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Abstract—Convolutional neural networks (CNN) are widely
used and effective deep learning methods for image classification
tasks. But the architecture of CNN such as LetNet and AlexNet
were designed elaborately by experts because designing the neu-
ral networks is time-consuming and requires expert knowledge.
This paper proposed a quantum-inspired evolutionary algorithm
to search the neural architectures. First, we encode CNNs into
quantum chromosomes and distinguish these chromosomes from
the Convolutional Layer, Pooling Layer, Fully-connected Layer
and Disabled Layer with its range. Second, quantum chromo-
somes are updated by applying quantum gates and find the
best individual with quantum genetic algorithm. Third, we can
predict the network performance after a few steps of stochastic
gradient descent by means of evaluation estimate strategy so that
we can stop training the bad networks early, which can speed up
evolutionary process. The proposed algorithm is examined and
compared with some state-of-art methods for image classification
in three benchmark datasets. The experimental results prove
the proposed algorithm can search a strong classifier robustly.
In addition, it performs better than the general evolutionary
algorithm. More importantly, with the help of evaluation estimate
strategy, it is substantially faster than the algorithms without
evaluation estimate strategy which means we can take less time
to search a good network for the given task.

Index Terms—genetic algorithm, quantum-inspired, neural
architecture search, evaluation estimate

I. INTRODUCTION

Image classification is a fundamental task in computer
vision, implying a wide range of applications. Recently,
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the state-of-the-art algorithms on image classification are
mostly based on the Deep Convolutional Neural Network
(CNN). Such as LeNet-5 [1], AlexNet [2], VGGNet [3] and
GoogLeNet [4]. Deep Neural Network have demonstrated
its successful applications in computer vision [2], speech
recognition [5] , and natural language processing [6]. In most
cases, these neural networks are still designed by hand, which
is a time-consuming process. Additionally, the vast amount of
possible architectures of CNN requires expert knowledge to
restrict the search. Therefore, the need of designing automatic
methods for determining the hyper-parameters and architec-
tures is especially important for increasingly complex CNN
architectures.

Neural architecture search (NAS) methods [7] attempt to
automate the process of finding optimal neural networks
architectures for any given task. NAS methods generally are
designed as an optimization problem [8], which objective func-
tion is validation loss for a given task. In image classification
task, NAS methods have been demonstrated to be able to
discover neural networks architecture which performance is
comparable or superior to human-designed neural networks
[9], [10], [11], [12] and [13].

Many different search strategies can be used to discover
neural network architectures, including random search [14],
[8], bayesian optimization [15], reinforcement learning (RL)
[16] and evolution algorithm [9], [17]. However, these methods
need huge computing resources. Real et al. [9] proposed an
evolutionary approach to search networks for image classi-
fication problem using a parallel system executed on 250
computers.

In order to reduce the consumption of computer resources
and increase the speed of evolution process,we propose
Quantum-Inspired Evolutionary Algorithm (QIEA), a neuro-
evolutionary algorithm that combines the strengths of evolu-
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tionary algorithms and quantum-behaved algorithms to search
the architectures of convolutional neural networks for image
classification. Evolution algorithm is always used for multi-
objective optimization problem [18] [19] and K-traveling
repairman problem [20]. Historically, evolutionary algorithms
were already used by many researchers to evolve neural
architectures (and often also their weights) decades ago [21],
[22], [23] and [24] . Yao [25] provides a literature review
of work earlier than 2000. The evolutionary algorithm in-
volves constructing an initial population of individuals and
performing evolutionary operations. It is worth emphasizing
that the evolutionary process is computationally expensive, as
we need to undergo a complete network training process for
each generation individual.

QIEA use a qubit representation (A qubit may be in the
‘1’ state, in the ‘0’ state, or in any superposition of the two)
instead of binary numeric, or symbolic representations so that
it can imitate parallel computation in classical computers.
Under the quantum characteristics and evaluation estimate
strategy, we can complete this method with only a single GPU.

II. RELATED WORKS

A. Convolutional Neural Networks

Recent years have witnessed a revolution in visual recogni-
tion. Conventional classification tasks are extended into large-
scale environments. AlexNet trained a large, deep convolu-
tional neural network to classify the 1.2 million high-resolution
images in the ImageNet LSVRC-2010 contest into the 1000
different classes [2].

