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Abstract—This paper proposes a Low Frequency Oscillation
(LFO) parameters estimation scheme based on Bacterial Swarm
Algorithm (BSA). LFO is caused by a wide variety of events,
including system faults and load switching. Thus, it is an
important task to accurately estimate the parameters of LFO,
and further perform fault diagnosis. Although the techniques
such as Prony’s method could reconstruct the form of the
signal, the estimated parameters are not accurate enough. In
order to improve the estimation accuracy, this research improves
the regression objective function, which aims to minimize the
probability likelihood between a segment of the signal filtered by
a Mathematica Morphology (MM) filter and its regression. In
the experimental studies, BSA is used to optimize the proposed
objective function. Comprehensive comparisons are taken among
the proposed method, other Evolutionary Algorithms (EAs), and
conventional signal processing techniques, which show BSA with
Local Probability likelihood (BSA-LP) has the best performance
on the estimation.

I. INTRODUCTION

IN the past decade, the smart transmission systems are

widely deployed all over the world. It is more and more

common to have power systems interconnected to individual

islands over long distances. Although interconnected trans-

mission system decreases the reserve capacities and improves

system stability, it has also brought new disadvantages. One

of the major problems is that the conflicts between large

transfer capacity and weak interconnection cause LFO among

generators, which further leads to negative effects on power

system stability [1][2]. Therefore, it is an important task to

effectively and accurately estimate the parameters of the LFO

signal. Based on these estimated parameters, fault diagnosis

could be performed immediately to improve the dynamic

stability in long-distance-transmission capability [3][4].

Generally, LFO is a combination of several damping s-

inusoidal signal, where the frequency varies in the range

between 0.1 to 2.0 Hz. In some cases, the LFO also creates

a rhythmic pulse or sweep in the grid. Referring to the range

and magnitude of LFO, the modes of the LFO components can

be divided into two categories: local modes having a range of

1.0 to 2.0 Hz and inter-area modes having a range of 0.1 to

1.0 Hz [5]. Therefore, correctly estimating the frequency LFO

could provide a reference information for the system operator

to locate the fault in the grid. Besides the frequency of LFO,

the damping ratio is another critical parameter to be estimated.

LFO signals with small damping ratio are usually caused by

serious systems faults, where the effects remain in the grid for

a long period. With a fast estimation on the damping ratio, the

serious faults could be isolated from the grid [6][7].

Due to the importance of LFO estimation, a large number

of approaches have been developed, including two types:

modal analysis and measurement-based analysis [8]. Modal

analysis was employed by IEEE Task force to identify the elec-

tromechanical modes of the power system stability based on

LFO. Eigen-analysis, which applies a linearised time-invariant

model, is one of the most effective tools in modal analysis to

evaluate modal information [9]. However, the accuracy of the

dynamic models and the parameters of the system compo-

nents affect the validation of the analysis. The computation

becomes more complex and time consuming when a full-state

eigenvalue analysis is applied. Recently, Methods of Normal

Forms (MNF) have been applied to eigenanalysis providing a

novel method of dealing with non-linear behaviours.

This research transfers the estimation of LFO parameters

to an optimization problem, which regresses the parameters

based on Least Mean Square (LMS) [10]. However, the

computational complexity of the proposed scheme is signif-

icantly higher than conventional measurement-based analysis

methods. Therefore, a fast converge optimization algorithm,

BSA, is adopted to estimate the parameters of LFO. BSA

is developed from the Bacterial Foraging Algorithm (BFA)

[11], which simply describes the chemotaxis behaviour of

a colony of bacteria. With more comprehensive foraging

models, BSA incorporates the mechanisms of quorum sensing

[12]. Chemotaxis behaviour offers the basic search principle,

which consists of two basic foraging patterns, tumble and

run. The biased random walk performs the “local search”

in the searching space, and the tumble process selects a

better direction to search [13]. Meanwhile, the quorum sensing

allows BSA to escape from local optima, which is a two-fold

operation that can either attract a bacterium to the optimal

location or repel it away from the location where bacteria

are concentrated. According to our previous studies, BSA

demonstrates a superior performance in comparison with other

evolutionary algorithms, such as Genetic Algorithm (GA)

[14], Particle Swarm Optimizer (PSO) [15], Fast Evolutionary

Programming (FEP) [16] and Group Search Optimizer (GSO)
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[17].

