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Abstract—When solving constrained multi-objective 

optimization problems, the challenge is that how to deal with all 

kinds of constraints regardless of the shape of the feasible region. 

Especially when the feasible region is discrete or very small, 

some constraint handling techniques cannot solve it exactly. To 

address this issue, this paper proposes a new technique to handle 

constraints. First, all the constraints will be sorted to some 

grades from hard to easy according to their constrained 

violations. Second, a niching crowding distance mechanism is 

used to guarantee the diversity of the pareto front better. The 

experiments show that the proposed algorithm can generate a 

set uniformly distributed pareto optimal solutions under 

constrains. 

Keywords—constraints, evolutionary algorithm, multi-

objective, optimization 

I. INTRODUCTION  

The constrained optimization problems (COPs) exist 
widely in the real world. COPs usually contains multiple 
conflicting objectives and a series of constraints. According to 
the number of objectives, it can be divided into constrained 
multi-objective optimization problems (CMOPs) [1] and 
constrained many-objective optimization problems [2]. The 
number of objectives of the former is less than or equal to three, 
while the latter is more than three. Generally speaking, a 
CMOP can be formulated as:  
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 is the objective space. ( )xjg  is the j-th inequality 

constraint while ( )xkh  is the k-th equality constraint. Next, 

some definitions about CMOP are introduced briefly. 

The constraint violation (CV): first, the degree of violation of 
x  in the j-th inequality constraint and k-th equality constraint 

can be defined as ( ) ( ) G x min 0, x , 1,...,j jg j p= = and

( ) ( ) x max 0, x , 1,..., ,k kH h k q= =  respectively. Thus, the 

CV  is defined as: 
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Feasible solution: x  is a feasible solution if and only if it 

satisfies all constraints which means ( )x 0CV = . 

Infeasible solution: x  is an infeasible solution as long as it 

does not satisfy any constraints which means ( )x 0CV  . 

Pareto dominance: 1x  and 2x  are two solutions that belong 

to  . If ( ) ( )1 2x xi if f  1,2...,i m  and  1,2...,i m   

that make ( ) ( )1 2x xi if f , we call 
1x  dominates 

2x , 

denoted as 
1 2x x . Moreover, if there is no solution 

dominating 
1x (

1x  is a feasible solution), then 
1x  is called a 

pareto optimal. 

Pareto set (PS): Pareto set contains all pareto optimal 

solutions.  

Pareto front (PF): PF is the image of all pareto optimal 

solutions. 

Next, we will give a brief review of unconstrained multi-

objective evolutionary algorithms. 

MOEAs can be classified into three categories: 

dominance-based, decomposition-based and indicator-based. 

One common feature of these algorithms is that they all focus 

on the convergence and diversity of population. 1) 

dominance-based EAs ranking individuals by non-dominant 

relations such as NSGAII [3] which use nondominated 

sorting to represent convergence and then use crowing 

distance assignment to represent diversity. 2)decomposition-

based EAs such as MOEA/D [4] decompose a MOP into a 

series of single-objective subproblems according to 

uniformly distributed weight vectors in space. The 

convergence can be guaranteed by optimizing each single 

objective, and the diversity can be guaranteed by uniformly 

distributed vectors. There are many variants of MOEA/D 

such as MOEA/DD [5], MOEA/D-M2M [6] and MOEA/D-

AWA [7]. 3)indicator-based EAs use performance indicators 

to evaluate individuals of each generation. The performance 

of the algorithms will be affected by the different emphasis 

of the indicator. For example, IBEA [8] used I +  as indicator 
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which is a convergence indicator, so IBEA performs poorly 

in diversity [9]. Hypervolume indicator concern both 

convergence and diversity but it has high computational 

complexity. As a result, many indicator-based EAs that use 

hypervolume as their indicator such as HypE [10] are 

computationally heavy and very slow. 

However, compared with the prosperity of unconstrained 

multi-objective evolutionary algorithms, the research of 

constrained multi-objective evolutionary algorithms is few. 

