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Abstract—The balance between approximation error and
model complexity is an important trade-off for Symbolic Regres-
sion algorithms. This trade-off is achieved by means of specific
operators for bloat control, modified operators, limits to the size
of the generated expressions and multi-objective optimization.
Recently, the representation Interaction-Transformation was in-
troduced with the goal of limiting the search space to simpler
expressions, thus avoiding bloating. This representation was
used in the context of an Evolutionary Algorithm in order to
find concise expressions resulting in small approximation errors
competitive with the literature. Particular to this algorithm, two
parameters control the complexity of the generated expression.
This paper investigates the influence of those parameters w.r.t.
the goodness-of-fit. Through some extensive experiments, we find
that the maximum number of terms is more important to control
goodness-of-fit but also that there is a limit to the extent that
increasing its value renders any benefits. Second, the limit to
the minimum and maximum value of the exponent has a smaller
influence to the results and it can be set to a default value without
impacting the final results.

Keywords: parametric analysis, evolutionary algorithms, sym-
bolic regression.

I. INTRODUCTION

Symbolic Regression is the task of finding a closed-form
expression that fits a given set of observed samples. The search
space explored by these techniques is composed of every
possible function-form. This differs from common regression
algorithms in which a fixed function-form is provided and only
some coefficients are adjusted in order to fit the data.

This task is often performed by a class of evolutionary
algorithms (EA) called Genetic Programming (GP). In GP,
a solution is represented as an expression tree that describes
a valid mathematical expression [1], [2]. As in many EAs,
the algorithm starts with a population of solutions that goes
through a sequence of recombination, mutation and selection
operations until the search converges to a local optima region.

The expressions found by GP resides within the spectrum
of gray-box models that, unlike the black-box models, can
be inspected and further analysed [3]. It is often argued that
some black-box models may be preferred because of their
universal approximation properties [4], but the literature shows
that GPs can be competitive with many modern regression
algorithms [5]–[10].

Even though their performance is competitive, some of
these approaches suffer with bloating [11]–[13], that results
in expressions that resides closer to the black-box end of the
spectrum. One way to alleviate this problem was proposed
in [7] with a new representation for Symbolic Regression,
called Interaction-Transformation (IT), that constrains the
search space to simpler expressions. The author shows that
despite the smaller search space, the quality of the results are
still competitive with the literature while keeping the models
toward the white-box end.

Following the initial success, in [9] the authors proposed
a new Evolutionary Algorithm for Symbolic Regression,
based on the Interaction-Transformation representation, named
Interaction-Transformation Evolutionary Algorithm (ITEA).
The obtained results were competitive with the state-of-the-art
in Genetic Programming and non-linear regression algorithms.

As with many evolutionary algorithms, ITEA has a set of
hyperparameters used to control the balance between explo-
ration and exploitation, and bloat, accuracy, computational
time.

In this paper we will analyse two important parameters
of ITEA for the symbolic regression task: max terms and
degree range. The first one controls the maximum number
of interaction terms in an expression and the second one the
maximum degree of the generated polynomials.

Also, there is interest in recognizing problem-specific pa-
rameters - those who improve significantly the performance
on a specific problem - and global parameters - those that can
be fixed for most of the cases. The no free lunch theorem is
also applied here for parameter values, since one configuration
can have a good performance on one type of problems, but is
likely to perform worse on others [14].

This paper tries to partially answer the following research
questions:
• Does there exist a unique set of fixed parameters that

frequently dominates other combinations?
• To what extent are goodness-of-fit and size of the model

conflicting objectives?
• How the goodness-of-fit varies when we change these

parameters?
This paper is organized as follows, in Section II we explain

the Interaction-Tranformation representation for Symbolic Re-
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Fig. 1. Function representation as expression tree. On the side of each node
it’s indicated the sub-function represented by applying its function over their
child, and the root represents the final expression.

gression. Following, in Section III we summarize the ITEA
algorithm and detail their hyper-parameters. Section IV de-
scribes the methodology employed in this paper to answer the
proposed research questions. Section V presents the obtained
results. Finally, in Section VI we discuss the obtained results
and try to answer those questions. Section VII gives some
final remarks and points towards new directions given that the
questions are answered.

