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Abstract—With the unprecedented growth of Cloud Comput-
ing, data centers around the world have increased exponentially.
The energy utilization in these data centers is becoming a
concern, so the need for energy-efficient algorithms in the cloud
has been on the top agenda for quite a while. Cloud providers
use different energy management strategies to minimize energy
utilization and to maximize ROI (Return On Investment) such
as energy-efficient virtual machine (VM) placement. We have
taken the problem for VM consolidation and worked on it
for an energy-efficient algorithm. VM Consolidation uses live
migrations of VMs during the execution of cloudlets so that
underloaded physical servers can be switched off by transferring
those VMs to other physical machines. VM consolidation in the
cloud environment is a proven NP-hard problem. We have used
Water Wave Optimization (WWO) which is a meta-heuristic
algorithm. Original WWO proposed for continuous space and
so we have modified the parameters of the algorithm to apply
for our problem of VM consolidation. Our approach produces a
near-optimal solution using an objective function that minimizes
energy consumption and increases the number of switched off
servers.

Index Terms—cloud computing, Scheduling, energy-efficient,
virtual machine consolidation and VM migration

I. INTRODUCTION

Cloud computing depends on shared computing resources
instead of having on-premise servers to deal with user appli-
cations. In other words, cloud computing is taking services
and moving them outside an organization’s firewall. The
computing resources are delivered through the Internet and
users are allowed to pay as-needed business model [1]. The
important features of cloud computing are [2]:
Self Service: The customers can provide themselves with the
required computing abilities such as processor time, network
bandwidth without human intervention of cloud providers.
Broad Network Access: The customers of the clients of cloud
can access the services by the client using cloud by the usage
of the internet from any of the broad range of devices like
laptops, smartphones, and tablets.

Resource Pooling: The resources such as processor, memory,
network bandwidth given by the cloud provider is shared using
the multi-tenant model where multiple users share resources
from the same physical data centers. But independence is
provided by a level of abstraction called virtualization.
Rapid Elasticity: One of the great advantages of the cloud
is that the client companies need not worry about their
increase in customers and hence, increase in the traffic of
their services. Cloud provides seamless scaling mechanisms,
thereby mitigating unforeseen circumstances.
Measured Service: The statistics of data and usage of services
in the cloud can be easily collected from the frameworks of
cloud, thereby helping companies to use that valuable data to
increase their revenue and growth.

A. Virtualization

The process of creating virtual one in place of actual
things such as operating system (OS), network resource, a
memory system or a server is called virtualization. Is has
been established for decades for improving resource utilization
and sharing [3]. It was extensively used mainframe systems to
improve manageability, reliability and resource utilization [4].
The capability of virtualization is broadly used in workload
consolidation, workload isolation and workload migration [5].

In the case of Cloud Computing, Virtualization technique
does a great deal of cost-saving, energy-saving, hardware
performance enhancement for the cloud providers. It allows
a single Physical Machine (PM) of a data center to be shared
among multiple applications of multiple users at the same
time. Virtualization is achieved by assigning a logical name to
physical resources and providing a pointer to that resource on
a need basis. Virtualization not only provides a way to execute
multiple shared applications but also helps in sharing hardware
resources of processor, memory and network Bandwidth. Vir-
tualization in cloud computing is done by a software called
Hypervisor or Virtual Machine Monitor (VMM) which creates
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an abstraction layer between the software and the hardware in
use. In this system, a physical machine (PM) can be virtualized
into multiple instances at a time, but every instance logically
isolated from each other for security reasons.

B. VM Consolidation

The various virtual machines (VM) running on different
physical machines of a datacenter need to get processor time,
memory and bandwidth for the completion of tasks assigned to
it. The VMM or hypervisor is responsible for the allocation of
VMs on the PMs and this is done by the various Virtual Ma-
chine Allocation algorithms which are available. We concern
ourselves with the energy-efficient allocation algorithms and
moreover the ones which do dynamic migrations of VMs dur-
ing Runtime. The process in which dynamic migration of the
VMs happens during runtime to reduce a load of overloaded
Physical Machines (PM) and to put to sleep the underloaded
PMs is called as VM Consolidation. Switching off the under-
loaded hosts will help us reduce the energy consumption of
the data centers and this can be done by migrating the VMs
from those machines to other machines [6]. VM Consolidation
with energy-aware objective is an NP-Hard problem [7-8][10]
which leads us to the use of meta-heuristic algorithms for
the same. One such meta-heuristic algorithm is Water Wave
Optimization (WWO) which is inspired by the characteristics
of waves in seas and oceans. The original WWO algorithm was
proposed for continuous space multidimensional optimization
problem. Later, it was adapted to solve the famous discrete
optimization problem of Travelling Salesman Problem (TSP)
[9] by modifying its original parameters. This work motivated
us to try the WWO by modifying the parameters and apply to
our multidimensional discrete optimization problem of Energy
Efficient VM Consolidation.

