

A Multi-constraint Handling Technique based

Niching Evolutionary Algorithm for Constrained

Multi-objective Optimization Problems

Zixu Wang

School of Computer Science and

Technology

Xidian University

Xi’an, China

cnwangzx@foxmail.com

Jingxuan Wei

School of Computer Science and

Technology

Xidian University

Xi’an, China

wjx@xidian.edu.cn

Yi Zhang

School of Computer Science and

Technology

Xidian University

Xi’an, China

auvyisen@gmail.com

Abstract—When solving constrained multi-objective

optimization problems, the challenge is that how to deal with all

kinds of constraints regardless of the shape of the feasible region.

Especially when the feasible region is discrete or very small,

some constraint handling techniques cannot solve it exactly. To

address this issue, this paper proposes a new technique to handle

constraints. First, all the constraints will be sorted to some

grades from hard to easy according to their constrained

violations. Second, a niching crowding distance mechanism is

used to guarantee the diversity of the pareto front better. The

experiments show that the proposed algorithm can generate a

set uniformly distributed pareto optimal solutions under

constrains.

Keywords—constraints, evolutionary algorithm, multi-

objective, optimization

I. INTRODUCTION

The constrained optimization problems (COPs) exist
widely in the real world. COPs usually contains multiple
conflicting objectives and a series of constraints. According to
the number of objectives, it can be divided into constrained
multi-objective optimization problems (CMOPs) [1] and
constrained many-objective optimization problems [2]. The
number of objectives of the former is less than or equal to three,
while the latter is more than three. Generally speaking, a
CMOP can be formulated as:

() () () ()()

()

()

1 2minimize x x ,... x , x

subject to x 0, 1,...,

 x 0, 1,...,

 x

T

m

j

k

F f f f

g j p

h k q

=

 =

= =



Where ()
T

1 2x= , ,..., nx x x is an n-dimensional decision vector.

= ,
n

L U n

i ix x    represents the decision space.

 : mF  → including m conflicting objective functions

where
m

 is the objective space. ()xjg is the j-th inequality

constraint while ()xkh is the k-th equality constraint. Next,

some definitions about CMOP are introduced briefly.

The constraint violation (CV): first, the degree of violation of
x in the j-th inequality constraint and k-th equality constraint

can be defined as () () G x min 0, x , 1,...,j jg j p= = and

() () x max 0, x , 1,..., ,k kH h k q= = respectively. Thus, the

CV is defined as:

() () ()
1 1

x x x
p q

j k

j k

CV G H
= =

= + 

Feasible solution: x is a feasible solution if and only if it

satisfies all constraints which means ()x 0CV = .

Infeasible solution: x is an infeasible solution as long as it

does not satisfy any constraints which means ()x 0CV  .

Pareto dominance: 1x and 2x are two solutions that belong

to  . If () ()1 2x xi if f  1,2...,i m  and  1,2...,i m 

that make () ()1 2x xi if f , we call
1x dominates

2x ,

denoted as
1 2x x . Moreover, if there is no solution

dominating
1x (

1x is a feasible solution), then
1x is called a

pareto optimal.

Pareto set (PS): Pareto set contains all pareto optimal

solutions.

Pareto front (PF): PF is the image of all pareto optimal

solutions.

Next, we will give a brief review of unconstrained multi-

objective evolutionary algorithms.

MOEAs can be classified into three categories:

dominance-based, decomposition-based and indicator-based.

One common feature of these algorithms is that they all focus

on the convergence and diversity of population. 1)

dominance-based EAs ranking individuals by non-dominant

relations such as NSGAII [3] which use nondominated

sorting to represent convergence and then use crowing

distance assignment to represent diversity. 2)decomposition-

based EAs such as MOEA/D [4] decompose a MOP into a

series of single-objective subproblems according to

uniformly distributed weight vectors in space. The

convergence can be guaranteed by optimizing each single

objective, and the diversity can be guaranteed by uniformly

distributed vectors. There are many variants of MOEA/D

such as MOEA/DD [5], MOEA/D-M2M [6] and MOEA/D-

AWA [7]. 3)indicator-based EAs use performance indicators

to evaluate individuals of each generation. The performance

of the algorithms will be affected by the different emphasis

of the indicator. For example, IBEA [8] used I + as indicator
This work was supported by the National Science Foundation of China

under Grant 61203372. (Corresponding author: Jingxuan Wei.)