Starting with LeNet-5 [1], CNN have typically had a
standard structure – convolutional layers (optionally followed
by batch normalization and max-pooling) are followed by
one or more fully-connected layers.(see Fig.1) These layers
extract features by convolving the input image or—for deeper
layers—the output of the previous layer with a set of filters.
Convolutional layers are regularly followed by pooling steps
which reduce the spatial dimensionality of the feature map.

It is based on the observation that a network with enough
neurons is able to fit any complicated data distribution. A CNN
can be considered as a composite function, which is trained
by back-propagating error signals defined by the difference
between the supervision and prediction at the top layer.

Fig. 1. A general architecture of the convolutional neural networks.

B. Quantum Evolutionary Algorithm

Evolutionary Algorithms(EAs) [26] do not require rich
domain knowledge in the process of neural architecture search.

The genetic operators commonly used in EAs are crossover,
mutation and selection. Mutation is the simulation of the ge-
netic material mutation of organisms in nature. The crossover
is the simulation of chromosome exchange process in sexual
reproduction. The selection is the process of finding the fittest
chromosome.

EAs can be applied to solve optimization problems. A pop-
ulation of chromosomes is randomly initialized. Each chromo-
some represents a candidate solution to the optimization prob-
lem. A fitness function is used to evaluate each chromosome to
determine which the chromosome can solve the problem. In a
generational model, each chromosome is made up of several
genes, and these genes are altered using a genetic operator.
The resulting chromosome after the application of a genetic
operator is known as an offspring. The number of offspring is
the population size. EAs provide a further key advantage over
other optimization algorithms: they fluently handle complex
combinations of discrete and continuous search spaces, making
them ideal for neuro-evolutionary studies.

Quantum gennetic algorithm(QGA) is characterized by prin-
ciples of quantum computing including concepts of qubits and
superposition of states [27]. QGA uses a qubit representation
instead of binary, numeric, or symbolic representations and it
can imitate parallel computation in classical computers [28].
The smallest unit of information stored in a two-state quantum
computer is called a quantum bit or qubit. A qubit may be in
the ‘1’ state, in the ‘0’ state, or in any superposition of the
two. The state of a qubit can be represented as

|φ〉=α |0〉+β |1〉 (1)

|α|2 gives the probability that the qubit will be found in ‘0’
state and |β|2 gives the probability that the qubit will be found
in the ‘1’ state. Normalization of the state to unity guarantees

|α|2+|β|2=1 (2)

If there is a system of m-qubits, the system can represent
2m states at the same time. However, in the act of observing
a quantum, it collapses to a single state.

C. Learning curves

The learning curve is defined as a function of the perfor-
mance of an iterative model and its training time or number
of iterations. Learning curves are very popular for visualizing
overfitting and it can help researchers stop training bad models
early.

We fit the learning curve by a set of parametric model
families so that we can predict validation performance and stop
training process when it is unlikely to beat the performance
of the best model we have encountered so far. Swersky et al.
[29] devised a GP-based Bayesian optimization method that
includes a learning curve model. But it not works well for
deep neural networks



III. OUR APPROACH

This section presents the quantum evolutionary algorithm
for searching competitive convolutional neural network struc-
tures. First, we propose a way of encoding a network structure
into a quantum chromosome. Second, we find the best chro-
mosome by quantum-inspired evolutionary algorithm.

A. Algorithm Overview

Algorithm 1 outlines the framework of the Quantum-
Inspired Evolutionary Algorithm. The method to initialize the
population will be described in section Initialization. The
observation and evaluation method with evaluation estimate
strategy will list in Algorithm 2 and Algorithm 3.

Algorithm 1 Framework of QIEA
1: Q← Initialize the population with the proposed encoding

strategy
2: q ← individual in Q
3: qbest ← the best individual in Q
4: while termination criterion is not satised do
5: for q in Q do
6: observe and evaluate q;
7: update q with rotation U ;
8: end for
9: update rotation angle θ;

10: update qbest;
11: end while

B. Encoding Strategy

This section introduces the strategy about how to encode
three types of layers into binary string and represent this string
by qubits [30]. QIEA uses a novel representation that is based
on the concept of qubits. An m-qubits representation is defined
as (