The rest of this article organized as follows. We introduce
the related work in Section II. The Cloud Data Center (CDC)
model discussed in Section III. The overview of the water
wave theory introduced in Section IV. The proposed WWO-
based VM Consolidation algorithm presented in Section V.
Section VI presents the experimental setup and discussion on
results. Finally Section VII concludes our work and discussed
the future directions.

II. RELATED WORK

There have been many works done to minimize energy
consumption of data centers by maximizing the resource
utilization. By applying the Ant Colony Optimization (ACO)
algorithm, an approach [10] resolves the Multi-dimensional
Bin Packing (MDBP) problem by effectively consolidating the
VMs in the PMs through workload placement in a cloud en-
vironment. Despite, Energy-aware VM placement scheduling
approach [11] measures the fitness value between VMs using
an ACO algorithm to identify the past optimal placement in the
corresponding PM rather than measuring the fitness between
the VMs and PMs. It tends to provide the solution with a
minimum number of PMs, which helps to reduce the overall
energy consumption. ACO metaheuristic based scheduling

method [12] consolidates the VMs by incorporating the vector
algebra, which minimizes the energy consumption and reduces
the resource wastage in the cloud environment. A genetic
algorithm also has been used by the existing researchers to
develop the energy-efficient cloud datacenter through VM
consolidation [13].

To reduce the energy consumption through minimizing the
time, memory, and cost consumption, Task-based load balanc-
ing approach [14] employs the Particle Swarm Optimization
(PSO) algorithm to migrate only several tasks to the identical
VM resource rather than migrating the entire overloaded VM.
A modified PSO algorithm [15] ensures the energy-efficient
VM placement in the cloud data center by optimizing the
operators and parameters of the PSO algorithm. In order to
minimize the energy utilization in the workflow scheduling,
the recent research works have focused on modeling the
energy-aware scheduling algorithms through the resource hi-
bernation, dynamic power management, or Dynamic Voltage
and Frequency Scaling (DVFS) techniques. Multi-objective
Discrete PSO (MODPSO) approach [16] employs the hybrid
PSO algorithm and DVFS technique to reduce the energy
utilization by the cloud infrastructure, which averts the com-
promise between the performance and energy consumption by
handling multiple QoS requirements. Greedy based heuristics
proposed in [28] which set upper and lower utilization thresh-
old for Central Processing Unit (CPU) utilization. If exceed the
upper threshold or utilization drops below the lower threshold
then VM migration plan enforced.

Zheng Yu-Jun [19] proposed a new optimization tech-
nique called Water Wave Optimization (WWO) which is a
metaheuristic inspired by shallow water wave models. WWO
approach is competitive with few state-of-the-art evolutionary
algorithms such as ACO, BA, BBO, IWO etc., and effective
for real-time applications[22]. In this paper, we used WWO
algorithms to effectively place virtual machines on a selected
physical machine in an energy-efficient way while satisfying
Qulaity of Service (QoS) requirements.

III. SYSTEM MODEL

A heterogeneous Cloud Data Center (CDC) contains m
physical machines (PMs). Each PM characterized by com-
puting resources such as CPU, memory, storage capacity and
network I/O. The performance of CPU defined in terms of
Millions of Instructions Per Second (MIPS). The PMs are
virtualized to serve many users at any given time. Users
present their request for provisioning of v virtual machines
of PM. The length of the user request specied in Millions of
Instructions (MI). We used the greedy based approach called
Best Fit (BF) for the initial allocation of VMs to PM. The BF
algorithm is a well-known heuristic for bin-packing problem
[17].

The VM resources utilization changes with time due to
dynamic workloads. Hence, the initial provision of VMs to
PM needs to be enhanced with an efficient VM consolidation
approach. Our proposed WWO-ACS algorithm is applied
periodically to optimize the VM placement depending on the



Fig. 1 Shallow and deep water wave models

workload. The BF algorithm used to optimize the resource uti-
lization locally, whereas our proposed WWO-VMC approach
used to optimize resource utilization globally. Based on the
percentage of CPU utilization we categorize the PM into one
of the three categories PMunder, PMover and PMnormal. We
consider PM as underutilized PMunder if the CPU utilization
under 40%, PM as over-utilized PMover if CPU utilization
over 90%, and all other PMs are normal utilized PMnormal .