Most of the existing algorithms use the combination of a well 

performed unconstrained algorithm and a constraint handling 

technique. In this case, the performance of the constraint 

handling technique will affect the performance of the 

algorithm. We will give details of existing constraint 

handling techniques in Section II. 

In order to address the limitations, the goal of this paper 

is to develop an evolutionary algorithm to find the pareto 

front under constraints. The pareto optimal solutions obtained 

under constraints are expected to have good performance in 

terms of convergence and diversity. To achieve the goal, we 

propose two new techniques: 

1) A new constraint handling technique that deal with 

multi-constraints is proposed, denoted as MC-CHT. 

This technique can enlarge the feasible region 

during the early stage of evolution and then 

gradually reduce to true size. Moreover, we hybrid 

this method with  -constraint method. 

2) A new niching method is used to maintain the 

diversity of population. This method can avoid two 

extreme situations in original crowding distance [3]. 

The rest of this paper is organized as follows. Section II 

overviews existing constrained handling techniques. Then 

explain the motivations of new constraint handling technique. 

Section III shows the details of the proposed constrained 

handling technique and the whole algorithm. Section IV 

introduces the general experimental setting and shows 

specific experiment results that compared with four popular 

CMOEAs and analyzes the experiment results. Section V 

gives the conclusion and future direction. 

 

II. PRELIMINARIES 

A. Existing constraint handling techniques 

Constraint handling is a crucial part of CMOPs. All these 
constraint handling techniques can be divided into three 
categories. 

1) The first category always give priority to feasible 
solutions when choosing promising solutions into 
next generation. The typical methods include penalty 
function methods [11], constrained-domination 
principle [12], and  -constraint method [13]. The 

main idea of penalty function is adding a penalty 
term that connect with CV to original objectives. A 
solution with high CV will have high penalty than 
others with low CV, of course, feasible solutions 
have no penalty. Constrained -domination principle 
transforms normal dominance relation that defined 
before to constrained dominance relation. 

Specifically, there are two solutions 
1x  and 

2x , we 

call 
1x  constrained-dominate 

2x  if any conditions 

are satisfied: 1) 
1x  is feasible solution while 

2x  is 

infeasible solution; 2) 
1x  and 

2x  are both feasible 

solutions but 
1 2x x ; 3) 

1x  and 
2x  are both 

infeasible solutions but ( ) ( )21  x xCV CV .  -

constraint method is very similar to CDP except for 
one parameter  . Specifically, if the CV of an 

infeasible solution is less than  , then we think of it 

as a feasible solution. Otherwise, it is still an 
infeasible solution. After redefining the feasibility of 
the solutions, CDP is then used to determine the 
constrained-dominance relation. 

2) The second category tries to balance the trade-off 
between feasibility and convergence. In [14], 
stochastic ranking is proposed. When comparing two 
solutions, stochastic ranking will decide the winner 
randomly according to its value of objectives or 
constraint violation. [15] proposes a multi-objective-
based method that transform constraint into objective 
and so a CMOP is transformed into a MOP. Recently, 
a Tri-Goal framework [16] based on BiGE [17] is 
proposed to balance convergence, diversity and 
feasibility. In this framework, convergence, diversity 
and feasibility of a solution are regarded as three 
objectives for non-dominated sorting. 

3) The third category is to hybrid several constraint 
handling techniques properly in order to get a better 
performance. [18] proposes an ensemble of 
constraint handling techniques to solve COPs, where 
each constraint handling technique has its own 
population and can learn from other populations to 
deal with complicate problems. [19] proposes (μ + 
λ)-constrained differential evolution that hybrids 
differential evolution with three mutation strategies 
and improved adaptive trade-off model which uses 
three CHTs to handle three types of situation. [20] 
hybrids CDP and  -constrained method in a DE 

framework. 