α1 α2 . . . αm

β1 β2 . . . βm

)
(3)

where|αi|2+ |βi|2 = 1, i = 1, 2, ...,m. This representation has
the advantage that it is able to represent any superposition of
states[19]. For instance, if there is a three-qubits system with
three pairs of amplitudes such as(
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)
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the state of the system can be represented as
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The above result means that the probabilities to represent the
state |000〉, |001〉, |100〉,and|101〉are 1

8 ,
3
8 ,

1
8 ,and 3

8 , respectively.
By consequence, the three-qubits system of (4) has four states
information at the same time. Evolutionary computing with
the qubit representation has a better characteristic of diversity
than classical approaches, since it can represent superposition
of states. Only one quantum chromosome such as (4) is enough

to represent four states, but in classical representation at least
four chromosomes, |000〉, |001〉, |100〉and|101〉 are needed.

QIEA maintains a population of quantum chromosomes,
Q(t) = {qt1, qt2, · · · , qtn}at generation t, where n is the size
of population, and qtj is a quantum chromosome defined as

qtj =

[
αt
j1 αt

j2 · · · αt
jm

βt
j1 βt

j2 · · · βt
jm

]
(6)

where m is the string length of the quantum chromosome,
andj = 1, 2, · · · , n

TABLE I
THE PARAMETERS AND THEIR RANGE OF DIFFERENT TYPES OF CNN

LAYERS WITH AN EXAMPLE IN THE EXAMPLE COLUMN

Layer Type Parameters Range Number of bits Example
Convolution Filter size [1,8] 3 2(001)

Feature maps [1,128] 7 16(000 1111)
Stride size [1,4] 2 2(01)
Summary 12 001 000 1111 01

Pooling Kernel size [1,4] 2 2(01)
Stride size [1,4] 2 2(01)

Type:
1(maximal),
2(average)

[1,2] 1 2(1)

Place holder [1,64] 6 16(00 1111)
Summary 11 01 01 1 00 1111

Fully-Connected Neurons [1,2048] 11 512(01111 111111)
Disabled Place holder [1,2048] 11 512(01111 111111)

In this work, the CNN architecture is comprised of three
types of layers – Convolutional Layer, Pooling Layer, and
Fully-Connected Layer. In order to deal with the variable-
length of the architectures of CNN, Disabled Layer, a special
layer of disabling some of the layers will be used.

As there are several attributes in the configuration of each
type of CNN layers, each of which is an integer value within a
range, so each value of the attribute can be smoothly converted
to several binary strings. As for Convolutional Layer, there
are three key parameters, the filter size, the number of feature
maps and the stride size. Secondly, in terms of Pooling Layer,
the key parameters are the kernel size, the stride size and
the pooling type. Lastly, Fully-Connected Layer only has one
parameter, the number of neurons. This binary strings can
be concatenated to a large binary string, which is called
chromosome, to represent the whole configuration of CNN.
The information of different types of layers in terms of both
the number of parameters and the range in each parameter is
shown in table I. First of all, the length of the binary string of
different types of layers is various, so we need to design the
length of the string. With regard to Convolutional Layer, the
length of string is 12 and the range of the parameters are set
to [1,8], [1,128] and [1,4]. For instance, a filter size with the
string of 000 means the size is 1 (filter size cannot set to 0).
Form table I, the Pooling Layer, Fully-Connected Layer and
Disabled Layer have the same length of string with 11. As
the largest number of bits to represent a layer is 12, we can



represent this binary string by 2 bytes (one bytes is comprised
of 8 bits) and transfer it to dot-decimal notation.

Secondly, in order to define a specific type of layers, the
string of dot-decimal with a fixed length of enough capacity
can be designed to accommodate all the types of CNN layers
and then the dot-decimal string can be divided into numerous
sublayers, which can define a specific type of layers. The range
of sublayers is listed in table II. For Convolution Layer, 0.0
is designed as the starting; in addition, the total length of the
designed dot-decimal string is 16 and the total number of bits
required is 12, so the total number of bits subtract from the
length of the dot-decimal string is 4, which brings the sublayer
representation to 0.0/4 with the range from 0.0 to 15.255.
Regarding the Pooling layer, the total number of bits is 11,
which results in 16.0/5 with the range from 16.0 to 23.255 as
the sublayer representation of the Pooling layer. Similarly, the
sublayer 24.0/5 with the range from 24.0 to 31.255 is designed
as the sublayer of the Fully-connected layer.

