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Abstract—The proper use of evolutionary operators is crucial
to find optimal solutions in a search space. Moreover, the diver-
sity of the population affects the performance of Evolutionary
Algorithms (EAs). This article introduces an EA called BWEAD
which balances the influence of the operators. The proposal
also performs a statistical analysis of the population when the
diversity is low and decides which solutions might be replaced.
Then BWEAD is able to explore the search space and exploit
the prominent regions. The BWEAD has been tested over the
CEC2014 set of benchmark functions. The experiments provide
competitive results showing an improvement of 30% in 30-
dimensional and 50-dimensional functions in comparison with
state-of-the-art algorithms, overcoming some addressed instances
and providing evidence of its capabilities on complex optimization
problems.

Index Terms—Balancing operators, Diversity, Evolutionary
Algorithms, Crossover, Mutation

I. INTRODUCTION

Evolutionary algorithms (EAs) are widely used to solve
complex optimization problems. The idea behind EA is to use
operators inspired in an evolutionary process to explore the
search space. No matter the operators, the EA have two main
phases, exploration and exploitation [1, 2, 3]. In exploration
the algorithm verifies the search space trying to detect the
areas with more probabilities to find the optimal solution;
meanwhile, the exploitation phase permits to locally analyze
the specific regions of the search space. Some examples of
evolutionary optimization methods are the Genetic Algorithms
(GA) [4] and the Differential Evolution (DE) [5].

The GA and DE have two groups of operators, mutation
and crossover. Such operators permit to explore and exploit
the search spaces in optimization. Since they were proposed,
GA and DE have attracted the attention of researchers from
different fields and have been used in several applications such
as optimal power flow solutions [6], Economic and Emission
Dispatch [7], and prediction of continuous blood glucose [8].

Both DE and GA have shown their superior performance
among other EAs in terms of robustness. However, the op-

timization process in GA and DE (as other EA) depends
on different factors, such as random variables that affect
their performance, and in some cases, the algorithms fall
into suboptimal solutions. To overcome such problems, sev-
eral enhanced versions of the EA have been proposed. For
example, the GA has been combined with several methods
to enhance their ability. Elaziz et al. [9] combined the Salp
Swarm Algorithm with GA and used the modified algorithm
to find the parameters of Adaptive Neuro-Fuzzy Inference
System to improve the forecasting of the Crude Oil Price.
In [10], GA is combined with neural networks to enhance the
Airblast prediction. Meanwhile, Wodecki et al. [11] proposed
a method to determine the local damage in a rolling bearing
by using GA as a filter.

Regarding the use and modification of DE there exist several
applications. For example, Hancer et al. [12] applied it to
improve the performance of a dataset classification by using
DE as a feature selection method. DE is also combined with
a fuzzy wrapper–filter approach to form a feature selection
method, as proposed in [13]. Tey et al. [14] applied DE
to improve the accuracy of the photovoltaic arrays under
partial shading conditions which have a different number
of maximum power point. Since most of the conventional
algorithms can not track the global maximum power point.

DE is also applied as a local search method to improve
the performance of the moth-flame optimization (MFO) as in
[15], and the developed method is used as a feature selection
method providing competitive results in comparison with other
methods.

One of the main problems in EA is to find the proper
balance between the operators. In most of the cases, the
balance depends on internal parameters (or probabilities) that
need to be manually tuned. Another important situation that
affects the EA is the diversity that is a property desired in
the population of solutions. A low diversity means that the
solutions are in the same region of the search space, and high
diversity mean the solutions are dispersed along the search
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space.
Considering the above, different metrics to evaluate the

diversity of the population in EA have been proposed. In terms
of EA such metrics are called Genotypic Diversity Measures
and most of them are based on distances [16]. On the other
hand, entropy as a tool for information analysis is also used
as a diversity metric. Here the entropy defines the degree of
disorder in the population [17]. Both the balance between
operators and the diversity are drawbacks whose in most of
the cases are not commonly considered in the design and
implementation of EAs.