II. INTERACTION-TRANSFORMATION REPRESENTATION

Symbolic Regression models describe the relationship be-
tween a dependent and independent variables from a data set
as a mathematical expression. Given n samples, where each
sample has d features, our data set can be represented by
X = {x1,x2, . . . ,xn}, and each element of this set represents
a d-dimensional vector of features xi = {xi,1, xi,2, . . . , xi,d},
called explanatory variables; and y = {y1, y2, . . . , yn} rep-
resenting the correspondent target variable of each sample.
In other words, this regression model searches for a function
f̂ : Rd → R that minimizes a cost function J(f̂(X),y). The
main advantage of symbolic regression to other machine learn-
ing methods is the potential to provide a symbolic function that
can be further analysed and interpreted.

Many Symbolic Regression algorithms naturally represent
the mathematical expression as expression trees, with each
internal node being an n-ary function with n child nodes
representing their arguments, and the leaves being nodes that
represent constant values or one of the explanatory variables.
The search for the best expression tree is often performed
by an Evolutionary Algorithm, a meta-heuristic that mimics
the evolution by means of natural selection over a population
of solutions, based on the belief that the selection pressure,
mutation and recombination will guide a search that initially
appears to be random. Fig. 1 illustrates an expression tree
representing the function f(x1, x2) = x1 + x1√

2
+ π ∗ sin(x2).

While the tree representation is a natural way to represent
a mathematical expression, it has some undesired properties
that may slow down the convergence of the search algorithm.
First of all, when an expression is changed through mutation

Algorithm 1: Interaction-Transformation Evolutionary
Algorithm
input : data points X,y
output: Symbolic function f̂

pop ← GenRandom();
while criteria not met do

children ← [Mutate(p) for p ∈ pop];
pop ← Select(pop + children);

return arg maxp.fit pop

or when two expressions are combined through crossover, the
resulting expression may have a very different semantic in
comparison to the parents expression. This problem is often
alleviated by means of semantic operators [12], [15].

Another property is that this representation contains the
entirety of possible mathematical expressions in its search
space. This means that the search space contains redundant
expressions and very complex models that can be considered
black-box models [7].

In [7], the author proposed a new representation that allevi-
ate some of these problems by reducing the search space with
the cost of possibly having a chance of removing the global
optima from it. The main inspiration was to create a restricted
grammar that could represent many engineering and physics
equations.

Given a unary function t : R → R, called transfor-
mation function and a d-dimensional interaction function p,
p : Rd → R, we can write the composition t ◦ p representing
the transformation function applied to the interaction function,
therefore called an Interaction-Transformation term.

The interaction function is created by providing a vector
k ∈ Zd of exponents, called strengths, in order to create a
polynomial interaction function:

p(x) =

d∏
i=1

xki
i . (1)

An Interaction-Transformation expression is then defined as
the linear combination of multiple IT terms:

f̂(x) = w0 +

m∑
j=1

wj · (tj ◦ pj)(x), (2)

where wj is the j-th coefficient of the linear combination of
interaction-transformation terms and m is the number of terms.

III. INTERACTION-TRANSFORMATION EVOLUTIONARY
ALGORITHM

Following the successful results of the IT-based greedy
algorithm proposed in [7], in [9] the authors proposed
a mutation-based evolutionary algorithm called Interaction-
Transformation Evolutionary Algorithm (ITEA) [9], summa-
rized in algorithm 1.



The algorithm starts with a randomly generated population
of solutions. After that, it performs the mutation and selection
steps repeatedly. The mutation operator slightly modifies each
solution in the population and the selection operator chooses
the next population with tournament selection. In the imple-
mentation proposed in [9], there are five possible mutations,
with equal chance of being selected: adding a new term,
dropping a term from the expression, positive and negative
interactions of two terms, replace one strength coefficient of
one interaction.

Adding a term simply adds a new term to the expression,
while dropping a term removes a randomly chosen term
from the expression. In Positive and Negative interactions, the
algorithm selects two terms at random and then adds/subtracts
their exponents replacing the values of one of those terms
and, finally, replacing an interaction simply replaces a chosen
exponent of a random term.

During the evaluation of an individual solution, every term
that evaluates to NaN (Not a Number, indicating that a invalid
mathematical operation was made (i.e. dividing by zero) or
the result is to large to be expressed) is removed from the
expression. So the fitness evaluation changes the expression
not only by adjusting the weights of the linear regression but
by removing invalid terms. Because of this mechanism, it is
impossible to create an expression that evaluates to NaN for
the training data.

The behavior of this algorithm is controlled by a set of 7
user-defined parameters. Common to GP literature, we have
the population size, stop criteria and functions set. Exclusive
to this algorithm, the user must also choose the maximum
number of terms on an IT-expression, the degree range for the
exponents, the fitting algorithm for the linear model, and the
fitness function.