TABLE II
THE RANGE OF BINARY STRING TO DIFFERENT LAYER

Layer type Sublayer (Dot-decimal) Range(Dot-decimal)
Convolutional Layer 0.0/4 0.0-15.255

Pooling Layer 16.0/5 16.0-23.255
Fully-Connected Layer 24.0/5 24.0-31.255

Disabled Layer 32.0/5 32.0-39.255

TABLE III
AN EXAMPLE OF BINARY STRING TO DIFFERENT LAYER

Layer type Binary Dot-decimal
Convolutional Layer (0000)001 0001111 01 2.61

Pooling Layer (00010)01 01 0 001111 18.143
Fully-Connected Layer (00011)01111 111111 27.255

Disabled Layer (00100)01111 111111 35.255

TABLE IV
AN EXAMPLE OF DOT-DECIMAL IN A CHROMOSOME CONTAINING 5 CNN

LAYERS

2.61(C) 18.143(P) 2.61(C) 35.255(D) 27.255(F)

table IV shows an example of a chromosome to explain
how the CNN architecture is encoded. Assume the length
of layer is 5, the length of quantum chromosome will be
80, after observation, this quantum chromosome collapsed to
a determined string. In this example, assume the quantum
chromosome collapsed to the sample string in table III, where
C represents a Convolution Layer, P represents a Pooling
Layer, F represents a Fully-connected Layer, and D represents
a Disabled Layer. Since there is a Disabled Layer, the actual
number of layers is 4. However, after a few population updates,
the Disabled Layer may be become 18.143, which turns the
Disabled Layer to a Pooling Layer. All in all, the Disabled
Layer should be disable when decode the binary string to
CNN, so this encoding strategy can represent variable-length
architectures of CNN.

C. Initialization

In terms of the population initialization, there are a few
parameters that need to be determined, which are listed in
table VI. A matrix is used to represent the individual of
quantum population. Each dimensional of the matrix represent
α and β (both equal to 1√

2
at initialization stage)of qubit in

the quantum chromosome.
In order to ensure the availability of each searched network

architecture (the output label matches the classification label)
and the rationality of the network architecture (without a large
number of duplicate network layer stacks), the population
initialization should follow the rules. L represents maximum
length of CNN layers and F represents maximum number of
Fully-connected Layers. The first element in the chromosome
will always be a Convolution Layer; From the second to (L–F)
layer, each element can be filled with a Convolutional Layer,
Pooling Layer or Disabled Layer; From (L-F) to (L-1) layer, it
can be filled with any of the four types of layers until the first
Fully-connected is added, and after that only Fully-connected
layers or Disabled layers are allowed; The last element will
always be a Fully-connected layer with the size the same as
the number of classes.

D. Quantum Observation

Before train and evaluate the CNN, the CNN architecture
should accord with the initial rules and the quantum chro-
mosome must collapse to a determined binary string. The
quantum chromosome is comprised of m-qubits. As is shown
in Algorithm 2, we observe the chromosome with a given
random number and then get the binary string.

Algorithm 2 Quantum chromosome observation
Input:

Qin with quantum chromosome
m← length of quantum chromosome

Output: Qout with determined binary string
1: for individual q in Qin do
2: i← 1
3: while i <= m do
4: r ← random(0, 1)
5: if r > α2

i then
6: qi = 1
7: else

qi = 0
8: end if
9: end while

10: end for
11: return Qout

E. Evaluation Estimate Strategy

In this section, we explain how we predict the performance
of networks from the initial portion of a learning curve. The
performance of networks is denoted by validation dataset
accuracy in the iteration process. Let yn denote the validation



TABLE V
11 DIFFERENT PARAMETRIC LEARNING CURVE MODELS

Name Formula

vapor pressure exp
(
a+ b

x
+ c log(x)

)
pow3 c− ax−α

log log linear log(a log(x) + b)

Hill3 ymaxx
η

κη+xη

log power a

1+
(
x
eb

)c
pow4 c− (ax+ b)−α

MMF α− α−β
1+(κx)δ

exp4 c− e−ax
α+b

Janoschek α− (α− β)e−κx
δ

Weibull α− (α− β)e−(κx)δ

ilog2 c− a
log x

dataset accuracy for the first n iterations and ym denote the
validation dataset accuracy after a large number of iterations.