This article proposes an evolutionary algorithm that bal-
ances the influence of operators and includes diversity to
enhance the performance. The approach is called Balanced
Weights Evolutionary Algorithm with Diversity (BWEAD)
and it has been used to solve the CEC2014 benchmark
functions. The BWEAD is designed over a GA background
structure and considers the blend crossover (better known as
BLX-α) and the mutation operation of DE. A solution is
created by a weighted combination of the operators and the
weights are balanced using trigonometric functions. Besides,
diversity is verified using statistical analysis to decide which
solutions can be used to compose the population.

The remainder of this paper is organized as follows. Sec-
tion II briefly presented some related work related to diversity
in EA. Section III describes in detail the proposed approach.
Section IV describes the conducted experiments and discusses
the results. Finally, conclusions and future directions are
presented in Section V.

II. BACKGORUND

In this section, some related works which address the bal-
ance between convergence and diversity in EA are presented.
Moreover, it is explored the diversity related to the use of the
EA operators.

A. Balancing the operators in evolutionary algorithms

Several approaches have been developed to address ex-
ploration and exploitation in the search process [18]. The
concept of diversity is extremely ligated to the proper use
of the operators in EA. The convergence of an algorithm is
then depended on how the solutions are moved in the search
space; if all of them are together the algorithm starts to lose
information and the convergence becomes premature [19].

To overcome the problems some authors have proposed
different techniques to find the equilibrium in the EA opti-
mization process. In [18] is proposed a memetic GA that finds
the stability between exploration and exploitation by using
probabilities and a penalty function evaluated by a learning
automata. Meanwhile, in [20] is introduced an algorithm that
balances the exploration and exploitation in DE. This method
uses a linear equation that combines a different version of
the DE mutation. The method also included a self-tuning
mechanism based on the simulated annealing.

Another interesting modifications of DE are presented by
Sharma et al. [21]. The authors proposed an enhanced version

of DE with two modifications: one including a cognitive
learning factor that permits to change the behavior of the
algorithm depending on some rules; and other incorporating a
dynamic parameter that permits to choose the rules according
to the iterations.

Such approaches do not consider the influence of the opera-
tors individually because they try to find an equilibrium in the
optimization phases. Meanwhile, in the proposed BWEAD, the
weights represent the amount of contribution of each operator
to create a new solution.

B. Diversity in evolutionary algorithms

The diversity of the population can affect the performance
of EA [22]. In general, high diversity values are required
to improve the ability of the EA to avoid local optima and
premature convergence - enhancing exploration.

Some authors propose different diversity measures that have
been applied to guide the EA. The author in [23] developed
a diversity guided evolutionary algorithm (DGEA) which
applies a measure called disruption operator (DO) to switch
between the exploration and exploitation phases. Ginley et
al. [24] proposed an improved GA, called ACROMUSE, by
adapting the crossover, mutation, and selection parameters by
introducing two diversity measures: the standard population
diversity (SPD) which controls the crossover and mutation
parameters; and the healthy population diversity (HPD) which
guides the selection pressure.

Regarding DE approaches, Coelho et al. [25] improved the
performance of the DE algorithm using the diversity measure
in combination with a cultural algorithm. This method is
applied to the economic load dispatch problems of thermal
generators.

More attractive diversity measures have been developed
such as the metric that depends on the diameter of the
population (the distance between the average solution and the
solution farthest away from this measure), called the radius of
the population [16]. However, most of them suffer from the
computational time since it depends on pairwise measurements
(i.e., O(n.N2), with n represents the dimension and N the
population size). To address this issue, Wineberg and Oppacher
[26] developed the true diversity measure which reduces the
complexity (i.e., O(n.N)). The true diversity measure refers
to the mean of the standard deviation of each gene. This
paper employs the true diversity to decide whether is necessary
to include exploitation in the search process. However, the
creation of new solutions is not arbitrary and different from
the other EA, the BWEAD performs a statistical analysis of
the population to decide which solutions need to be replaced.

III. PROPOSED APPROACH

In this work, an algorithm called Balanced Weights Evo-
lutionary Algorithm with Diversity (BWEAD) is proposed,
which is based on the standard GA and aims to obtain better
results for the global optimization on benchmark functions.
Mainly, the modifications made are found in the evolutionary
operators (crossover and mutation) and is added a stage of a



balance of the operators’ influence weights using a defined
equation with a memory of the best weights. Also, a diversity
stage is added to verify whether the algorithm does not get
stuck in local optima by eliminating members of duplicate
populations.