B. Motivation  

We can intuitively conclude that the more constraints, the 
more difficult it is to deal with. Under this consideration, we 
can deal with constraints one by one. Before formal 
explanation, we propose a new definition called constraint 
capability: 

Constraint capability: for example, there are two constraints 

aC  and 
bC . Each constraint determines part of the infeasible 

region. Let us say 
aR  is the infeasible region determined by 

aC  and 
bR  is the infeasible region determined by 

bC . If the 

area or hypervolume of 
aR  is larger than 

bR , then we say that 

aC  has stronger constraint capability than 
bC . 

When the constraints are many and complex, the real feasible 
region may be very narrow. It is hard for the population to find 
the right direction of evolution. However, when the algorithm 
only deals with one constraint, the feasible region will be 
much larger. After dealing with one constraint, then we add 
new constraints one by one, in doing so, the population can 
gradually approximate the real pareto front in the real feasible 
region. Considering the convergence rate, our proposed 
technique (MC-CHT) will deal with constraints from difficult 
to easy according to the constraint capability. 



III. PROPOSED ALGORITHM 

The algorithm proposed in this paper is called MC/MOEA. 
The details of the whole algorithm are described in the 
following.  

A. General framework 

The main procedure is described in Algorithm 1. First, 
constrained sorting  is used to get the sorted constraints 
according to constraint capability. Then, an initial population 

0P  is generated randomly. Before the main loop, a procedure 

named environmentSelection is used to get 
cf , 

df  and 
ff  of 

each solution. 
cf , 

df  and 
ff  are values that can reflect the 

convergence, diversity and feasibility of solutions in 

population. In the main loop, we get 'P  by select promising 

parents according to their 
cf , 

df  and 
ff . Then, after 

variation operators, we get ''P . Finally, we combine 'P  and 
''P , and choose next generation by environmentSelection. 

 

Algorithm 1: general framework 

Input: population size N , parameter 
MCN , maximum 

iteration 

Output: population P  

1. sorted constraints   constrained sorting (
MCN ) (see 

III-B, this procedure sort constraints according to 

constraint capability) 
2. 

0P    initialization ( N ) 

3. t   0 

4. [~,
cf ,

df ,
ff ]   environmentSelection (

tP , sorted 

constraints, N ) (see III-C) 

5. while not terminated do 

6. 'P    matingSelection (
ff , 

cf , 
df ) (see III-F) 

7. ''P    variation (
'P ) 

8. S    ' ''P P  

9. [
1tP+

,
cf ,

df ,
ff ]   environmentSelction ( S , 

sorted constraints, N ) 

10. t   t+1 

11. end 

 

B. Constrained sorting 

This procedure only needs one parameter, which is the 

number of generated solutions, denoted as 
MCN . In this paper, 

we set it as 1000 by experiments. After generating these 

solutions, we calculate feasible proportion ( fp ) and 

constraint violation (CV) of all solutions under each 

constraint. Finally, we sort the constraints by feasible 

proportion and CV. The smaller the feasible proportion, the 

greater the constraint capability. If two constraints have same 

feasible proportion, then we will compare constraint violation 

of them. The rules are like feasible proportion. The details are 

showed in Algorithm 2. 

Noted that constraint violation 
iCV  means constraint 

violation under constraint 
iC , where 

iC  is one constraint. 

 

Algorithm 2: constrained sorting 

Input: parameter 
MCN , the number of constraints 

cN  

Output: sorted constraints (SC) 

1. 
MCP    initialization (

MCN ) (randomly generate 

solutions) 
2. feasibleProportion (

ifp )   
MCN ,  

iCV    0 for i  = 1, …, 
cN  

3. for each constraint i  (
iC ) do 

4. for each solution x  do 

5. if ( ) 0iC x   then 

6. 
ifP  -= 1 

7. 
iCV  += ( )iC x  ( ( )iC x  means constraint 

violation of x  under constraint i ) 

8. end 

9. end 

10. end 

11. sorted constraints   sort (
ifp ,

iCV ) 

 

C. EnvironmentSelection 

This procedure can calculate 
cf , 

df  and 
ff  of solutions 

and then choose promising solutions into next generation 
according to the values. The details are showed in Algorithm 
III. First, MC-CHT is used to calculate the current constraint 

violation (denoted as 
ff ) of each solution. Second, non-

dominated sorting with constrained-dominance principle is 

used to calculate level (denoted as 
cf ) of each solution. 

lF  

includes solutions that have same level l . Third, a niching 

method is used to calculate 
df . Finally, we choose N

solutions according to 
cf  and 

df . 