IV. THEORY OF WATER WAVE

Isaac Newton was the first person to make an effort on
the theory of water waves. Further, the linear theory of
water waves was studied by French mathematicians Laplace,
Lagrange, Poisson, and Cauchy and they made authentic
theoretical advances [18]. The WWO approach proposed in
[19] is an efficient technique for global optimization. The
shallow water wave theory is the basis for WWO, which
uses a numerical approach to analyze the evolution of wave
amplitudes (heights), periods (wavelengths), and propagation
directions under different conditions such as nonlinear wave
interactions, wind force, and frictional dissipation [21-22]. The
solution space in the WWO algorithm is comparable to the
seabed region. The fitness of any point in the solution space
is estimated inversely by the depth of the seabed. The fitness
functions of wave measure high if the distance is less to the
still water [19][22]. The various changes in the shape of water
waves such as amplitude or height and wavelength depicted
in Fig. 1.

The high energy waves having large amplitude i.e., good
wave produce a high-quality solution and low energy waves
having long wavelength produce poor solutions. The majority
of evolutionary algorithms keep-up a population of solutions;
similarly, WWO maintains a solution. Each solution of which
is similar to a “wave” with two parameters height and wave-
length. The height of wave h ∈ Z+ (integer domain) and
wavelength λ ∈ R+ (real domain). These parameters are
initialized as constants h = hmax and λ = 0.5 [16]. The
best solution exploration procedure in the WWO algorithm is
modeled as the wave propagation, wave refraction, and wave
breaking.

V. ENERGY EFFICIENT VM CONSOLIDATION WITH WWO

As discussed in Section III, each PM provides one or
more VMs and both PMs and VMs categorized by their
resource utilization. In the context of VM migration a PM
is potential source PM pmsource where VMs already resid-
ing or target PM pmdest for VM migration. All PMunder

and PMover are members of pmsource, where as all PMs
except PMover are members of pmsource. The proposed
WWO-VMC algorithm creates tuples with three elements each
t = (pmsource, vm, pmdest) where pmsource is the source
host, vm is the selected VM for migration and pmdest is
destination host machine. Our proposed algorithm aims to
minimize the number of active PMs needed to host all VMs
without compromising their performance. This can be done by
enforcing the VM consolidation algorithm.

In this work, we redesign the original WWO algorithm for
VM Consolidation to minimize energy consumption. As every
solution in WWO is a migration plan or set of migrations,
hence, we considered every solution as a wave x. A wave has
three parameters tuple t, height h and wavelength λ (initially
height is constant hmax and wavelength is 0.5). The fitness of
x depends on the number of migrations (M) and the number
of sleeping hosts or PM (Ps): As the number of migrations
increase, fitness decreases and as the number of sleeping hosts
increases, fitness also increases [23].

We initialize the population as a set of migration plans
as in the original WWO algorithm and its use for the three
operators of wave propagation, refraction and breaking. Which
evolve the population up to the termination state is satisfied
continually. However VM consolidation is a combinatorial
problem, therefore WWO cannot be directly applied for
energy-efficient VM Consolidation, so we have to redefine its
operator’s propagation, refraction and breaking as discussed in
the following sections.

A. Propagation for Energy Efficient VMC

In the propagation operator, we can see wavelength λ of
solution as the probability for mutation, and we will decide
whether to mutate or not using: for a good solution and small
probability of mutation the value of λ will be small; on the
other hands, a bad solution will have a large λ value, and
hence will have a considerable probability of being mutated.

Each wave x generates another wave x′ if its wavelength
is greater than a randomly generated value r between 0 and
1, by this method –

If r < λ then for each tuple t in wave x, we will randomly
either add a new tuple or replace the current tuple (with a tuple
from the set of all tuples excluding the tuples from current
wave x) or we will remove the current tuple from current
wave x; If the current wave x fitness is less than the fitness
of the newly generated wave x′ then replace x by x′(with
h = hmax) else set h = (h − 1) for current wave x. After
each generation, x updates its wavelength as

λ = λ · α−(f(x)−fmin+ε)/(fmax−fmin+ε) (1)



where, f(x) is fitness function, f(x) = P γs + 1/(ε+M),
Ps is the number of sleeping hosts(PM), M is the number

of migration, γ is a parameter defining the relative importance
of Ps, α is wavelength reduction coefficient, fmin and fmax
are minimum and maximum fitness of the current solution
(Migration plan). To avoid division by zero, we choose a small
value for ε.