Figure 1 illustrates the flowchart of BWEAD. First, an initial
population is generated, and the fitness value is calculated for
each individual in the population. Then, parents are chosen at
random, to whom the mutation and crossover operations are
applied by recombining them to have better solutions. Next,
the equation’s weights of the operators’ sum are adjusted to
have better fitness than the worst fitness value stored through a
weights selection method. Finally, the diversity stage is carried
out to assess the diversity of the positions of all individuals
in the population. If this diversity of the population (DN

TD) is
less than a defined percentage of diversity, only the positions
of individuals with lower fitness values than the first quartile
will be maintained. BWEAD stops when the stop criterion is
satisfied.

D   <diversityN
TD

Fig. 1: The flowchart of BWEAD.

A. Initialization

BWEAD uses a random initialization of the population, and
each individual is evaluated according to the specific objective
functions to calculate the fitness values. The first weights
(w1, w2) are randomly initialized with numbers between 0 and
1. Subsequently, three randomly parents are chosen to undergo
to the evolutionary operators.

B. Evolutionary Operators

Once the three parents were randomly selected, the
crossover is applied over two parents and it results in a
first candidate solution, while the mutation is applied to the
three parents resulting in a second candidate solution. In the
BWEAD are used the operators following explained.

The blend crossover operator (BLX-α) performs the recom-
bination of the two randomly parents from the population
(X1,X2) generating one child individual (xc) [27]. A value
of each element xci , i = 1, 2, . . . , D of the offspring vector xc

with the D being the number of dimensions, is defined by the
following uniform distribution:

xci = (1− γi)X
1
i + γiX

2
i (1)

where

γi = (1 + 2α)ui − α (2)

Thus, ui is a random number between 0 and 1, and α is
a positive parameter to control the search domain, and it is
usually set to 0.5 [28].

The DE mutation operator (DE/rand/1) creates a mutant off-
spring vector xm from the three selected parents (X1,X2,X3)
[5]. This vector is formed by perturbing a randomly selected
parent vector Xr1 with the difference of two other randomly
selected parent vectors Xr2 and Xr3 by:

xm = Xr1 + F (Xr2 −Xr3) (3)

where the F is randomly a scaling factor between 0.2 and
0.8.

C. Balance Influence

The balance weights is defined by the following equation:

Ec Sol = w1x
c + w2x

m (4)

where w1 and w2 are the weights of the operators for
the proportions of mutation and crossover to obtain the new
candidate solution (Ec Sol).

This candidate’s fitness value is obtained (Fit Ec) and
compared to the worst fitness value (Fit worst) of the initial
population. If the Fit Ec is smaller than the Fit worst then
the solution of the worst fitness value (S worst) will be equal
to Ec Sol and Fit worst will be equal to Fit Ec. On the
other hand, if the Fit Ec is higher than the Fit worst then,
the weights (w1,w2) are adjusted through the weight selection
method.

This method aims to modify the weights by using an op-
erator based on trigonometric functions taken from [29]. This
process is performed until the candidate solution whose fitness
is better than Fit worst is obtained or until the maximum
number of search iterations (iter Search) is achieved. If the
fitness of the candidate solution is not enhanced, the last five
weights in the memory are tested in Ec Sol to search for a
fitness better than Fit worst.



D. Diversity

True diversity normalized (DN
TD) is used to measure the

diversity of the population [16, 26]. This diversity represents
the average standard deviation of each individual and is given
by the expression:

DN
TD =

1
n

√∑n
k=1(x

2
k − (xk)2)

NMDF
(5)

where

x2k =
1

N

N∑
i=1

x2i,k (6)

In Equation 5, xk is the average individual value with
n being the dimensionality of each individual, while x2k is
the average of the individual value squared with N being
the number of the individuals of the population. NMDF is
normalization with maximum diversity so far and it represents
the maximum diversity obtained in the initialization of the
population.