D. MC-CHT 

This operation is to enlarge the feasible region in the stage 

of evolution. And  -constraint can also achieve this goal. So, 

this paper hybrid  -constraint method to enhance the ability 

of MC-CHT. First, the number of constraints that need to be 

used in the current generation is calculated as follows: 

d = ( )max ct T N      

where t is the current generation, 
maxT  is the maximum of 

generation and 
cN  is the total number of constraints.   is 

the maximum of generation that use MC-CHT. Second, the 

constraint violation of solutions will be calculated as follows: 

( )CV x  ( )
1

d

ii
CV x

=  

where ( )iCV x  is the constraint violation of x  under ith 

constraint in the sorted constraints. Third,  -constraint will 

be used to calculate 
ff  of solutions. If solution x  are 



feasible under  -constraint, then the 
ff  equals to zero, 

otherwise, the 
ff  equals to ( )CV x . 

 

Algorithm 3: environmentSelection 

Input: population 
tP , population size N ,  , sorted 

constraints (SC) 

Output: population Q , 
cf , 

df , 
ff  

1. Q     , l    1 

2. 
ff    MC-CHT (

tP , ,SC, N ) (see III-D) 

3. 
cf    constrained non-dominated sorting (

tP ,
ff )  

4. 
df    niching (

tP ) (see III-E) 

5. while Q N  do 

6. Q   lQ F  

7. l ++ 

8. end 

9. if Q N  then 

10. Q    Q -
lF  

11. end  

12. 
nextP  = sort (

df (
lF )) 

13. Q    
nextP  

 

E. Niching method 

In NSGAII, when two solutions are close together in the 

same level, two extreme situations may occur. Fig 1 and Fig 

2 show the two extreme situations. In Fig.1, solution E and F 

have bigger crowding distance than solution B and C (
1f  and 

2f  are objectives). In this case, neither B or C can be chosen 

to be parents or into next generation. In Fig.2, when solution 

D and G are closer with E and F, situation are different. In 

this case, neither E or F can be chosen to be parents or into 

next generation. In either case, it will lead to a serious loss of 

population diversity. Under this consideration, we use a 

niching method to improve original crowding distance. In this 

paper, we use 1 M N  to determine whether the two solutions 

are close, where N is the number of solutions and M  is the 

number of objectives. When some solutions are too close, we 

set 
d

f  of solutions to zero except only one. The details are 

showed in Algorithm 4.  

F. MatingSelection 

The matingSelection is used to choose promising parents 

from population. When two solutions are compared, solution 

with better feasibility will be selected. If they have same 

feasibility, then we will choose solution that have better 

convergence. 

IV. EXPERIMENT RESULTS 

A. Experimental setup 

1) Test problems: DAS-CMOPs [21] are chosen as the  

Algorithm 4: niching method 

Input: population 
tP , r (1 M N ) 

Output: diversity 
df  

1. R   Calculate the Euclidean distance between two 

solutions 
ijR is distance between i and j . 

2. for i = 1: N do 

3. 
iNei    i  

4. end 

5. for i = 1: N do 

6. for j = i +1: N do 

7. if 
ijR r  then  

8. 
iNei    j  

9. 
jNei    i  

10. end 

11. end 

12. for i = 1: N do 

13. if 
df ( i ) == 0  

continue 
14. for each neighbor j  in 

iNei  do 

15. if 
iNei    

jNei  then 

16. Break 

17. end for  

18. for all neighbor j  do  

19. ( )d
f j    0  

20. end 
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Fig.1. Situation that solution E and F both have high priority  
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Fig.2 Situation that solution E and F both have low priority  



TABLE I.  STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF THE HV VALUES OBTAINED BY PEER ALGORITHMS FOR DASCMOP 

PROBLEMS. 