For this paper we will limit the study of the parameters
regarding the number of IT terms (max terms) and the
exponent limits (degree range), since they explicitly controls
the level of complexity of the IT-expression following a
criteria that the smaller the expression the easier it becomes
to understand it.

IV. METHODOLOGY

This section describes the methodology followed to estimate
the effect of the two studied parameters.

To assess how these parameters can impact the overall
performance, we determined a range of values for each of
them and generated all the combinations for those values, as
depicted in Table I. Notice that a degree range value of
x defines a range of allowed exponents as a closed interval
[−x, x].

Small values for those two parameters restricts the search
space for simpler expressions that may be simpler to under-
stand and analyze. On the other hand, if the search space is
too restrictive it may not be possible to adequately fit a given
data set.

TABLE I
SET OF HYPERPARAMETERS AND THEIR VALUES. THE TOP PART OF THE
TABLE DESCRIBES THE RANGE OF VALUES CONSIDERED IN THIS STUDY,

THE BOTTOM PART DESCRIBES THE FIXED VALUES.

Parameter Values Description

degree range [1, 2, 3, 4, 5] The upper and lower
limits to exponents

max terms [2, 4, 6, 8, 10] The max number of IT
terms allowed in a IT expression

gens 300 The number of generations
pop 100 Population size

f set
[sin, cos,

tanh,
√
|.|, log, exp] Transformation functions

solver OLS Linear Regression solver

TABLE II
NUMBER OF FEATURES, SAMPLES AND RATIO OF TRAINING AND TEST

SAMPLES FOR EACH DATASET.

Name # features # samples (train/test)

Airfoil 6 1202/301
Concrete 9 824/206
Energy Cooling 9 614/154
Energy Heating 9 614/154
Tower Data 26 3999/1000
Wine Red 12 1279/319
Wine White 12 3919/979
Yacht 7 246/62

Regarding the remaining parameters, they were all fixed
with the values also depicted in Table I, and will be the subject
of study in future works.

In order to measure the influence of these parameters, a set
of commonly used data sets (see Table II) were chosen and
split into a 5-fold setup for cross-validation. For every dataset
we have repeated the execution of ITEA for 30 times with
each combination of values of degree range, max terms.
The performance of each experiment was measured using the
Root Mean Squared Error (RMSE), the same as the fitness
function. The code, test scripts and raw data can be found at
https://github.com/gAldeia/sensitivity-analysis-ITSR.

In the next section we will report the median of the RMSE
and the ranks obtained by each configuration of hyperparam-
eters. These two measures might differ in situations that one
configuration have a better average performance with a high
variance.

Additionally, we also measure the importance of each
parameter with the Coefficient of Variation. Given a parameter
tuning problem with n parameters, we use the coefficient of
variation to estimate the impact of changing the value of each
parameter. The coefficient of variation, denoted by Cv , is a
measure of dispersion expressed by a percentage obtained
by dividing the standard deviation to the mean of a given
distribution.

The standard deviation is a good measure of dispersion but
it cannot be directly compared to the standard deviation of
another distribution with different scale. Instead, by using Cv ,



we can perform this comparison, because they are measured
on the same relative scale. It can also be used to estimate the
stability of individual parameters, where a high Cv stands for
a less stable variable, and a low Cv for a more stable variable.

Given a set of parameters P , with each pi ∈ P having a
domain of possible (or considered) values vj ∈ Vi, we can
calculate the coefficient of variation Cpi

v for a parameter pi
with an algorithmic procedure. For every combination ck of
values of the remaining parameters set P−{pi} we perform 30
repetitions of the algorithm for each value vj ∈ Vi and store
the median of the obtained RMSE. We then calculate the mean
and standard-deviation of these median values, calculating

Cpi|vj
v = x̄/std(x), (3)

where x is the set of medians calculated by each experiment.
Finally, we can calculate Cpi

v as:

Cpi
v =

1

|Vi|
∑
j

Cpi|vj
v . (4)

V. RESULTS

The median of the RMSE values of the best individual
applied to the test set for each configuration is reported in
Fig. 2. Since we are analyzing only two parameters, it is
possible to visualize the results as a heatmap representing a
discrete landscape of the hyperparameters performance.