B. Refraction for Energy Efficient VMC

The purpose of Refraction in WWO is if we know that a
solution is bad, then we try to improve the solution by giving
it some good features of the known best solution. Technically
If height h of some wave/solution x becomes zero, then x is
replaced by new solution x′ which will be centered between
x and global best solution x∗.

In our case, our solution is the migration plan having some
tuples showing each migration. So whenever the height of
the solution vanishes, to make the current solution (migration
plan) better, we add or replace some tuple (migrations) with
tuples from the global best solution so far i.e. x∗.

We set the height of the new solution to hmax, and update
the wavelength :

λ′ = λ · f(x)
f(x′)

(2)

where f(x) and f(x′) is the fitness of old solution and new
solution respectively.

C. Breaking for Energy Efficient VMC

If the propagated solution is better than the known global
best solution so far, i.e., f(x) > f(x∗), then we check in the
neighborhood of the solution x for a better solution than x,
and if we find a solution better than x say x′, then the global
best solution is updated as x∗ = x′ otherwise update x∗ = x.

We will find the neighborhood solution and update the
global best solution using the following way: For k in (1,kmax)
do: Choose some tuples from solution x, and for each of those
chosen tuple either add or replace the tuple with a tuple from
the set of all tuples excluding the tuples from current wave x,
or remove the tuple from solution x. if f(x) > f(x∗) then
update x∗ = x. where kmax is a predefined number whose
value is 12 [19].

D. Algorithm framework

In this section, we presented our proposed algorithm and
discussed time complexity. The main focus of our algorithm
is to maximize the inactive machines, in other words, minimize
the active machines to conserve energy. The pseudo-code for
the proposed WWO-VMC algorithm given in Algorithm 1.
It initializes the population randomly (line 1) and creates
tuples with three elements each t = (pmsource, vm, pmdest)
where pmsource is the source host, vm is the selected VM
for migration and pmdest is destination host machine. The
number of tuples keeps changing according to the algorithm
whenever add or remove the tuple step comes. The three
operators used in this algorithm are propagation, refraction,

and breaking. Propagation (lines 5-14) enables to accept tuple
or create new tuple based on the fitness of the population. For
better wave propagation we consider parameters r1 and r2.
Based on the series of preliminary experiments we tuned r1
and r2 to 0.28 and 0.64 respectively. The breaking operator
(line 17-19) enables an exhaustive search for selecting a source
for migration. Finally the refraction (lines 21-24) avoids early
convergence by improving population diversity.

Algorithm 1: WWO-VMC algorithm
1 Randomly initialize a population P of migration

plans;
2 while iterations < max number of iterations

do
3 for each wave x in population P do
4 initialize x′ = x
5 for each tuple t in x do
6 r = rand(0, 1)
7 if rand() < x.λ then
8 if r < r1 then
9 add new tuple in x′

10 else if r < r2 then
11 replace t by new tuple in x′

12 else
13 remove t from x′

14 end for
15 end for
16 if f(x′) > f(x) then
17 if f(x′) > f(x∗) then
18 perform breaking operation (section D)
19 update x with x′

20 else
21 x.h = x.h− 1
22 if x.h == 0 then
23 perform refraction operation (section B)
24 update wavelength based on equation (1)
25 end while
26 return x∗.

Our proposed WWO-VMC algorithm framework is clear
and easy to understand. The algorithm performs well with
fewer populations. We consider the recommended values of
control parameters for the algorithm such as the maximum
wave height hmax, the number of breaking directions k,
wavelength reduction coefficient α as in [19]. The WWO-
VMC algorithm minimizes the number of active PMs to reduce
the energy consumption of data centers, while preserving the
QoS requirements.

Let n be the number of waves in the population, m be the
number of physical machines (PM), v be the number of Virtual
Machines (VM). Our algorithms have three types of operation
in a single iteration over the population. Propagation: Time
complexity of propagation is linear in the number of tuples in
n waves of the population. The worst case of number of the
tuples in a wave is O(m2 ∗ v) which implies the worst-case
time complexity of this operation is O(n ∗ m2 ∗ v). This is



TABLE I: Parameters in the WWO-VMC approach.