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

which is a convergence indicator, so IBEA performs poorly

in diversity [9]. Hypervolume indicator concern both

convergence and diversity but it has high computational

complexity. As a result, many indicator-based EAs that use

hypervolume as their indicator such as HypE [10] are

computationally heavy and very slow.

However, compared with the prosperity of unconstrained

multi-objective evolutionary algorithms, the research of

constrained multi-objective evolutionary algorithms is few.

Most of the existing algorithms use the combination of a well

performed unconstrained algorithm and a constraint handling

technique. In this case, the performance of the constraint

handling technique will affect the performance of the

algorithm. We will give details of existing constraint

handling techniques in Section II.

In order to address the limitations, the goal of this paper

is to develop an evolutionary algorithm to find the pareto

front under constraints. The pareto optimal solutions obtained

under constraints are expected to have good performance in

terms of convergence and diversity. To achieve the goal, we

propose two new techniques:

1) A new constraint handling technique that deal with

multi-constraints is proposed, denoted as MC-CHT.

This technique can enlarge the feasible region

during the early stage of evolution and then

gradually reduce to true size. Moreover, we hybrid

this method with  -constraint method.

2) A new niching method is used to maintain the

diversity of population. This method can avoid two

extreme situations in original crowding distance [3].

The rest of this paper is organized as follows. Section II

overviews existing constrained handling techniques. Then

explain the motivations of new constraint handling technique.

Section III shows the details of the proposed constrained

handling technique and the whole algorithm. Section IV

introduces the general experimental setting and shows

specific experiment results that compared with four popular

CMOEAs and analyzes the experiment results. Section V

gives the conclusion and future direction.

II. PRELIMINARIES

A. Existing constraint handling techniques

Constraint handling is a crucial part of CMOPs. All these
constraint handling techniques can be divided into three
categories.

1) The first category always give priority to feasible
solutions when choosing promising solutions into
next generation. The typical methods include penalty
function methods [11], constrained-domination
principle [12], and  -constraint method [13]. The

main idea of penalty function is adding a penalty
term that connect with CV to original objectives. A
solution with high CV will have high penalty than
others with low CV, of course, feasible solutions
have no penalty. Constrained -domination principle
transforms normal dominance relation that defined
before to constrained dominance relation.

Specifically, there are two solutions
1x and

2x , we

call
1x constrained-dominate

2x if any conditions

are satisfied: 1)
1x is feasible solution while

2x is

infeasible solution; 2)
1x and

2x are both feasible

solutions but
1 2x x ; 3)

1x and
2x are both

infeasible solutions but () ()21 x xCV CV .  -

constraint method is very similar to CDP except for
one parameter  . Specifically, if the CV of an

infeasible solution is less than  , then we think of it

as a feasible solution. Otherwise, it is still an
infeasible solution. After redefining the feasibility of
the solutions, CDP is then used to determine the
constrained-dominance relation.

2) The second category tries to balance the trade-off
between feasibility and convergence. In [14],
stochastic ranking is proposed. When comparing two
solutions, stochastic ranking will decide the winner
randomly according to its value of objectives or
constraint violation. [15] proposes a multi-objective-
based method that transform constraint into objective
and so a CMOP is transformed into a MOP. Recently,
a Tri-Goal framework [16] based on BiGE [17] is
proposed to balance convergence, diversity and
feasibility. In this framework, convergence, diversity
and feasibility of a solution are regarded as three
objectives for non-dominated sorting.

3) The third category is to hybrid several constraint
handling techniques properly in order to get a better
performance. [18] proposes an ensemble of
constraint handling techniques to solve COPs, where
each constraint handling technique has its own
population and can learn from other populations to
deal with complicate problems. [19] proposes (μ +
λ)-constrained differential evolution that hybrids
differential evolution with three mutation strategies
and improved adaptive trade-off model which uses
three CHTs to handle three types of situation. [20]
hybrids CDP and  -constrained method in a DE

framework.