In this plot the darker colors represent the smaller values
for RMSE, thus representing the best obtained results. Addi-
tionally, the best result is underlined and all the results with
p-value > 0.05 calculated with the Wilcoxon Rank-Sum test
compared against the best result is marked with an asterisk.
Notice also that the results with equal values but different
colors differs on the third decimal places onward.

For every dataset, with the exception of Wine Red, the
horizontal gradient of colors is smooth when observing the
x-axis representing max terms values. This means that, in
those datasets, maximizing the number of terms help to reduce
the generalization error. Specifically speaking of the Wine Red
dataset [16], the target variable represents the quality of a given
wine on a scale of 1 to 10. Most of the wines are rated within
an average range and just a few are excellent or poor. Our
hypothesis is that this imbalance make this dataset prone to
overfitting and, thus, simpler models are preferred.

Regarding degree range, we can see that in every config-
uration of max terms = 10, either degree range value of
3 was the best result or it was close to the best. The only
exception to this rule is for the Yacht data set in which the
higher this value the better the results, this may happen when
the underlying system does not reside inside the IT search
space, thus leading to an approximation with higher degree
polynomials. In short, the value for degree range should be
set according to some prior knowledge of the studied system
or, if that is not a possibility, using a hyperparameter tuning
technique.

TABLE III
AVERAGE PERCENTAGE OF DECREASE IN TEST DATA RMSE WHEN

INCREASING THE PARAMETER max terms.

Dataset 2− 4 4− 6 6− 8 8− 10

Airfoil 19.06% 7.06% 5.85% 5.38%
Concrete 12.22% 6.28% 1.74% 2.35%
Energy Cooling 29.51% 16.17% 7.95% 1.64%
Energy Heating 37.35% 42.84% 27.36% 11.82%
Tower Data 8.59% 5.97% 4.19% 2.82%
Wine Red 2.05% 0.71% −0.77% 0.21%
Wine White 1.74% 1.05% 0.55% −0.02%
Yacht 18.75% 13.47% 11.75% 4.11%

On the other hand, the value for max terms should be
chosen as high as the practitioner judges reasonable in order to
keep the returned expression within the gray-box region. Even
though the higher the value of this parameter the smaller the
approximation error, the difference between similar values of
max terms decrease as the value for this parameter increases.

In Table III we can see the average percentage of decrease
in the RMSE for the test data when we increase the value
of max terms. Each column of this table calculates this
percentage from two adjacent values of max terms as

Pdec(rmse1, rmse2) = 100× rmse1− rmse2
rmse1

. (5)

From this table it is possible to see that the percentage of
decrease becomes smaller as max terms is set to a higher
value. This indicates that there can be a threshold for this
parameter in which the increase of complexity will lead to
a negligible decrease in approximation error. Following this
result, we can investigate the use of an adaptive value for this
parameter throughout the evolution.

The median value of the error measure is commonly used in
order to alleviate the occurrence of outliers when performing
experiments with stochastic algorithms. But, sometimes we are
not interested on the best average result but on those results
that are better ranked on average. Fig. 3 depicts the average
rank of each configuration for each data set. The results of this
plot may differ from those depicted on Fig. 2 when a given
configuration is ranked first for most of the folds of the data
set but in some folds it gets a very low rank.

As we can see from this plot, the results follow the
same trend as the previous plot w.r.t. max terms, the
higher the value of this parameter the better the rank.
But, for degree range the new optimal value is shifted to
degree range = 2, indicating that a lower degree is capable
of maintaining a better stability throughout the folds.

In Fig. 4 we show a convergence analysis for each con-
figuration of the parameters values. This plot shows the
average RMSE over the 30 executions of each configuration
on every generation of ITEA applied to the test set. The worst
configuration w.r.t. the final RMSE is highlighted in red and
the best one in blue. The values of the parameters for both
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Fig. 2. Heatmap showing the median RMSE values over 30 runs for each data set. The smaller the value, the better the results. The best result is underlined
and every result with a p-value > 0.05 when compared to the best result is marked with an asterisk.

configurations are annotated in the plot. Notice that in some
rare occasions for the concrete data set, the initial fitness of the
individuals evaluated to NaN for the test data, these points
are not plotted in the graph.

The behaviors observed on these plots can be divided into
three different groups. For the first group comprehending the
data sets Airfoil, Wine Red, Wine White, Energy Heating we
can see that the worst configuration converges prematurely,
usually before 50 generations, and remains stable for the
entirety of the execution. Meanwhile, the best configuration
shows a behavior of improvement until the final generation,
even though the rate of improvement is greatly reduced after
the 100th generation.