If the DN
TD is smaller or equal to the 25% of the diversity

in the population, the positions of individuals with a fitness
value less than the first quartile (Q1) will be replaced by
random positions within the search space. In other words,
only the 75% of the population is randomly modified. With
the use of diversity the BWEAD reforces the interchange
between exploration and exploitation. It means that when the
diversity is low the algorithm was exploiting and needs more
exploration.

IV. EXPERIMENTS AND RESULTS

This section aims to compare the results of BWEAD with
Differential Evolution (DE) [5], Particle Swarm Optimiza-
tion (PSO) [30], Genetic Algorithms (GA) [4], Simulated
Annealing (SA) [31], and Stochastic Fractal Search (SFS)
[32] to solve CEC2014 benchmark functions in 30 and 50
dimensions (D). It is made up of 30 minimization problems
with an established search range of [−100, 100]D, which
comprise three unimodal functions (F1-F3), thirteen simple
multimodal functions (F4-F16), six hybrid functions (F17-
F22), and eight composition functions (F23-F30) [33]. These
benchmark problems are specially designed with novel basic
problems, the composition of problems through the extraction
of characteristics, problems of rotated and scaled trap, etc.

The parameters configured for the proposed algorithm
BWEAD are for the iter Search variable of 100 iterations
and the minimum diversity percentage of 25%. Also, the stop
criteria established for all the algorithms to be compared are
50,000 function accesses for 30-dimensional tests, and 80,000
for 50-dimensional tests.

The Shapiro-Wilk normality test [34] is applied to verify
whether results are normally distributed. All instances show
a non-normal distribution, therefore the Kruskal-Wallis [35]
and Dunn-Sidak’s post-hoc tests are applied for statistical
analysis, considering all approaches being compared using

their objectives values from all the 35 runs. All tests have
been executed with a confidence level of 95% (α = 5%).

Tables I and II show the average and the corresponding
standard deviation subscribed of the objective values over 35
executions for instances with 30 and 50 dimension, respec-
tively. The best values are highlighted in bold and results with
no statistically significant differences with the best values are
emphasized in light blue for each instance.

From Tables I and II it can be seen that BWEAD are always
similar or better than the other approaches. The results for
BWEAD are better in 30% of the instances with 30-dimension
and also 30% of the instances with 50-dimension (in bold),
and, for the remaining instances, there are no statistically sig-
nificant differences among the approaches, especially among
DE and PSO.

Figures 2 and 3 show, for a particular run considering
instances with 50 dimension1, the best score of objective
values along the evolutionary process until the maximum
number of function evaluation is achieved. One curve for
each algorithm is considered. It is possible to observe that
the BWEAD (green triangle) can reach the minimum values
using a small number of function evaluations. These results
corroborate with the comparison obtained in Table II.

V. CONCLUSIONS

This paper proposed an evolutionary algorithm based on
diversity to improve the performance of the search process.
The approach, called Balanced Weights Evolutionary Algo-
rithm with Diversity (BWEAD), is modeled using a GA-based
framework and it balances the use of crossover and mutation
operators by using trigonometric functions. The diversity is
also verified using the true diversity metric to decide whether
to replace individuals.

The BWEAD approach is compared using statistical tests
with DE, PSO, GA, SA, and SFS to solve CEC2014 bench-
mark functions. BWEAD showed better results in 30% of the
instances with 30-dimension and 50-dimension, presenting, for
the remaining instances, no statistically significant differences
among the approaches, specially among DE and PSO.

Besides the statistical tests the convergence curves were
plot, showing that BWEAD can reach the minimum values
using a few amount of function evaluations.

There are some limitations in the proposed algorithm, one
is that only two operators are used, and the other is that one
of them contains a fixed hyperparameter (α).

There are some limitations in the proposed algorithm, one
is that only two evolutionary operators are used, and the
other is that one of them contains a fixed hyperparameter (α).
In future directions, we are planning to explore the use of
reinforcement learning strategies to modify operator weights
and also add more evolutionary operators by selecting them
through hyperheuristics. Finally, we are going to test the
approaches to more complex and real optimization problems.