Problem CMOEAD ANSGAIII KnEA ARMOEA MC/MOEA

DASCMOP1 4.0592e-3 (2.61e-3) = 5.6373e-3 (5.82e-3) = 5.7262e-3 (5.44e-3) = 2.9035e-3 (3.81e-3) - 9.0480e-3 (1.56e-2)

DASCMOP2 2.4340e-1 (1.03e-2) + 2.3568e-1 (9.73e-3) = 2.2618e-1 (6.89e-3) - 2.3202e-1 (8.33e-3) - 2.3571e-1 (9.24e-3)

DASCMOP3 1.9679e-1 (4.97e-2) - 2.0837e-1 (1.10e-2) - 1.9516e-1 (4.62e-2) - 1.9564e-1 (4.60e-2) - 2.2054e-1 (1.58e-2)

DASCMOP4 2.0370e-2 (2.62e-2) - 2.4308e-2 (1.50e-2) - 3.0582e-2 (1.37e-2) - 2.4228e-2 (1.20e-2) - 5.1233e-2 (3.23e-2)

DASCMOP5 6.8806e-2 (7.33e-2) - 5.1422e-2 (5.31e-2) - 5.4822e-2 (4.73e-2) - 5.7267e-2 (7.67e-2) - 1.4700e-1 (1.13e-1)

DASCMOP6 4.2500e-2 (6.06e-2) - 2.5569e-2 (2.65e-2) - 1.9456e-2 (1.49e-2) - 1.9106e-2 (1.86e-2) - 1.0370e-1 (9.46e-2)

DASCMOP7 1.7122e-1 (5.96e-2) - 2.1748e-1 (2.65e-2) = 2.3005e-1 (2.79e-2) = 2.3391e-1 (3.33e-2) = 2.2609e-1 (3.86e-2)

DASCMOP8 8.8443e-2 (4.74e-2) - 1.3728e-1 (2.92e-2) = 1.5756e-1 (2.47e-2) + 1.4372e-1 (3.60e-2) = 1.2995e-1 (3.26e-2)

DASCMOP9 9.6557e-2 (2.55e-2) = 9.7584e-2 (1.31e-2) - 9.3521e-2 (1.18e-2) - 9.5820e-2 (1.37e-2) - 1.0587e-1 (1.66e-2)

+/-/= 1/6/2 0/5/4 1/6/2 0/7/2  

a. “+”, “-”, “=” indicate that the results are significantly better, worse or similar to that obtained by MC/MOEA under rank sum test, respectively.

 

TABLE II.  STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF THE IGD VALUES OBTAINED BY PEER ALGORITHMS FOR DASCMOP 

PROBLEMS. 

Problem CMOEAD ANSGAIII KnEA ARMOEA MC/MOEA

DASCMOP1 7.2504e-1 (1.46e-2) = 7.2283e-1 (2.99e-2) = 7.2493e-1 (2.98e-2) = 7.3820e-1 (2.26e-2) - 7.1328e-1 (4.01e-2)

DASCMOP2 2.7617e-1 (3.78e-2) + 2.9307e-1 (2.73e-2) = 3.3381e-1 (2.72e-2) - 3.0829e-1 (2.77e-2) = 2.9928e-1 (2.73e-2)

DASCMOP3 3.7632e-1 (1.07e-1) - 3.4672e-1 (3.20e-2) - 3.8748e-1 (9.14e-2) - 3.7997e-1 (9.12e-2) - 2.9251e-1 (5.11e-2)

DASCMOP4 6.7654e-1 (1.87e-1) - 6.0047e-1 (1.03e-1) - 5.5467e-1 (9.69e-2) - 5.9609e-1 (7.22e-2) - 4.7648e-1 (9.38e-2)