In the experimental studies, this paper presents the simu-

lation undertaken on three test cases, including single mode,

multiple modes and LFO with DC offset. The results of BSA-

LP are also compared with other EAs and Prony’s method.

The experimental results demonstrate that BSA-LP not only

provides a reliable estimation with the minimal error and fast

convergence speed, but also has a stable performance in noisy

environment.

II. LOW FREQUENCY OSCILLIATION AND PROBABILITY

LIKELIHOOD

A. Estimation on LFO Parameters

A LFO signal Y (t) can be described as a combination

of multiple models. Each mode is represented as a damping

sinusoidal signal:

Ȳ (t) =

Nm∑
m=1

Āme−s̄mt sin(ω̄mt+ φ̄m) (1)

where Nm is the number of models in the signal, Ām and

s̄m are the amplitude and damping ratio in the mth model,

ω̄m and φ̄m are the angular frequency and initial phase of the

oscillation in the mth model.

The estimation of LFO parameters can be transferred to

a curve fitting problem, which makes predictions for the

target variable Y = {y1, y2, · · · , yN}� given a new value of

input time sequence T = {t1, t2, · · · , tN}�. Therefore, the

estimated LFO signal is expressed as:

Y (t) =

Nm∑
m=1

Ame−smt sin(ωmt+ φm) (2)

where Am, sm, ωm and φm are the parameters of estimated

oscillation in the mth model. A vector w is used to express

the estimated LFO parameters as:

w = [A1, · · · , ANm
, s1, · · · , sNm

,

ω1, · · · , ωNm
, φ1, · · · , φNm

]. (3)

During the regression, the uncertainty over the value of

the target variable is expressed as a probability distribution.

The samples should be evenly distributed along the regressed

expression. As a the error are mainly caused by random noise,

the corresponding value of the y has a Gaussian distribution

with a mean equal to the actual value Ȳ (t, w) of the (1) as:

p(y|t, w, β) = N (
y|ȳ(t, w), β−1

)
(4)

where precision parameter β corresponds to the inverse vari-

ance of the distribution.

To determine the value of unknown parameters w and

β by maximum likelihood, we assume the data are drawn

independently from the Gaussian distribution, the likelihood

function is given by:

p(y|t, w, β) =
N∏

n=1

N (
yn|ȳn(tn, w), β−1

)
. (5)

The sample period of LFO should be selected large enough to

guarantee the estimation accuracy. Therefore, the number of

samples, N , is increased as well. To reduce the computation

complexity, a sample filter based on probability is introduced

to the likelihood function.

For the case of a single real-value variable t, the Gaussian

distribution with mean value μ and deviation σ is defined by:

N (t|μ, σ2) =
1√
2πσ2

exp

{
− (t− μ)2

σ2

}
. (6)

Conventional polynomial regression uses the LMS to find the

best fitting, which is based on the logarithm likelihood:

ln p(y|t, w, β) = −β

2

N∑
n=1

{ȳ(tn, w)− tn)}2

+
N

2
lnβ − N

2
ln(2π). (7)

Therefore, the maximum likelihood to determine the precision

parameter β of the Gaussian condition distribution is trans-

ferred to a maximization on:

1

β
=

1

N

N∑
n=1

{ȳ(tn, w)− yn}2. (8)

However, the evaluation based on LMS algorithm is not

efficient when the number of points N is selected too large.

Therefore, this research proposes a filter technique to select

estimation regions based on MM.