1The convergence curves for the 30 dimension present some advantages for
BWEAD as well, however they were suppressed due to the space limitation.
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Fig. 2: Convergence
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TABLE I: Average and standard deviation results for 30-dimension instances.
Instance BWEAD DE PSO GA SFS SA

F1 8.17E + 073.06E+07 1.60E + 083.40E+07 6.19E + 074.15E+07 1.96E + 093.90E+08 7.68E + 081.58E+08 2.00E + 101.02E+10
F2 7.98E + 083.65E+08 4.67E + 079.82E+06 7.75E + 093.41E+09 9.09E + 109.73E+09 5.16E + 105.91E+09 2.65E + 117.12E+10
F3 4.21E + 047.81E+03 3.09E + 038.24E+02 2.70E + 042.12E+04 1.41E + 061.87E+06 1.32E + 051.55E+04 1.23E + 092.13E+09
F4 7.02E + 025.81E+01 7.11E + 024.10E+01 1.05E + 035.99E+02 2.05E + 044.16E+03 7.72E + 031.31E+03 1.24E + 054.69E+04
F5 5.21E + 026.09E−02 5.21E + 025.70E−02 5.21E + 028.21E−02 5.21E + 025.79E−02 5.21E + 025.79E−02 5.21E + 028.58E−02
F6 6.22E + 022.62E+00 6.32E + 021.30E+00 6.19E + 023.17E+00 6.44E + 021.93E+00 6.40E + 021.02E+00 6.56E + 024.47E+00
F7 7.10E + 023.83E+00 7.01E + 023.64E−02 7.84E + 022.80E+01 1.61E + 031.22E+02 1.16E + 036.12E+01 2.90E + 037.24E+02
F8 9.86E + 023.24E+01 8.26E + 022.42E+00 8.82E + 022.45E+01 1.26E + 034.25E+01 1.13E + 031.38E+01 1.50E + 031.43E+02
F9 1.14E + 032.96E+01 1.13E + 031.40E+01 1.02E + 032.66E+01 1.33E + 032.58E+01 1.28E + 031.98E+01 1.81E + 031.67E+02

F10 5.87E + 031.08E+03 1.68E + 031.11E+02 3.97E + 037.98E+02 9.83E + 035.10E+02 8.24E + 032.80E+02 1.17E + 047.91E+02
F11 8.34E + 032.96E+02 7.11E + 032.59E+02 4.81E + 035.68E+02 9.49E + 035.59E+02 8.72E + 033.38E+02 1.23E + 049.78E+02
F12 1.20E + 033.80E−01 1.20E + 031.88E−01 1.20E + 038.79E−01 1.20E + 037.73E−01 1.20E + 033.84E−01 1.21E + 031.98E+00
F13 1.30E + 031.25E−01 1.30E + 036.09E−02 1.30E + 039.33E−01 1.31E + 037.92E−01 1.31E + 034.49E−01 1.32E + 033.12E+00