Our basic idea is to model the learning curve by a set of
parametric models {f1, . . . , fK}. With the help of observing
yn, we aim to predict probability of P (ym ≥ ŷ|yn)( ŷ is
the best performance at this generation) by using Markov
Chain Monte Carlo (MCMC) approach and decide whether
to terminate training process which is time-consuming. Each
of these functions is described through a set of parameters θk

and the probability of yt under model fk is given as

p
(
yt|θk, σ

2
)

= N
(
yt; fk (t|θk) , σ2

)
(7)

We chose a large set of parametric curve models whose
shape coincides with our prior knowledge about the form
of learning curves: They are typically increasing, saturating
functions; for example, functions from the power law or the
sigmoidal family. In total we considered K = 11 different
model families, which are shown in table V. We note that
all of these models capture certain aspects of learning curves,
but that no single model can describe all learning curves by
itself, motivating us to combine the models in a probabilistic
framework.

We combine all K models into a model which is given as:

f(t|ξ) =

K∑
k=1

wkfk (t|θk) (8)

where the parameter vector is:

ξ =
(
w1, . . . , wK ,θ1, . . . ,θK , σ

2
)

(9)

In order to use MCMC approach ,we have to know the
distribution function of ξ with the observing accuracy yn.
According to Bayes theorem, P (ξ|yn) can be given as:

P (ξ|yn) ∝ P (yn|ξ)P (ξ) (10)

Where P (yn|ξ) for the model is given as P (yn|ξ) =
Πn

t=1N (yt; f(t|ξ), σ2) and P (ξ) is the prior distribution of
ξ which is decided by P (wK) and P (θK).

Then we can sample over the joint parameter and weight
space ξ and get S samples ξ1, . . . , ξS so that a sample
approximation for ym can be formed as

E [ym|yn] ≈ 1

S

S∑
s=1

f (m|ξs) (11)

We have an estimate of the parameter and the predictive
distribution P (ym|y1:n, ξ) is a Gaussian for each fixed ξ, so
we can estimate the probability that ym exceeds a certain value
ŷ as

P (ym ≥ ŷ|yn) ≈ 1

S

S∑
s=1

P (ym > ŷ|ξs)

=
1

S

S∑
s=1

(
1− Φ

(
ŷ; f (m|ξs) , σ2

s

)) (12)

where Φ
(
·;µ, σ2

)
is the cumulative distribution function of

the Gaussian with mean µ and variance σ2.
Before performing the network evaluation, a proper weight

initialization method has to be chosen, and MSRA Filler
weight initialization [31] is chosen as it keep the variance
of each layer stable, and has been implemented in most
of Deep Learning networks. As is shown in Algorithm 3,
each quantum chromosome is observed and will be decoded
to a CNN architecture with its settings. After training for
each n iterations, we predict P (ym ≥ ŷ|yn) by (12). If this
probability is above a threshold δ then training continues
as usual until the next n iterations. Otherwise, training is
terminated and we return the expected validation accuracy.
Finally, we return the accuracy for each individual, which will
be stored as the individual fitness in Qout

F. Update Networks with Quantum Gates

After quantum observation and network evaluation, we can
update the network with quantum gates which is the important
method for searching better individuals in the population. qtj
is updated by applying some appropriate quantum gates U(t).
The appropriate quantum gates can be designed as rotation
gates, such as

U(φ) =

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
(13)

where φ is a rotation angle, s (αiβi) is the rotation angle
direction, which can be got from table VI. This step makes the
quantum chromosomes converge to the fitter states. It should
be noted that some genetic operators can be applied, such as
mutation which creates new individuals by a small change in a
single individual, and crossover which creates new individuals
by combining parts from two or more individuals. Mutation
and crossover can make the probability of linear superposition
of states change. But because QIEA is a kind of probabilistic
representation, the mutation and crossover are equivalent, so
we only use rotation gate instead of mutation operation on the
quantum chromosome.