B. MM Filter

The MM consists two basic operators, which are erosion

and dilation [18]. For these two operators, only addition and

subtraction calculation are used [19]. Thus, MM is an effective

algorithm to extract features of the target signal. The erosion

(�) and dilation (⊕) are expressed as:

f � g(n) =

min
s

{f(n+ s)− g(s)|(n+ s) ∈ Df , s ∈ Dg} (9)

f ⊕ g(n) =

max
s

{f(n+ s) + g(s)|(n+ s) ∈ Df , s ∈ Dg}(10)

where f is the target signal, g is a designed structure element,

Df and Dg are the domains of f and g, respectively. By

combining erosion and dilation operators, two MM filters are

further created, which are opening (◦) and closing (•):

f ◦ g = (f � g)⊕ g (11)

f • g = (f ⊕ g)� g. (12)

The MM filter is used to select the regions with minimal

gradient in the original signal to process the regression, which

aims to reduce the computational complexity. In a damping

sinusoidal signal, the dip and peak regions have minimal gra-

dient. These regions contain sufficient information to support

the regression. In this research, the sample rate of original

signal is 50Hz, which means one sample is taken in each cycle

from a power system with frequency of 50 Hz. To perform the
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Fig. 1. Estimation region select by MM filter

MM filter, a sphere SE, gs, is constructed with radius of 30

samples. Then opening and closing operations are applied to

the original signal. The results after opening (Ȳop) and closing

(Ȳcl) are calculated as:

Ȳop = Ȳ ◦ gs (13)

Ȳcl = Ȳ • gs. (14)

The overlapped area between Ȳop and Ȳ , and area between

Ȳcl and Ȳ are regions with minimal gradient. These regions

are represented as ȲMM in this study. The Ȳop, Ȳcl, Ȳ and

ȲMM are illustrated in Fig. 1 as a demonstration.

III. BACTERIAL SWARM ALGORITHM

A. Chemotaxis
The chemotaxis behavior can be modeled by a tumble-

run process that consists of a tumble step and several run

steps. The tumble-run process follows a gradient searching

principle, which indicates that the position of the bacterium is

updated in the run steps by the gradient information provided

by the tumble step. Determining the rotation angle taken

by a tumble action in an n-dimensional search space can

be described as follows. Suppose the pth bacterium, in the

tumble-run process of the kth iteration, has a current position

Xk
p ∈ R

n. The objective of the optimization is to find the

minimum of F (Xk
p ). The bacterium also has a rotation angle

ϕk
p =

(
ϕk
p1, ϕ

k
p2, ..., ϕ

k
p(n−1)

)
∈ R

n−1 and a tumble length

Dk
p(ϕ

k
p) =

(
dkp1, d

k
p2, ..., d

k
pn

) ∈ R
n, which can be calculated

from ϕk
p via a polar-to-cartesian coordinate transform:

dkp1 =
n−1∏
i=1

cos
(
ϕk
pi

)
,

dkpj = sin
(
ϕk
p(j−1)

) n−1∏
i=p

cos
(
ϕk
pi

)
j = 2, 3, ..., n− 1

dkpn = sin
(
ϕk
p(n−1)

)
. (15)

In the polar-to-cartesian coordinate transform, an arbitrary

vector in the n-dimensional space can be represented by n−1
angles and a normalized distance to the original point.

The maximal rotation angle ϕmax is related to the number

of the dimensions of the objective function, which can be

formulated as:

ϕmax =
π

�√n + 1 � (16)

where n is the number of dimensions and �·� denotes the

operation which rounds the element to the nearest integer

towards minus infinity. By introducing (16), the maximal

rotation angle is restricted with the increase of dimension. As

a result, the algorithm is easier to converge to the optima in

high-dimensional environment, when it finds a heading angle

with an effective direction.

In the tumble-run process of the kth iteration, the pth

bacterium generates a random rotation angle, which falls in

the range of [0, ϕmax]. A tumble action takes place in an angle

expressed as:

ϕ̂k
p = ϕk

p + r1ϕmax/2 (17)

where r1 ∈ R
n−1 is a uniform random sequence with a range

of [−1, 1]. The run action immediately follows the tumble

action. Because the run action will be performed more than

once, the position Xk
p is recorded as X̂k,0

p , which indicates

the position of the pth bacterium at the beginning of the kth

iteration.

