEEE Conference on Computational Intelligence
and Games (CIG), pp. 1–7, 2016.

[21] D. Anderson, M. Stephenson, J. Togelius, C. Salge, J. Levine, and
J. Renz, “Deceptive games,” in 21st International Conference on the
Applications of Evolutionary Computation, 2018, pp. 1–16.

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). New York, NY,
USA: Wiley-Interscience, 2006.

[23] P. C. Mahalanobis, “On the generalized distance in statistics,” National
Institute of Science of India, vol. 2, no. 1, pp. 49–55, 1936.

[24] T. S. Nielsen, G. A. Barros, J. Togelius, and M. J. Nelson, “Towards gen-
erating arcade game rules with VGDL,” in Computational Intelligence
and Games (CIG), 2015 IEEE Conference on, 2015, pp. 185–192.