Algorithm 3 Network Evaluation with Evaluation Estimate
strategy
Require: The quantum population Qin; the training dataset

Dtrain; the size of dataset Dsize the batch size s; the it-
eration intervals n; the best performance at that generation
ŷ; the maximum iteration for each generation MAX;

Ensure: The population Qout with with fitness;
1: for individual q in Qin do
2: i← 1
3: while i <= MAX do
4: Decode q to CNN;
5: Train the CNN on the Dtrain with s;
6: if i = kn, k = 1, 2...MAX then
7: if P (ym ≥ ŷ|yn) > δ then
8: Training continues
9: else

Terminate training and return accuracy
10: end if
11: end if
12: Return accuracy of q
13: Update the fitness of q in the population Qout;
14: end while
15: end for
16: return Qout

TABLE VI
ROTATION ANGLE OF QUANTUM GATES

xi besti f (x) ≥ f (best) φ s (αiβi)
αiβi > 0 αiβi < 0 αi = 0 βi = 0

0 0 F 0 0 0 0 0
0 0 T 0 0 0 0 0
0 1 F 0 0 0 0 0
0 1 T 0.05π -1 +1 ±1 0
1 0 F 0.01π -1 +1 ±1 0
1 0 T 0.025π +1 -1 0 ±1
1 1 F 0.005π +1 -1 0 ±1
1 1 T 0.025π +1 -1 0 ±1

xi is the i-th position of the current chromosome, besti is
the i-th position of the best chromosome, f (x) is the fitness
function of the problem. QIEA mutates individuals through
quantum rotation gates to create new individuals and the
mutation rules also ensure the convergence of the algorithm.
For example, xi = 0, besti = 1, f (x) ≥ f (best) indicates
that the i-th position of the current chromosome is the ‘0’
state, the i-th position of the best chromosome is the ‘1’ state
and the current chromosome fitness is better than local optimal
chromosomes. In order to make the new individuals more
likely to be observed as individuals with higher fitness,The
mutation process should increase the probability that the i-th
position of current chromosome takes the ‘0’ state, that is to
increase |α|2

The rotation angle in the quantum rotation gate deter-
mines the degree of mutation of the quantum chromosomes.
The direction of rotation is determined by the relationship

TABLE VII
PARAMETERS LIST

Parameters Value
Population size 30

Evaluation generation 30
The training epoch for evaluation 10

The training intervals n 60
threshold δ 0.05

The training epoch for qbest 30
Maximum length of CNN layers (L) 10

Maximum number of Fully-connected Layers (F) 3
Batch size 128

Activation function ReLU
Optimizer Adam

between the performance of the network architecture and
the performance of the optimal network architecture in the
current evolutionary iteration. The specific rotation direction
and rotation angle can be obtained by looking up table VI.

IV. EXPERIMENTS

A. Experimental Setup

For each dataset, we executed 10 times for QIEA and QIEA
with evaluation estimate strategy(EESQIEA) respectively and
averaged the results. QIEA and EESQIEA were evaluated on
a single machine with a Tesla P100 and 16GB of CPU RAM.
During the evolutionary process, the GPU utilization varied
from 50% to 99% based on the dateset. The algorithm was
developed in Python 3.6.4 and Pytorch 1.1.0. In the exper-
iments, the peer competitors on the benchmarks are CAE-2
[32],RandNet-2 [33],PCANet-2(softmax) [33],LDANet-2 [33],
Deep Belief Network (denoted DBN-3) [34], Stacked Auto
Associators (denoted SAA-3) models [34], a single hidden-
layer neural network (NNet) [34], SVM models with Gaussian
(SVMrbf ) and polynomial (SVMpoly) kernels [34] and Neural
search by particle swarm optimization(IPPSO) [35]

B. Benchmark Datasets

The datasets of these experiments are three widely used
image classification benchmark datasets. There are the MNIST
digit recognition dataset [1], the MNIST with rotated digits
plus background images(MNISTRB) [34] and the Convex Sets
[34]. MNISTRB is a dataset with a random patch from a
black and white image was used as the background for the
digit image and the digits were rotated by an angle generated
uniformly between 0 and 2π radians. The Convex Sets is
for recognizing the shapes of objects and is a two-class
classification problem. Each image in these datasets is with
the size . There are the example of these datasets in Fig. 2.

C. Parameters

The parameters setting is listed in table VII. Each individual
in population will train 10 epochs with batch size to 128. After
evaluating for 30 generations, we train the best individual with
30 epochs and return the best network.



Fig. 2. Examples of the three datasets. From left to right, each two images as
a group are from one benchmark, and each group is from MNIST, MNISTRB,
and CS, respectively.