F14 1.40E + 031.13E+00 1.40E + 038.65E−02 1.43E + 031.97E+01 1.71E + 035.82E+01 1.56E + 031.82E+01 2.13E + 031.64E+02
F15 1.54E + 031.24E+01 1.56E + 031.61E+01 2.13E + 031.05E+03 7.52E + 051.24E+05 5.83E + 052.27E+05 3.71E + 083.84E+08
F16 1.61E + 033.66E−01 1.61E + 033.38E−01 1.61E + 035.92E−01 1.61E + 032.58E−01 1.61E + 031.91E−01 1.61E + 032.22E−01
F17 2.64E + 062.53E+06 6.94E + 062.85E+06 3.48E + 063.53E+06 2.15E + 088.92E+07 2.85E + 071.06E+07 2.91E + 092.46E+09
F18 3.43E + 063.40E+06 1.07E + 065.29E+05 3.19E + 071.13E+08 7.95E + 092.73E+09 1.06E + 093.36E+08 3.92E + 101.80E+10
F19 1.94E + 032.02E+01 1.92E + 033.50E+00 1.93E + 033.04E+01 2.64E + 031.82E+02 2.16E + 033.48E+01 8.75E + 033.46E+03
F20 3.78E + 041.38E+04 1.40E + 044.95E+03 2.42E + 042.11E+04 1.34E + 072.12E+07 1.67E + 057.11E+04 1.95E + 094.34E+09
F21 7.67E + 056.77E+05 1.53E + 067.42E+05 7.12E + 054.09E+05 1.11E + 086.22E+07 1.01E + 074.60E+06 2.60E + 093.06E+09
F22 2.89E + 032.05E+02 2.68E + 031.01E+02 2.71E + 032.49E+02 7.37E + 041.01E+05 3.50E + 031.96E+02 5.00E + 071.19E+08
F23 2.50E + 030.00E+00 2.62E + 038.30E−01 2.65E + 032.00E+01 2.62E + 031.01E+01 2.93E + 035.84E+01 9.18E + 033.56E+03
F24 2.60E + 034.13E−07 2.64E + 032.61E+00 2.64E + 035.29E+00 2.61E + 031.20E+00 2.76E + 031.11E+01 3.51E + 031.19E+03
F25 2.70E + 030.00E+00 2.73E + 034.33E+00 2.71E + 034.00E+00 2.70E + 031.66E−01 2.77E + 038.44E+00 3.54E + 033.89E+02
F26 2.70E + 039.95E−02 2.70E + 037.57E−02 2.71E + 032.74E+01 2.77E + 033.73E+01 2.71E + 037.27E−01 3.85E + 034.42E+02
F27 2.90E + 030.00E+00 3.54E + 031.39E+02 3.55E + 032.95E+02 3.82E + 031.96E+02 3.80E + 031.62E+02 1.09E + 047.00E+03
F28 3.00E + 039.48E−14 3.76E + 032.81E+01 4.66E + 034.14E+02 3.89E + 039.91E+01 8.06E + 033.53E+02 1.94E + 047.29E+03
F29 3.12E + 031.06E+02 4.37E + 042.40E+04 1.30E + 074.76E+06 1.43E + 088.60E+06 1.47E + 085.15E+07 2.66E + 091.95E+09
F30 7.39E + 046.60E+04 1.56E + 041.72E+03 1.85E + 051.63E+05 7.91E + 062.53E+06 1.08E + 062.82E+05 1.32E + 082.14E+08