Once the angle is determined by the tumble step, the

bacterium will run for a maximum of Nc run steps. If at the

N th
f (Nf < Nc) run step, the bacterium finds a position which

has a better fitness value than the current one, the run process

also stops. The position of the pth bacterium is updated at the

hth (h ≥ 1) run step in the following way:

X̂k,h
p = X̂k,h−1

p + r2D
k
p(ϕ̂

k
p) (18)

where r2 ∈ R is a normally distributed random number

generated from N (0, Dmax), Dmax is the maximal step length

of a run, and X̂k,h
p is the position of the pth bacterium after the

hth run step. For convenience of description, the position of

the pth bacterium beginning immediately after the tumble-run

process of the kth iteration is denoted by X̂k,Nf
p , Nf ≤ Nc.

The rotation angle is updated after each iteration. The

tumble angle of the pth bacterium at the beginning of the

(k + 1)th iteration is expressed as ϕk+1
p , which has the same

value as ϕ̂k
p .

B. Quorum sensing

Inspired by PSO, the positions of the bacteria moving by

attraction are updated as follows:

Xk+1
p = X̂k,Nf

p + r3(Xbest − X̂k,Nf
p ) (19)

where r3 ∈ R is a normally distributed random number with

a range of [−1, 1], which describes the strength of bacterial

attraction, and Xbest indicates the position of the current best

global solution updated after the evaluation of each function.

In BSA, a small number of the bacteria are randomly

selected to be repelled. To measure the degree of repelling,

a repelling rate is defined by ζ, i.e., in each iteration, 100ζ
percent of the bacteria are processed by repelling. Accordingly



TABLE I
PSEUDO CODE OF BSA

Set k := 0;
Randomly initialise bacterial positions;
WHILE (termination conditions are not met)

FOR (each bacterium p)
Tumble: Turn the heading angle randomly by (17).

Set h := 1
Run:

WHILE (h < Nc)
Move the bacterium towards the heading angle to the

new position X̂k,h
p by equation (18). If the fitness value

at current position is worse than that at previous position,
set h := Nc ; otherwise, increase h by 1;

END WHILE
END FOR
Quorum Sensing:

(1-ζ)100% of the bacteria are attracted to the global
optimum by equation (19), ζ 100% of bacteria are
repelled by equation (20);

k := k + 1;
END WHILE

the attraction rate is 100(1− ζ) percent. The repelling process

is based on the random searching principle. If the pth bac-

terium shifts into the repelling process, a random angle in the

range of [0, π] is generated. The bacterium is thereby “moved”

to a random position following this angle in the search space,

which can be described as:

Xk+1
p = X̂k,Nf

p + r4D
k
p(ϕ̂

k
p + π/2) (20)

where r4 ∈ R
n is a normally distributed random sequence

which drawn from N (0, Drange), and Drange is the range of

the search space. The pseudo code for BSA is listed in Table

I.

IV. SIMULATION STUDIES

A. Algorithm settings

The experimental studies compare the proposed algorithm

with conventional analysis methods, such as Discrete Fourier

Transform (DFT) and Prony’s Method (PM). As an effective

frequency domain analysis tool, DFT were widely used to

measure the frequency of LFO, even the LFO is not a periodic

signal. For DFT, the window size covers full range of the

signal. Prony’s method extracts valuable information from

a uniformly sampled signal and builds a series of damping

complex exponential sinusoid signals. The number of modes

(n) must be specified before applying PM analysis (PM-n).

When n is set to a value lager than actual number of modes,

the reconstructed LFO signal will have a form matching with

original signal. However, the estimated parameters will not

present the actual components in the signal.

Meanwhile, we also compare the BSA-LP with other EAs,

such as Genetic Algorithm (GA) and Particle Swarm Optimiz-

er (PSO). The population sizes of these three algorithms are

all set to 50, and the number of iterations are set to 1,000.