B. Motivation

We can intuitively conclude that the more constraints, the
more difficult it is to deal with. Under this consideration, we
can deal with constraints one by one. Before formal
explanation, we propose a new definition called constraint
capability:

Constraint capability: for example, there are two constraints

aC and
bC . Each constraint determines part of the infeasible

region. Let us say
aR is the infeasible region determined by

aC and
bR is the infeasible region determined by

bC . If the

area or hypervolume of
aR is larger than

bR , then we say that

aC has stronger constraint capability than
bC .

When the constraints are many and complex, the real feasible
region may be very narrow. It is hard for the population to find
the right direction of evolution. However, when the algorithm
only deals with one constraint, the feasible region will be
much larger. After dealing with one constraint, then we add
new constraints one by one, in doing so, the population can
gradually approximate the real pareto front in the real feasible
region. Considering the convergence rate, our proposed
technique (MC-CHT) will deal with constraints from difficult
to easy according to the constraint capability.

III. PROPOSED ALGORITHM

The algorithm proposed in this paper is called MC/MOEA.
The details of the whole algorithm are described in the
following.

A. General framework

The main procedure is described in Algorithm 1. First,
constrained sorting is used to get the sorted constraints
according to constraint capability. Then, an initial population

0P is generated randomly. Before the main loop, a procedure

named environmentSelection is used to get
cf ,

df and
ff of

each solution.
cf ,

df and
ff are values that can reflect the

convergence, diversity and feasibility of solutions in

population. In the main loop, we get 'P by select promising

parents according to their
cf ,

df and
ff . Then, after

variation operators, we get ''P . Finally, we combine 'P and
''P , and choose next generation by environmentSelection.

Algorithm 1: general framework

Input: population size N , parameter
MCN , maximum

iteration

Output: population P

1. sorted constraints  constrained sorting (
MCN) (see

III-B, this procedure sort constraints according to

constraint capability)
2.

0P  initialization (N)

3. t  0

4. [~,
cf ,

df ,
ff]  environmentSelection (

tP , sorted

constraints, N) (see III-C)

5. while not terminated do

6. 'P  matingSelection (
ff ,

cf ,
df) (see III-F)

7. ''P  variation (
'P)

8. S  ' ''P P

9. [
1tP+

,
cf ,

df ,
ff]  environmentSelction (S ,

sorted constraints, N)

10. t  t+1

11. end

B. Constrained sorting

This procedure only needs one parameter, which is the

number of generated solutions, denoted as
MCN . In this paper,

we set it as 1000 by experiments. After generating these

solutions, we calculate feasible proportion (fp) and

constraint violation (CV) of all solutions under each

constraint. Finally, we sort the constraints by feasible

proportion and CV. The smaller the feasible proportion, the

greater the constraint capability. If two constraints have same

feasible proportion, then we will compare constraint violation

of them. The rules are like feasible proportion. The details are

showed in Algorithm 2.

Noted that constraint violation
iCV means constraint

violation under constraint
iC , where

iC is one constraint.

Algorithm 2: constrained sorting

Input: parameter
MCN , the number of constraints

cN

Output: sorted constraints (SC)

1.
MCP  initialization (

MCN) (randomly generate

solutions)
2. feasibleProportion (

ifp) 
MCN ,

iCV  0 for i = 1, …,
cN

3. for each constraint i (
iC) do

4. for each solution x do

5. if () 0iC x  then

6.
ifP -= 1

7.
iCV += ()iC x (()iC x means constraint

violation of x under constraint i)

8. end

9. end

10. end

11. sorted constraints  sort (
ifp ,

iCV)

C. EnvironmentSelection

This procedure can calculate
cf ,

df and
ff of solutions

and then choose promising solutions into next generation
according to the values. The details are showed in Algorithm
III. First, MC-CHT is used to calculate the current constraint

violation (denoted as
ff) of each solution. Second, non-

dominated sorting with constrained-dominance principle is

used to calculate level (denoted as
cf) of each solution.

lF

includes solutions that have same level l . Third, a niching

method is used to calculate
df . Finally, we choose N

solutions according to
cf and

df .