DASCMOP5 6.1370e-1 (2.24e-1) - 6.7304e-1 (1.81e-1) - 6.1807e-1 (1.34e-1) = 6.5090e-1 (1.90e-1) - 4.1289e-1 (2.76e-1)

DASCMOP6 6.9869e-1 (2.06e-1) - 7.1496e-1 (1.32e-1) - 7.6614e-1 (1.83e-1) - 7.5042e-1 (1.13e-1) - 5.0755e-1 (2.02e-1)

DASCMOP7 2.7333e-1 (1.63e-1) - 1.6858e-1 (6.64e-2) = 1.5142e-1 (8.06e-2) = 1.4247e-1 (8.72e-2) = 1.4933e-1 (9.12e-2)

DASCMOP8 4.3384e-1 (2.58e-1) - 2.6775e-1 (1.47e-1) = 1.8022e-1 (9.28e-2) + 2.6501e-1 (1.74e-1) = 2.4411e-1 (1.10e-1)

DASCMOP9 4.7719e-1 (1.48e-1) = 4.7589e-1 (6.31e-2) = 4.8661e-1 (6.23e-2) - 4.9047e-1 (7.67e-2) = 4.5258e-1 (8.60e-2)

+/-/= 1/6/2 0/4/5 1/5/3 0/5/4  

b. “+”, “-”, “=” indicate that the results are significantly better, worse or similar to that obtained by MC/MOEA under rank sum test, respectively.

test problems for its difficulty-adjustable and scalable. In this 
paper, we use (0.5,0.5,0.5) as the parameter. 

2) Indicators: Two popular indicators IGD [22] and HV 

[23] are chosen to compare the performance of algorithms. 

Both of them can evaluate convergence and diversity 

simultaneously. 

3) Comparison algorithms:In this paper, we choose four 

popular algorithms: KnEA-CDP [24], CMOEA/D [4], 

ARMOEA-CDP [25], and ANSGAIII [26]. 

4) General experimental setting: Each algorithm runs 

independently 30 times on each problem and maximum 

function evaluations of each run are 30,000. The results will 

be tested by Wilcoxon rank sum test at 5% significance level. 

All algorithms use genetic operator (GA) with simulated 

binary crossover (SBX) and polynomial mutation (PM) to 

produce offspring. The probability and distribution of SBX 

are set to 1 and 20, while the probablity of PM is set to 1/n (n 

is the dimension of decision vector).   is set to 0.8
maxT . For 

MOEA/D, the size of neighborhood is set to 10 and PBI 

approach is used. 

B. Experiment results 

Table 1 and table 2 show the results of five peer algorithms 
on HV and IGD, where the best results are highlighted. From 
the table, we can find that MC/MOEA performs best on 
DASCMOP1, DASCMOP3-6 and DASCMOP9 whether on 

IGD or HV. Especially on DASCMOP5-6, MC/MOEA 
performs particularly well on HV indicator. CMOEA/D 
performs best on DASCMOP2 whether on IGD and HV. It 
should be noted that the performance of MC/MOEA is a little 
poor on this problem compared with CMOEA/D. KnEA 
performs best on DASCMOP8 whether on IGD or HV, while 
MC/MOEA performs second worst on HV. But MC/MOEA 
performs second best on IGD. ARMOEA performs best on 
DASCMOP7 whether on IGD or HV, while MC/MOEA 
performs second best on IGD. Overall, MC/MOEA performs 
significantly better than other algorithms on DASCMOP1-9.  

V. CONCLUSION 

The goal of this paper was to propose an evolutionary 
algorithm that can generate a set of well distributed optimal 
solutions under constraints. And the goal was successfully 
achieved by two new techniques: one is a new constraint 
handling technique that can enlarge the feasible region in the 
early stage of evolution. The other is a new niching method 
that can maintain diversity better. The results showed that the 
proposed algorithm has high competitiveness compared with 
four popular algorithms. In the future, we still have a lot to 
expand in our work. For example, we can improve MC-CHT 
to accommodate different number of constraints. Moreover, 
we can apply MC-CHT to constrained many-objective 
optimization problems. 
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