Therefore, the objective functions are evaluated 50,000 times

for each estimation. The mutation probability of GA is set

to 0.1. The inertia weight (ω), local attraction factor (c1) and

TABLE II
SETTING OF LFO PARAMETERS

Parameter Minimal value Maximal value

Amplitude (Ā) 0 10
Damping ratio (s̄) 0 1
Frequency (f̄ = 2π/ω̄) 0.1Hz 2.0Hz
Initial phase (φ̄) −π/2 π/2

TABLE III
EXPERIMENTAL RESULTS OF CASE I: SINGLE MODE ESTIMATION

Algorithm eA es ef eφ eL eLP

DFT 84.27 NA 3.31 NA NA NA
PM-1 11.72 27.65 1.89 7.42 9.53E0 NA
GA 0.20 0.36 0.04 0.66 1.25E-1 1.23E-1
PSO 0.40 0.56 0.19 0.58 1.51E-1 2.49E-1
BSA 0.20 0.45 0.03 0.50 1.25E-1 1.22E-1

global attraction factor (c2) are set to 0.73, 2.05 and 2.05,

respectively [20].

B. Case I: Single mode estimation

In this experiment, 1,000 LFO signals are generated indi-

vidually. The amplitude, damping ratio, frequency and initial

phase of each signal are randomly selected from the ranges

listed in Table II. Meanwhile, 30 dB white noise is also added

to each signal. All algorithms adopted for comparison and

BSA-LP are applied to estimate the parameters of these LFO

signals.

The numerical results are listed in Table III. The comparison

for parameter estimation is based on Mean Absolute Percent-

age Error (MAPE):

e =
1

NE

NE∑
i=1

|Z̄i − Zi|
|Z̄i| × 100% (21)

where NE is the number of experiments, Z̄i and Zi are the

actual parameter and estimated parameter in the ith experi-

ment. Meanwhile, the average LMS error (eL) and average

LMS error of the selected region (eLP) are also compared in

this table.

It can be found that the amplitude (0.20%), frequency

(0.03%) and phase angle (0.5%) estimated by BSA-LP has

the minimal MAPE. The GA estimates a better damping

ratio (0.36%) than BSA-LP (0.45%) in this experiment. The

LFO signal reconstructed by BSA-LP also has the minimal

eL error (1.25E-1) and eLP error (1.22E-1), which is nearly

same as the error of the signal reconstructed by GA (1.25E-

1). As the objective function in this research is a multi-

modal funtion, which contains many local optima around

global optimum. Therefore, PSO is not suitable to solve this

optimization problem, due to the lack on mutation scheme

to keep the population diversity. The signal reconstructed by

PSO has lager errors (1.51E-1). For conventional analysis

methods, DFT only estimates the frequency with acceptable

error (3.31%). By applying the PM-1, the LFO signal can

be reconstructed with a small error (9.53E0). The numerical
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Fig. 2. Original and Reconstructed LFO signal with single mode

TABLE IV
EXPERIMENTAL RESULTS OF CASE II: MULTIPLE MODE ESTIMATION

Algorithm
2 modes 3 modes

eL eLP eL eLP

PM-2 & PM-3 4.98E2 N/A 5.00E2 NA
GA 1.64E1 1.62E1 2.49E1 2.46E1
PSO 7.27E1 7.23E1 1.36E2 1.30E2

BSA-LP 3.14E0 3.08E0 1.17E1 1.15E1

results indicate PM is not suitable to estimate the damping

ratio (27.65%) and amplitude (11.72%). The original LFO

signals and those reconstructed by PM1, GA, PSO and BSA-

LP with single mode are illustrated in Fig. 2. In this figure, the

signals reconstructed by GA, PSO and BSA-LP are overlapped

due to the small eL error.

C. Case II: Multiple mode estimation

The LFO signal adopted in the second experiment consists

of multiple modes. The algorithms are applied to estimate the

parameter of each sub mode. In order to fully evaluate the

proposed algorithm, the numbers of modes are selected as 2

and 3 in this experiment.