D. MC-CHT

This operation is to enlarge the feasible region in the stage

of evolution. And  -constraint can also achieve this goal. So,

this paper hybrid  -constraint method to enhance the ability

of MC-CHT. First, the number of constraints that need to be

used in the current generation is calculated as follows:

d = ()max ct T N    

where t is the current generation,
maxT is the maximum of

generation and
cN is the total number of constraints.  is

the maximum of generation that use MC-CHT. Second, the

constraint violation of solutions will be calculated as follows:

()CV x  ()
1

d

ii
CV x

=

where ()iCV x is the constraint violation of x under ith

constraint in the sorted constraints. Third,  -constraint will

be used to calculate
ff of solutions. If solution x are

feasible under  -constraint, then the
ff equals to zero,

otherwise, the
ff equals to ()CV x .

Algorithm 3: environmentSelection

Input: population
tP , population size N ,  , sorted

constraints (SC)

Output: population Q ,
cf ,

df ,
ff

1. Q   , l  1

2.
ff  MC-CHT (

tP , ,SC, N) (see III-D)

3.
cf  constrained non-dominated sorting (

tP ,
ff)

4.
df  niching (

tP) (see III-E)

5. while Q N do

6. Q  lQ F

7. l ++

8. end

9. if Q N then

10. Q  Q -
lF

11. end

12.
nextP = sort (

df (
lF))

13. Q 
nextP

E. Niching method

In NSGAII, when two solutions are close together in the

same level, two extreme situations may occur. Fig 1 and Fig

2 show the two extreme situations. In Fig.1, solution E and F

have bigger crowding distance than solution B and C (
1f and

2f are objectives). In this case, neither B or C can be chosen

to be parents or into next generation. In Fig.2, when solution

D and G are closer with E and F, situation are different. In

this case, neither E or F can be chosen to be parents or into

next generation. In either case, it will lead to a serious loss of

population diversity. Under this consideration, we use a

niching method to improve original crowding distance. In this

paper, we use 1 M N to determine whether the two solutions

are close, where N is the number of solutions and M is the

number of objectives. When some solutions are too close, we

set
d

f of solutions to zero except only one. The details are

showed in Algorithm 4.

F. MatingSelection

The matingSelection is used to choose promising parents

from population. When two solutions are compared, solution

with better feasibility will be selected. If they have same

feasibility, then we will choose solution that have better

convergence.

IV. EXPERIMENT RESULTS

A. Experimental setup

1) Test problems: DAS-CMOPs [21] are chosen as the

Algorithm 4: niching method

Input: population
tP , r (1 M N)

Output: diversity
df

1. R  Calculate the Euclidean distance between two

solutions
ijR is distance between i and j .

2. for i = 1: N do

3.
iNei  i

4. end

5. for i = 1: N do

6. for j = i +1: N do

7. if
ijR r then

8.
iNei  j

9.
jNei  i

10. end

11. end

12. for i = 1: N do

13. if
df (i) == 0

continue
14. for each neighbor j in

iNei do

15. if
iNei 

jNei then

16. Break

17. end for

18. for all neighbor j do

19. ()d
f j  0

20. end

2f

1f

A
B

D
C

E F

G

H

Fig.1. Situation that solution E and F both have high priority

2f

1f

A
B

D

C

E F
G

H

Fig.2 Situation that solution E and F both have low priority

TABLE I. STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF THE HV VALUES OBTAINED BY PEER ALGORITHMS FOR DASCMOP

PROBLEMS.

Problem CMOEAD ANSGAIII KnEA ARMOEA MC/MOEA

DASCMOP1 4.0592e-3 (2.61e-3) = 5.6373e-3 (5.82e-3) = 5.7262e-3 (5.44e-3) = 2.9035e-3 (3.81e-3) - 9.0480e-3 (1.56e-2)

DASCMOP2 2.4340e-1 (1.03e-2) + 2.3568e-1 (9.73e-3) = 2.2618e-1 (6.89e-3) - 2.3202e-1 (8.33e-3) - 2.3571e-1 (9.24e-3)

DASCMOP3 1.9679e-1 (4.97e-2) - 2.0837e-1 (1.10e-2) - 1.9516e-1 (4.62e-2) - 1.9564e-1 (4.60e-2) - 2.2054e-1 (1.58e-2)

DASCMOP4 2.0370e-2 (2.62e-2) - 2.4308e-2 (1.50e-2) - 3.0582e-2 (1.37e-2) - 2.4228e-2 (1.20e-2) - 5.1233e-2 (3.23e-2)