TABLE VIII
THE CLASSIFICATION ACCURACY OF QIEA AND EESQIEA AGAINST THE

PEER COMPETITORS ON THE MNIST, MNISTRB AND CS BENCHMARK
DATASETS

Classifier MNIST MNISTRB CS
CAE-2 97.52 ↓ 54.77 ↓ -

RandNet-2 98.75 ↓ 56.31 ↓ 94.55 ↑
PCANet-2 98.60 ↓ 64.14 ↓ 95.81 ↑
LDANet-2 98.95 ↑ 61.46 ↓ 92.78 ↓

DBN-3 96.89 ↓ 52.61 ↓ 81.37 ↓
SAA-3 96.54 ↓ 48.07 ↓ 81.59 ↓
NNet 95.31 ↓ 37.84 ↓ 67.75 ↓

SVM-RBF 96.97 ↓ 44.82 ↓ 80.87 ↓
SVM-Poly 96.31 ↓ 43.59 ↓ 80.18 ↓

QIEA(mean) 98.82 79.80 93.31
EESQIEA(mean) 98.81 79.77 93.30

QIEA(standard deviation) 0.097 1.54 1.63
EESQIEA(standard deviation) 0.098 0.67 1.06

TABLE IX
THE TIME OF QIEA AND EESQIEA

Datasets Time(s) Improvement
EESQIEA QIEA

MNIST 4985 7120 ↑29.98%
MNISTRB 12421 19342 ↑35.78%

CS 6213 9921 ↑37.37%

D. Result and Analysis

the results of experiments are shown in tab VIII It is obvious
that our approach is better than all the peer competitors in
MNISTRB dataset which is the most complicated dataset
among these three and almost the greatest approach in the Con-
vex Set. According to tab X, the performance of architecture
search by QIEA is better than general evolutionary algorithm
IPPSO in all datasets. In addition, the standard deviation of
QIEA is steady in all the datasets, which means our approach
is not easy to fall into the local optimum. More importantly,
EESQIEA is faster than QIEA in all datesets, which is shown
in tab IX

QIEA combines evolutionary algorithms and quantum char-
acteristics and uses the representation of a quantum chromo-

TABLE X
THE PERFORMANCE OF IPPSO AND QIEA

Datasets best mean standard deviation
IPPSO QIEA IPPSO QIEA IPPSO QIEA

MNIST 98.95 98.97 98.79 98.82 0.103 0.097
MNISTRB 67.50 80.19 65.20 79.80 2.96 1.54

CS 91.52 94.52 87.94 93.31 2.25 1.63

some. Due to this representation of probability amplitudes,
a quantum chromosome carries information about multiple
states. Generating new individuals from the quantum chromo-
some can bring about a rich population, thereby maintaining
the diversity of the population and overcoming precocity.

E. Visualization

In order to explain the advantage of EESQIEA, we visualise
the performance for each generation and its time consumption
on MNISTRB and CS.

Fig. 3. Comparison of learning curves for EESQIEA and IPPSO on
MNISTRB and CS with evaluation estimate strategy

The best result of each generation on MNISTRB and CS
are plotted in solid and dashed lines, respectively, in Fig 3a
and 3b. After 10 generations, the evolution of IPPSO have
stop but EESQIEA can search the better individual until the
28rd generations on MNISTRB.

Fig. 4. Results for EESQIEA on on MNISTRB and CS with and without
evaluation estimate strategy

The performance of evolution process on MNISTRB and CS
are plotted in solid and dashed lines, respectively, in Fig 4a
and 4b. EESQIEA with evaluation estimate strategy takes less
time to reach the same performance as QIEA because it can
stop bad runs early.

V. CONCLUSIONS

The paper proposed a quantum-inspired evolutionary al-
gorithm to search the architectures of convolutional neural



networks for image classification tasks. QIEA approach can
search for classifiers that perform better than traditional ma-
chine learning algorithms on the proposed benchmark datasets
automatically.

More importantly, QIEA performs better than traditional
evolution algorithm like IPPSO because it can maintain pop-
ulation diversity and overcome premature convergence phe-
nomenon with the quantum characteristics during the process
of searching. The decision variable is no longer a fixed
information in a sense, but becomes a kind of information
carrying different superimposed state information when a new
individual is generated by the quantum probability amplitude,
so it can bring a richer population than simply using genetic
operations.

As the networks evaluation process is time-consuming, we
predict the network performance from the initial portion of
a learning curve and stop the bad runs early so that it can
avoid the unnecessary training. Our approach with evaluation
estimate strategy EESQIEA is almost 40% faster than QIEA
with little performance loss.
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