Table IV lists the error comparison among estimation al-

gorithms. From the result, it can be found that the signal

reconstructed by BSA-LP has minimal errors both on 2 modes

(3.14E0) and 3 modes (1.17E1) LFO signals. GA (1.64E1 and

2.49E1) outperforms PSO (7.27E1 and 1.36E2), due to the

population diversity. PM has the worst performances (4.99E2

and 5.00E2) in two experiments. Meanwhile, we also compare

the standard deviation of BSA-LP 1,000 separate runs. The

results are 1.21E1 and 3.09E, which shows the performance

of BSA-LP is stable. The original LFO signals and those

reconstructed by PM1, GA, PSO and BSA-LP with 2 modes

and 3 modes are illustrated in Fig. 3 and Fig. 4. From these

two figures, it also can be found that all estimation algorithms

are affected by the noise and mode in the signal. As the

window for the estimation is around 10 seconds, the estimation

algorithms focuses on the later stage of the signal, which is

stable and easy to achieve a better accuracy. Therefore, BSA-
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Fig. 3. Original and Reconstructed LFO signal with 2 modes
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Fig. 4. Original and Reconstructed LFO signal with 3 modes

LP not estimate the peak values of the amplitude of the LFO

signal in the early stage. In contrast, PM2 more focus on later

stage or the signal.

D. Case III: LFO with DC offset

In real applications, LFO signals are usually accompanied

with DC offset, which causes the estimation procedure ex-

tremely difficult. In traditional research, DC offset cancellation

filter or algorithm are usually used as pre-processing progress.

However, the proposed scheme is able to be applied to estimate

the parameters of LFO and DC offset simultaneously. The LFO

model with DC offset Z(t) can be presented as:

Z(t) = Y (t) +ADe
−sDt (22)

where Y (t) is the LFO signal described in Section II, AD

and sD are the amplitude and ratio of the DC offset. In this

experiment, AD is randomly selected in the range of [0, 10],
and sD is randomly selected in the range of [0, 1].

The experiment result on case III is listed in Table V.

The detailed LFO parameters are not listed in this table. In

this case, PM is not suitable to estimate the parameters as

it only decomposes the LFO to damping sinusoidal signal.



TABLE V
EXPERIMENTAL RESULTS OF CASE III: ESTIMATION ON LFO AND DC

OFFSET

Algorithm AD sD eL eLP

GA 1.66 1.50 1.22E1 1.15E1
PSO 6.34 9.10 1.30E2 1.15E2

BSA-LP 1.65 1.47 3.41E0 3.22E0
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Fig. 5. Original and Reconstructed damping LFO signal with 2 modes

From the numerical comparison, it can be found that BSA-

LP has the minimal eL (3.41E0) and eLP (3.22E0) errors.

The estimated errors of AD and sD are 1.65% and 1.47%,

respectively. Due to the accurate estimated parameters, the DC

offset can be removed effectively. GA has nearly the same per-

formance (1.22E1) as BSA-LP, which shows a great potential

on multi-modal parameter estimation. The errors of parameter

estimation on AD and sD are 1.66% and 1.50%. Among these

three algorithms, PSO has the worst performance (1.30E2),

and fails to estimate the parameters of DC offset (6.34% and

9.10%). The original LFO signal with DC offset and those

reconstructed by GA, PSO and BSA-LP are illustrated in Fig.

5.

V. CONCLUSION

In order to support fault diagnosis in power systems, this

research proposes a novel regression scheme to estimate

the parameters to LFO. By applying the MM filter, fitting

segments are selected from original LFO signal, which greatly

reduces the computational complexity. Then BSA is applied

to optimize the probability likelihood between the reconstruct-

ed and original signal. The experiment results indicate the

proposed scheme has a better performance than conventional

PM, especially in the noisy environment. On three-mode

estimation, the estimation error of BSA-LP is 98% less than

PM. Compared with other EAs, such as GA and PSO, BSA

also has a better accuracy. Meanwhile, the LFO signal with DC

offset is also analysed is this research. The proposed scheme

is able to estimate the parameters of DC offset and LFO

simultaneously with a superior performance.
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