DASCMOP5 6.8806e-2 (7.33e-2) - 5.1422e-2 (5.31e-2) - 5.4822e-2 (4.73e-2) - 5.7267e-2 (7.67e-2) - 1.4700e-1 (1.13e-1)

DASCMOP6 4.2500e-2 (6.06e-2) - 2.5569e-2 (2.65e-2) - 1.9456e-2 (1.49e-2) - 1.9106e-2 (1.86e-2) - 1.0370e-1 (9.46e-2)

DASCMOP7 1.7122e-1 (5.96e-2) - 2.1748e-1 (2.65e-2) = 2.3005e-1 (2.79e-2) = 2.3391e-1 (3.33e-2) = 2.2609e-1 (3.86e-2)

DASCMOP8 8.8443e-2 (4.74e-2) - 1.3728e-1 (2.92e-2) = 1.5756e-1 (2.47e-2) + 1.4372e-1 (3.60e-2) = 1.2995e-1 (3.26e-2)

DASCMOP9 9.6557e-2 (2.55e-2) = 9.7584e-2 (1.31e-2) - 9.3521e-2 (1.18e-2) - 9.5820e-2 (1.37e-2) - 1.0587e-1 (1.66e-2)

+/-/= 1/6/2 0/5/4 1/6/2 0/7/2

a. “+”, “-”, “=” indicate that the results are significantly better, worse or similar to that obtained by MC/MOEA under rank sum test, respectively.

TABLE II. STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF THE IGD VALUES OBTAINED BY PEER ALGORITHMS FOR DASCMOP

PROBLEMS.

Problem CMOEAD ANSGAIII KnEA ARMOEA MC/MOEA

DASCMOP1 7.2504e-1 (1.46e-2) = 7.2283e-1 (2.99e-2) = 7.2493e-1 (2.98e-2) = 7.3820e-1 (2.26e-2) - 7.1328e-1 (4.01e-2)

DASCMOP2 2.7617e-1 (3.78e-2) + 2.9307e-1 (2.73e-2) = 3.3381e-1 (2.72e-2) - 3.0829e-1 (2.77e-2) = 2.9928e-1 (2.73e-2)

DASCMOP3 3.7632e-1 (1.07e-1) - 3.4672e-1 (3.20e-2) - 3.8748e-1 (9.14e-2) - 3.7997e-1 (9.12e-2) - 2.9251e-1 (5.11e-2)

DASCMOP4 6.7654e-1 (1.87e-1) - 6.0047e-1 (1.03e-1) - 5.5467e-1 (9.69e-2) - 5.9609e-1 (7.22e-2) - 4.7648e-1 (9.38e-2)

DASCMOP5 6.1370e-1 (2.24e-1) - 6.7304e-1 (1.81e-1) - 6.1807e-1 (1.34e-1) = 6.5090e-1 (1.90e-1) - 4.1289e-1 (2.76e-1)

DASCMOP6 6.9869e-1 (2.06e-1) - 7.1496e-1 (1.32e-1) - 7.6614e-1 (1.83e-1) - 7.5042e-1 (1.13e-1) - 5.0755e-1 (2.02e-1)

DASCMOP7 2.7333e-1 (1.63e-1) - 1.6858e-1 (6.64e-2) = 1.5142e-1 (8.06e-2) = 1.4247e-1 (8.72e-2) = 1.4933e-1 (9.12e-2)

DASCMOP8 4.3384e-1 (2.58e-1) - 2.6775e-1 (1.47e-1) = 1.8022e-1 (9.28e-2) + 2.6501e-1 (1.74e-1) = 2.4411e-1 (1.10e-1)

DASCMOP9 4.7719e-1 (1.48e-1) = 4.7589e-1 (6.31e-2) = 4.8661e-1 (6.23e-2) - 4.9047e-1 (7.67e-2) = 4.5258e-1 (8.60e-2)

+/-/= 1/6/2 0/4/5 1/5/3 0/5/4

b. “+”, “-”, “=” indicate that the results are significantly better, worse or similar to that obtained by MC/MOEA under rank sum test, respectively.

test problems for its difficulty-adjustable and scalable. In this
paper, we use (0.5,0.5,0.5) as the parameter.

2) Indicators: Two popular indicators IGD [22] and HV

[23] are chosen to compare the performance of algorithms.