The second group composed of the data sets Energy Cool-
ing, Yacht shows that both the best and worst configurations
converges much before the final generation. The final group,
composed only of the Tower Data shows that both the best and
worst configuration still have not converged after the 300th
generation, it should be noted that this data set has the most
number of features and, thus, it should take longer to converge.

Because of the NaN problem, the convergence for the
Concrete data set cannot be analysed. But, we can notice that,
even though the first generations contained NaN values, the

best configuration still manages to find a proper solution after
the 150th generation. Notice that, while it is impossible to
obtain a NaN value for the training set, since the invalid
terms are discarded, it can be the case that the best expression
is invalid when extrapolating. This could be alleviated with
the inclusion of prior knowledge about the data [17].

Overall, we can also notice that the worst configurations
are usually the combination of the smaller values for each
parameter.

Tables IV and V shows the coefficients of variation for
degree range and max terms, respectively. The value Ci

v

correspond to the coefficient of variation for the parameter
value i, Cv is the average coefficient of this parameter to the
corresponding data set.

From these tables we can corroborate what was al-
ready observed from the plots. The average coefficients for
degree range is smaller than 5.8%, meaning that we can
expect this variation to the RMSE when we change this
parameter. The only exception being for the Yacht data set in
which a rate of variation of 33.5% was observed. Regarding
max terms, the measured variations range from 1.1% to
59%. The most impact of this parameter was observed for
the Energy Heating, Energy Cooling, Yacht and Airfoil, in
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Fig. 3. Heatmap showing the average ranks over 30 runs for each data set. The smaller the value, the better the results. The best result is underlined and
every result with a p-value > 0.05 when compared to the best result is marked with an asterisk.

TABLE IV
TABLE OF CvS FOR THE degree range, WHERE EACH Ci

v IS OBTAINED
BY FIXING max terms AND TESTING WITH ALL POSSIBLE VALUES FOR

degree range.

Dataset C1
v C2

v C3
v C4

v C5
v Cv

Airfoil 0.7% 2.8% 2.6% 2.3% 2.3% 2.1%± 0.7
Concrete 3.0% 1.3% 1.0% 1.5% 1.7% 1.7%± 0.7
Energy Cooling 1.4% 4.4% 6.9% 2.0% 1.2% 3.2%± 2.2
Energy Heating 0.8% 7.4% 12.1% 5.1% 3.6% 5.8%± 3.8
Tower Data 1.9% 3.0% 2.6% 1.1% 3.3% 2.4%± 0.8
Wine Red 0.6% 0.7% 0.6% 0.8% 0.8% 0.7%± 0.1
Wine White 0.6% 0.5% 0.2% 0.2% 0.3% 0.4%± 0.2
Yacht 34.8% 35.0% 34.5% 32.1% 31.0% 33.5%± 1.6

this order. An impact of less than 9% was observed on the
remainder of the data sets

Finally, in Table VI we depict sample expressions obtained
by different configurations of {degree range,max terms}
for the Yacht data set. From this table we can see the com-
promise between approximation error and model complexity.
While the expression with max terms = 10 is still far from
a black-box model, the alternative with only two terms and
maximum exponent of 4 is much easier to analyze without
compromising too much the approximation error.

VI. DISCUSSIONS

In the beginning of this paper, we posed three questions we
wanted to answer with these experiments (see Section I):

TABLE V
TABLE OF CvS FOR THE max terms, WHERE EACH Ci

v IS OBTAINED BY
FIXING degree range,AND TESTING WITH ALL POSSIBLE VALUES FOR

max terms.

Dataset C2
v C4

v C6
v C8

v C10
v Cv

Airfoil 13.7% 15.6% 15.5% 15.5% 13.7% 14.8%± 0.9
Concrete 11.9% 9.0% 8.6% 8.2% 7.1% 9.0%± 1.6
Energy Cooling 24.4% 26.1% 26.6% 25.8% 26.7% 25.9%± 0.8
Energy Heating 55.2% 62.3% 61.3% 60.8% 55.3% 59.0%± 3.1
Tower Data 8.3% 10.2% 8.1% 7.5% 7.1% 8.2%± 1.1
Wine Red 1.5% 1.3% 1.2% 0.6% 0.9% 1.1%± 0.3
Wine White 1.3% 1.6% 1.4% 1.0% 1.0% 1.3%± 0.2
Yacht 16.0% 40.2% 18.3% 11.9% 18.7% 21.0%± 9.9

• Does a set of fixed settings that frequently domi-
nate the others exist? None of the studied parameters
showed a common Cv value, neither the same landscape
was observed between all heatmap plots. This implies
that the choice of parameters is problem-specific. The
only observed pattern was that, in most cases, a higher
max terms leads to a smaller approximation error. Set-
ting a value sufficiently high for this parameter would
reduce the problem to adjusting the value of only one
parameter.