TABLE II: Average and standard deviation results for 50-dimension instances.
Instance BWEAD DE PSO GA SFS SA

F1 1.79E + 085.16E+07 6.96E + 087.17E+07 3.64E + 083.05E+08 7.60E + 092.24E+09 3.20E + 101.31E+10 2.24E + 092.73E+08
F2 3.43E + 091.26E+09 3.25E + 094.55E+08 3.23E + 101.27E+10 1.88E + 119.37E+09 4.62E + 111.11E+11 1.25E + 119.71E+09
F3 1.01E + 058.32E+03 6.14E + 047.32E+03 8.24E + 043.57E+04 7.36E + 057.23E+05 3.30E + 094.86E+09 2.27E + 053.38E+04
F4 1.13E + 031.40E+02 1.05E + 038.39E+01 3.07E + 031.42E+03 6.44E + 046.52E+03 3.16E + 051.72E+05 3.16E + 043.71E+03
F5 5.21E + 024.71E−02 5.21E + 024.01E−02 5.21E + 025.76E−02 5.21E + 024.96E−02 5.21E + 021.04E−01 5.21E + 023.47E−02
F6 6.46E + 024.76E+00 6.64E + 021.44E+00 6.43E + 025.46E+00 6.80E + 022.72E+00 6.95E + 023.73E+00 6.72E + 021.43E+00
F7 7.37E + 021.69E+01 7.11E + 021.24E+00 9.72E + 029.62E+01 2.46E + 037.19E+01 4.74E + 039.34E+02 1.94E + 038.99E+01
F8 1.15E + 036.65E+01 9.34E + 026.77E+00 1.01E + 033.90E+01 1.64E + 032.39E+01 1.98E + 031.29E+02 1.46E + 031.83E+01
F9 1.31E + 035.57E+01 1.39E + 031.39E+01 1.19E + 035.93E+01 1.78E + 036.12E+01 2.60E + 033.05E+02 1.68E + 032.74E+01
F10 1.04E + 041.12E+03 5.07E + 034.21E+02 7.74E + 031.10E+03 1.69E + 046.75E+02 1.94E + 041.12E+03 1.46E + 043.43E+02
F11 1.49E + 043.58E+02 1.32E + 045.47E+02 8.32E + 031.07E+03 1.64E + 045.86E+02 2.00E + 041.20E+03 1.53E + 043.57E+02
F12 1.20E + 034.27E−01 1.20E + 032.68E−01 1.20E + 031.23E+00 1.20E + 037.84E−01 1.21E + 031.43E+00 1.20E + 034.16E−01
F13 1.30E + 031.44E−01 1.30E + 037.08E−02 1.30E + 039.53E−01 1.31E + 033.73E−01 1.32E + 032.02E+00 1.31E + 033.34E−01
F14 1.40E + 034.21E+00 1.40E + 032.41E−01 1.48E + 033.18E+01 1.84E + 032.53E+01 2.49E + 032.19E+02 1.72E + 032.37E+01
F15 2.52E + 039.72E+02 9.89E + 033.27E+03 5.83E + 049.26E+04 1.64E + 075.78E+06 3.42E + 094.55E+09 6.28E + 061.83E+06
F16 1.62E + 033.78E−01 1.62E + 032.32E−01 1.62E + 035.06E−01 1.62E + 032.04E−01 1.62E + 033.02E−01 1.62E + 031.53E−01
F17 1.34E + 077.75E+06 3.32E + 076.66E+06 1.89E + 071.71E+07 1.01E + 094.24E+08 6.89E + 094.72E+09 1.68E + 085.20E+07
F18 2.73E + 071.82E+07 9.31E + 053.58E+05 6.05E + 084.65E+08 2.67E + 106.17E+09 7.75E + 102.71E+10 5.88E + 091.05E+09
F19 1.99E + 032.36E+01 1.96E + 035.87E+00 2.11E + 031.26E+02 6.56E + 031.56E+03 3.49E + 042.17E+04 2.79E + 031.25E+02
F20 4.06E + 041.13E+04 4.21E + 041.36E+04 6.01E + 043.02E+04 2.47E + 074.62E+07 2.18E + 095.15E+09 3.20E + 051.24E+05
F21 3.64E + 061.71E+06 1.15E + 074.59E+06 6.59E + 068.55E+06 3.51E + 082.13E+08 4.49E + 093.62E+09 3.88E + 071.29E+07
F22 4.01E + 033.09E+02 3.59E + 031.71E+02 3.87E + 033.90E+02 4.52E + 054.80E+05 1.04E + 081.03E+08 6.42E + 036.33E+02
F23 2.50E + 030.00E+00 2.65E + 035.25E−01 2.79E + 037.52E+01 2.71E + 031.65E+01 1.33E + 044.84E+03 3.57E + 031.28E+02
F24 2.60E + 031.39E−06 2.71E + 032.57E+00 2.72E + 032.68E+01 2.62E + 032.01E+00 4.18E + 036.48E+02 2.97E + 031.78E+01
F25 2.70E + 030.00E+00 2.80E + 039.28E+00 2.73E + 031.18E+01 2.70E + 034.26E−01 4.30E + 038.58E+02 2.89E + 032.24E+01
F26 2.70E + 036.39E−01 2.70E + 034.77E−01 2.76E + 035.57E+01 2.80E + 031.61E+01 5.35E + 031.68E+03 2.81E + 037.78E+01
F27 2.90E + 031.39E−12 4.54E + 033.98E+01 4.44E + 031.50E+02 5.28E + 034.03E+02 1.98E + 041.24E+04 5.04E + 033.58E+01
F28 3.00E + 031.39E−12 4.22E + 033.15E+01 6.74E + 039.09E+02 5.39E + 033.66E+02 3.58E + 049.45E+03 1.44E + 045.87E+02
F29 3.10E + 030.00E+00 2.49E + 071.10E+07 1.25E + 088.03E+07 3.80E + 082.49E+07 6.02E + 092.38E+09 9.15E + 088.33E+07
F30 1.06E + 051.86E+05 3.43E + 048.31E+03 8.76E + 056.43E+05 1.65E + 071.26E+06 2.43E + 081.62E+08 9.88E + 062.26E+06
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