Both of them can evaluate convergence and diversity

simultaneously.

3) Comparison algorithms:In this paper, we choose four

popular algorithms: KnEA-CDP [24], CMOEA/D [4],

ARMOEA-CDP [25], and ANSGAIII [26].

4) General experimental setting: Each algorithm runs

independently 30 times on each problem and maximum

function evaluations of each run are 30,000. The results will

be tested by Wilcoxon rank sum test at 5% significance level.

All algorithms use genetic operator (GA) with simulated

binary crossover (SBX) and polynomial mutation (PM) to

produce offspring. The probability and distribution of SBX

are set to 1 and 20, while the probablity of PM is set to 1/n (n

is the dimension of decision vector).  is set to 0.8
maxT . For

MOEA/D, the size of neighborhood is set to 10 and PBI

approach is used.

B. Experiment results

Table 1 and table 2 show the results of five peer algorithms
on HV and IGD, where the best results are highlighted. From
the table, we can find that MC/MOEA performs best on
DASCMOP1, DASCMOP3-6 and DASCMOP9 whether on

IGD or HV. Especially on DASCMOP5-6, MC/MOEA
performs particularly well on HV indicator. CMOEA/D
performs best on DASCMOP2 whether on IGD and HV. It
should be noted that the performance of MC/MOEA is a little
poor on this problem compared with CMOEA/D. KnEA
performs best on DASCMOP8 whether on IGD or HV, while
MC/MOEA performs second worst on HV. But MC/MOEA
performs second best on IGD. ARMOEA performs best on
DASCMOP7 whether on IGD or HV, while MC/MOEA
performs second best on IGD. Overall, MC/MOEA performs
significantly better than other algorithms on DASCMOP1-9.

V. CONCLUSION

The goal of this paper was to propose an evolutionary
algorithm that can generate a set of well distributed optimal
solutions under constraints. And the goal was successfully
achieved by two new techniques: one is a new constraint
handling technique that can enlarge the feasible region in the
early stage of evolution. The other is a new niching method
that can maintain diversity better. The results showed that the
proposed algorithm has high competitiveness compared with
four popular algorithms. In the future, we still have a lot to
expand in our work. For example, we can improve MC-CHT
to accommodate different number of constraints. Moreover,
we can apply MC-CHT to constrained many-objective
optimization problems.

REFERENCES

[1] C. A. Coello Coello, "Evolutionary multi-objective optimization: a
historical view of the field," in IEEE Computational Intelligence
Magazine, vol. 1, no. 1, pp. 28-36, Feb. 2006.

[2] H. Jain and K. Deb, “An evolutionary many-objective optimization
algorithm using reference-point based nondominated sorting approach,
part II: Handling constraints and extending to an adaptive approach,”
IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 602–622, Aug. 2014.

[3] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist
multiobjective genetic algorithm: NSGA-II," in IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April 2002.

[4] Q. Zhang and H. Li, "MOEA/D: A Multiobjective Evolutionary
Algorithm Based on Decomposition," in IEEE Transactions on
Evolutionary Computation, vol. 11, no. 6, pp. 712-731, Dec. 2007.

[5] K. Li, K. Deb, Q. Zhang and S. Kwong, "An Evolutionary Many-
Objective Optimization Algorithm Based on Dominance and
Decomposition," in IEEE Transactions on Evolutionary Computation,
vol. 19, no. 5, pp. 694-716, Oct. 2015.

[6] H. Liu, F. Gu and Q. Zhang, "Decomposition of a Multiobjective
Optimization Problem Into a Number of Simple Multiobjective
Subproblems," in IEEE Transactions on Evolutionary Computation,
vol. 18, no. 3, pp. 450-455, June 2014.

[7] Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun and J. Wu, "MOEA/D with
Adaptive Weight Adjustment," in Evolutionary Computation, vol. 22,
no. 2, pp. 231-264, June 2014.

[8] E. Zitzler and S. K¨unzli, “Indicator-based selection in multiobjective
search,” in PPSN’04: Proc. of 8th International Conference on Parallel
Problem Solving from Nature - PPSN VIII, 2004, pp. 832–842

[9] D. Hadka and P. Reed, "Diagnostic Assessment of Search Controls and
Failure Modes in Many-Objective Evolutionary Optimization," in
Evolutionary Computation, vol. 20, no. 3, pp. 423-452, Sept. 2012.