• To what extent are goodness-of-fit and interpretability
conflicting objectives? The most important parameter for
interpretability is max terms, which increases the size
of the expression while decreasing the error (see previous
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are emphasized.

TABLE VI
EXAMPLE OF EXPRESSIONS OBTAINED WITH DIFFERENT

CONFIGURATIONS FOR YACHT. THE FIRST COLUMN DEPICTS THE
HYPERPARAMETERS VALUES AS A TUPLE (degree range,max terms).

Conf. RMSE Expression

(1, 2) 2.21 −2.83e + 03 tanh ( 1
x5

) +

6.63e + 02 cos (x1 · x5) + 2.17e + 03

(4, 2) 0.79 −7.79e + 03 cos ( x23·x54

x3·x42
) −

4.05e + 02 cos ( x14·x23·x5
x3·x42

) +

8.19e + 03

(5, 10) 0.55 5.72e + 05 tanh( x1
x53

) +

6.44e + 06 tanh( 1
x0·x14·x52

) +

1.60e + 08 cos( x52

x23·x32
) −

5.75e + 06 cos( x54

x12·x22·x3
) −

5.61e + 04 cos(x13 · x53) +

8.00e + 02 tanh(x1 · x54) −
1.29e + 07 tanh( x0·x13·x4

x55
) −

3.81e + 04 tanh( x1
x52

) +

1.23e + 04 tanh( x14·x64

x0·x2
) −

1.61e + 08

answer). It is often the case that reducing the expression
complexity by adjusting the value of max terms will
increase the approximation error, thus showing that they
are indeed conflicting objectives. One thing to notice,
though, is that the percentage of decrease of the RMSE

becomes smaller at every increase of max terms value
(see Table III), so there seems to have a point in which
there is no benefit in increasing the expression complexity
any further.

• How the goodness-of-fit varies when we change each
parameter? Based on the observed, given the range
of values tested, the max terms is more important to
achieve a smaller error, though it can lead to a decrease
on the interpretability of the expression (see previous
answer). The degree range choice presented a minor
variation and should be either chosen by using prior
knowledge about the data or by tuning through a hy-
perparameter optimization technique.

VII. CONCLUSION

In this paper we analysed the relevance of two parame-
ters of the Interaction-Transformation Evolutionary Algorithm
with respect to the approximation error (RMSE) and model
complexity.

For this purpose we have setup a series of experiments
with different data sets revolving around the tuning of two
parameters: degree range and max terms. We have per-
formed a grid search over 5 different values for each parameter
with repeated experiments due to the stochastic nature of the
algorithm.

We have then analysed two Heatmap plots, one for the
RMSE on the test set and another for the average rank of each
configuration. Additionally, we have calculated the coefficient
of variation of each parameter in order to measure how much



the tuning of each parameter affects the performance of the
algorithm.

From these analysis we could answer three research ques-
tions: while there is no configuration that greatly dominates
all other, we can safely focus our attention to fine-tuning only
max terms. The only exception to this rule was observed in
Yacht data set, in which the variation of both parameters were
important. Another answered question is that the goodness-of-
fit and model complexity are two conflicting objectives, so if
you want a fittest model for your data you should expect an
increase in its complexity. On the other hand, the benefits of
increasing the complexity quickly decreases over the studied
values of max terms.

As a novelty to the study of hyper-parameters, we have
calculated the Coefficient of Variation of each parameter. This
coefficient determines a percentage of how much the RMSE
varies when we change the value of a single parameter. The
obtained values for this coefficient showed us that max terms
is the most important of the two studied parameters w.r.t
decreasing RMSE. The results corroborates with the Heatmap
plots and answers the final research question posed on this
paper.

Additionally, the convergence plots of each configuration for
each data set was presented so we could see that due to the
larger search space induced by a higher value of max terms,
the convergence rate is usually much slower than for smaller
values of this parameter.

Overall, the analysis of the Heatmap plots and Coefficients
of Variation can highlight the importance of each parameter,
in a way that is possible to determine the impact on the
performance for different combinations of values for these
parameters.
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