γ ε r α λ ε k

5 0.00001 (0, 1) (1.001, 1.01) 0.5 0.00001 (1, 12)

the costliest operation in a single iteration. Breaking: Let k be
the coefficient of breaking. The time complexity of breaking is
O(k∗m2∗v). Refraction: It has the same worst-case complexity
as that of propagation operation. Let I be the number of
iterations in the algorithm. So, the overall time complexity
of WWO-VM Consolidation algorithm is O(I ∗ n ∗m2 ∗ V )

VI. EXPERIMENTAL SETUP AND RESULTS

The technology stack used for the simulation of results is
JAVA language and the framework used was CloudSim Plus.
Moreover, our target is IaaS clouds which provides unlimited
resources to the cloud users on a payment basis. Conducting
repeatable experiments on such infrastructure is expensive,
so we used the simulation model. CloudSim Plus [24] is a
toolkit with a full-featured and flexible simulation framework.
It enables users to model cloud scheduling applications for
simulation, and experimentation. Users are allowed to focus
on specific system modeling issues to be explored, without
regarding the functional level characteristics related to data
center infrastructure and Services. CloudSim Plus framework
has all the basic classes required for simulation of various
processes of cloud. It allows one to extend the basic classes to
implement the modified algorithms for the specific simulation.
We have extended the basic VM allocation with migration to
implement our WWO based VM allocation with migration. For
the simulation of our algorithm, we have used the open data,
provided by Numerical Aerodynamic Simulation (NAS) Sys-
tems Division at NASA Ames Research Center. The workload
was logged for three months from October 1993 in a 128-node
iPSC/860 hypercube [25].

We used the cleaned and converted log in Standard Work-
load format [26]. SwfWorkloadFileReader class in Cloudsim
Plus was used to read and build cloudlets using this file. Each
cloudlet was assigned a suitable VM, and correspondingly
hosts were created according to requirements of VMs at initial
simulation. For our hosts, we selected one HP ProLiant ML110
G3 server (with the configuration of (1 x [Pentium D930
3000 MHz, 2 cores], 4GB)). To evaluate the performance
of our implemented algorithm, we considered two metrics
energy consumption and the number of migrations. The WWO
parameters and values which we were obtained in a series of
preliminary experiments and that were used in the proposed
WWO-VMC approach present in Table I.

A. Simulation Results

The energy consumed is the whole energy utilized by
the physical machines while running the VMs during the
simulation. The objective function was designed in such a way
that energy consumption is minimized by our algorithm. The
energy consumed by a single physical machine depends on
the utilization of resources of a machine like CPU, memory,

Fig. 2 15 Cloudlets

and bandwidth. It has been noted that power consumption by
the utilization of CPU exceeds the other factors by a margin.
So most of the approaches to calculate energy are based on
modeling of energy based on the utilization of CPU. The
SPECpower benchmark [27] is the real-world workload that
we used to evaluate our algorithm on CloudSim Plus. The
energy consumption of HP G3 server at different workload
levels illustrated in Table II.

TABLE II: Amount of energy consumption of HP G3 server
at different load levels.

Load Levels(%) Energy Consumption(Watts)
0 105

10 112
20 118
30 125
40 131
50 137
60 147
70 153
80 157
90 164
100 169

We have compared our WWO-VMC algorithm with three
well known heuristic methods for dynamic VM reallocation in
[28]. These algorithms keep and use CPU utilization between
upper and lower thresholds. When a PM underutilized then
its VMs are consolidated for load balancing and when the PM
overutilized (exceeds a threshold) then its VMs are reallocated
for load-balancing. To estimate the PM utilization these heuris-
tics adapt the utilization threshold dynamically based on LR
(Local Regression), MAD (Median Absolute Deviation) and
IQR (Interquartile Range).

We used different workloads to evaluate the performance of
our proposed approach. The simulation results are depicted in
Figs. 2-7 and it is clear that results show that our proposed
WWO-VMC approach surpassed the other algorithms in en-
ergy saving. And a significant energy saving observed for large
workloads.



Fig. 3 20 Cloudlets

Fig. 4 30 Cloudlets

Fig. 5 60 Cloudlets

Fig. 6 90 Cloudlets

Fig. 7 120 Cloudlets

VII. CONCLUSION AND FUTURE WORK

Cloud providers use different energy management strate-
gies to maximize ROI. Energy-efficient VM consolidation is
one such strategy to minimize monitoring costs of clouds.
In this article, we present a dynamic efficient technique to
place virtual machines on cloud servers by minimizing energy
consumption. Our proposed WWO-based VM consolidation
algorithm consumed 10 percent less energy compared to the
standard dynamic migration algorithms like MAD, IQR, and
LR. This algorithm has the scope of optimizations in the parts
of modification of parameters and definition of operations
of refraction, propagation, and breaking. Also runtime of
the algorithm can be optimized so that the convergence of
algorithm is faster.

The live VM migration is an expensive operation, so as
a further effort, we plan to improve our proposed system
model to the reduce number of VM migrations for energy
conservation and maximizing system reliability.
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