[10] J. Bader and E. Zitzler, "HypE: An Algorithm for Fast Hypervolume-
Based Many-Objective Optimization," in Evolutionary Computation,
vol. 19, no. 1, pp. 45-76, March 2011.

[11] C. Saha, S. Das, K. Pal and S. Mukherjee, "A Fuzzy Rule-Based
Penalty Function Approach for Constrained Evolutionary
Optimization," in IEEE Transactions on Cybernetics, vol. 46, no. 12,
pp. 2953-2965, Dec. 2016.

[12] K. Deb, “An efficient constraint handling method for genetic
algorithms,” Computer methods in applied mechanics and engineering,
vol. 186, no. 2, pp. 311–338, 2000.

[13] Z. Fan et al., "An improved epsilon constraint handling method
embedded in MOEA/D for constrained multi-objective optimization
problems," 2016 IEEE Symposium Series on Computational
Intelligence (SSCI), Athens, 2016, pp. 1-8.

[14] T. P. Runarsson and Xin Yao, "Stochastic ranking for constrained
evolutionary optimization," in IEEE Transactions on Evolutionary
Computation, vol. 4, no. 3, pp. 284-294, Sept. 2000.

[15] Z. Cai and Y. Wang, "A Multiobjective Optimization-Based
Evolutionary Algorithm for Constrained Optimization," in IEEE
Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 658-675,
Dec. 2006.

[16] Y. Zhou, M. Zhu, J. Wang, Z. Zhang, Y. Xiang and J. Zhang, "Tri-Goal
Evolution Framework for Constrained Many-Objective Optimization,"
in IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[17] M. Li, S.Yang, and X. Liu, “Bi-goal evolution for manyobjective
optimizaton problems,” Artif. Intell., vol. 228, pp. 45–65, Nov. 2015.

[18] R. Mallipeddi and P. N. Suganthan, "Ensemble of Constraint Handling
Techniques," in IEEE Transactions on Evolutionary Computation, vol.
14, no. 4, pp. 561-579, Aug. 2010.

[19] Y. Wang and Z. Cai, "Constrained Evolutionary Optimization by
Means of (μ + λ)-Differential Evolution and Improved Adaptive Trade-
Off Model," in Evolutionary Computation, vol. 19, no. 2, pp. 249-285,
June 2011.

[20] S.M. Elsayed, R. A. Sarker and D. L. Essam, "Integrated strategies
differetial evolution algorithm with a local search for constrained
optimization," 2011 IEEE Congress of Evolutionary Computation
(CEC), New Orleans, LA, 2011, pp. 2618-2625.

[21] Z Fan et al., “Difficulty adjustable and scalable constrained
multiobjective test problem toolkit,” arXiv preprint arXiv:1612.07603,
2016.

[22] Y Sun, G. G. Yen and Z. Yi, "IGD Indicator-Based Evolutionary
Algorithm for Many-Objective Optimization Problems," in IEEE
Transactions on Evolutionary Computation, vol. 23, no. 2, pp. 173-187,
April 2019.

[23] L. M. S. Russo and A. P. Francisco, "Quick Hypervolume," in IEEE
Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 481-502,
Aug. 2014.

[24] X. Zhang, Y. Tian and Y. Jin, "A Knee Point-Driven Evolutionary
Algorithm for Many-Objective Optimization," in IEEE Transactions
on Evolutionary Computation, vol. 19, no. 6, pp. 761-776, Dec. 2015.

[25] Y. Tian, R. Cheng, X. Zhang, F. Cheng and Y. Jin, "An Indicator-Based
Multiobjective Evolutionary Algorithm With Reference Point
Adaptation for Better Versatility," in IEEE Transactions on
Evolutionary Computation, vol. 22, no. 4, pp. 609-622, Aug. 2018.

[26] H. Jain and K. Deb, "An Evolutionary Many-Objective Optimization
Algorithm Using Reference-Point Based Nondominated Sorting
Approach, Part II: Handling Constraints and Extending to an Adaptive
Approach," in IEEE Transactions on Evolutionary Computation, vol.
18, no. 4, pp. 602-622, Aug. 2014.

