
Adaptive Large Neighborhood Search for Vehicle
Routing Problem with Cross-Docking

Aldy Gunawan, Audrey Tedja Widjaja
School of Information Systems

Singapore Management University
Singapore, Singapore

aldygunawan,audreyw@smu.edu.sg

Pieter Vansteenwegen
Leuven Mobility Research Center, CIB

KU Leuven
Leuven, Belgium

pieter.vansteenwegen@kuleuven.be

Vincent F. Yu
Department of Industrial Management

NTUST
Taipei, Taiwan

vincent@mail.ntust.edu.tw

Abstract—Cross-docking is considered as a method to manage
and control the inventory flow, which is essential in the context of
supply chain management. This paper studies the integration of
the vehicle routing problem with cross-docking, namely VRPCD
which has been extensively studied due to its ability to reduce
the overall costs occurring in a supply chain network. Given
a fleet of homogeneous vehicles for delivering a single type of
product from suppliers to customers through a cross-dock facility,
the objective of VRPCD is to determine the number of vehicles
used and the corresponding vehicle routes, such that the vehicle
operational and transportation costs are minimized. An adaptive
large neighborhood search (ALNS) algorithm is proposed to solve
the available benchmark VRPCD instances. The experimental
results show that ALNS is able to improve 80 (out of 90) best
known solutions and obtain the same solution for the remaining
10 instances within short computational time. We also explicitly
analyze the added value of using an adaptive scheme and the
implementation of the acceptance criteria of Simulated Annealing
(SA) into the ALNS, and also present the contribution of each
ALNS operator towards the solution quality.

Index Terms—cross-docking, vehicle routing problem, schedul-
ing, adaptive large neighborhood search

I. INTRODUCTION

A supply chain refers to a system that moves products or
services from suppliers to customers. Traditionally, members
of a supply chain only concern themselves and they do not
consider the global optimization by factoring other members
in the supply chain. Managing the flow of inventory, e.g. raw
materials, work-in-process, and finish goods, is one of the
major challenges in supply chain management [1].

A warehousing strategy, called cross-docking, has been
widely adapted by many companies due to its ability to reduce
inventory and travel time during the delivery process within a
supply chain network. The supplied products from suppliers
are consolidated inside the cross-dock facility before being
sent to the customers. The consolidation inside the cross-dock
facility should be done in a short time, usually less than 12
hours, or products are even dispatched immediately to the
customers [2].

The integration of the vehicle routing problem with cross-
docking (VRPCD) was first addressed by [3] to eliminate
a long origin-to-destination distance. Nikolopoulou et al. [4]
remarked the benefits of VRPCD compared to direct shipping
for cases where supplier-customer pairs are located remotely

and for the case of clustered node distributions. Wen et
al. [5] studied the VRPCD by considering time windows
(VRPCDTW).

In this paper, we focus on the VRPCD developed in [3]. The
VRPCD network consists of a set of suppliers who deliver a
single type of product to a set of customers through a single
cross-docking facility. The products are consolidated inside
the cross-dock before sending them to the customers. The
objective is to minimize the total cost, consists of vehicle op-
erational and transportation costs, within a given time horizon.
A detailed problem definition is explained in Section II.

Lee et al. [3] proposed a tabu search (TS) algorithm to
solve the VRPCD. Liao et al. [1] further developed a new
TS algorithm (imp-TS) which reduces the number of vehicles
used during the search process. By using the same bench-
mark VRPCD instances [3], this new TS algorithm is able
to improve the solutions by 10-36% for different sizes of
problems, with much less computational time. Yu et al. [6]
designed a simulated annealing (SA) algorithm, which was
originally developed to solve an open VRPCD (OVRPCD).
Computational results on the benchmark VRPCD instances
show that the proposed SA is able to obtain the same or better
solutions for 78 out of 90 instances. Other papers focused on
developing algorithms to solve the VRPCDTW, such as TS
[5] and local search [7].

Shaw [8] firstly designed a large neighborhood search (LNS)
algorithm to solve variants of the VRP, such as the capacitated
VRP (CVRP) and the VRPTW. LNS explores a large neighbor-
hood of the current solution by removing the visited customers
in the routing plan iteratively, and reinserting them. Ropke and
Pisinger [9] designed an adaptive LNS (ALNS) algorithm to
solve the pickup and delivery problem with time windows
(PDPTW). The algorithm incorporates several destroy and
repair operators that are selected adaptively during the entire
search process.

Other classes of VRPs have also been solved by ALNS, such
as the pollution-routing problem (PRP) [10], the two-echelon
VRP (2E-VRP) [11], the location routing problem (LRP)
[11], and the VRP with drones [12]. Its outstanding results
in solving various transportation and scheduling problems
[13] motivated us to design an ALNS algorithm to solve the
VRPCD.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE



We tested our proposed ALNS on the available benchmark
VRPCD instances. Computational results show that our pro-
posed ALNS outperforms all state-of-the-arts algorithms (TS
[3], imp-TS [1], and SA [6]). Furthermore, we present the
added value of using an adaptive scheme and the acceptance
criteria of SA in the proposed algorithm. The contribution
of each ALNS operator towards the solution quality is also
discussed.

II. PROBLEM DESCRIPTION

A VRPCD network is described as two directed graphs
G′ = (S ∪ {0}, A′) and G′′ = (C ∪ {0}, A′′), where node
0 represents a cross-dock facility, S = {1, 2, . . . , |S|} is
a set of supplier nodes, and C = {1, 2, . . . , |C|} is a set
of customer nodes. A′ = {(i, j) : i 6= j ∈ S ∪ 0} and
A′′ = {(i, j) : i 6= j ∈ C ∪0} refer to a set of arcs connecting
two different nodes i and j. Each of the connected arcs include
transportation costs c

′

ij and c
′′

ij , and transportation times t
′

ij

and t
′′

ij for connecting supplier or customer nodes, respectively.
Fig. 1 illustrates a feasible solution.

Fig. 1. Illustration of a VRPCD solution

A fleet of homogeneous vehicles V = {1, 2, . . . , |V |} with
capacity Q is available at the cross-dock facility. They are
classified into pickup vehicles and delivery vehicles. The
former departs from the cross-dock, visits one (or more)
supplier(s), picks up a number of products Pi, and returns to
the cross-dock. The products are then consolidated according
to customers’ demand inside the cross-dock facility. The latter
departs from the cross-dock, visits one (or more) customer(s),
delivers their demand Di, and returns to the cross-dock. It is
assumed that each vehicle only performs a single trip (e.g.
departs from and return to the cross-dock at most once). A
vehicle operational cost H is charged to each vehicle used.
The consolidation process inside the cross-dock facility and
the pickup and delivery processes at the nodes are assumed to
be fast enough, and therefore it is not taken into consideration
or already included in the transportation times.

The VRPCD aims to decide how many vehicles are assigned
to perform the pickup and delivery processes, and also con-
struct the corresponding routes, subject to the constraints as
listed below:

• the total transportation time for the pickup and delivery
processes together does not exceed Tmax. This implies
that all products are first collected from the suppliers
and then (after the consolidation) these products are
distributed to the customers, all within Tmax

• each supplier and customer can only be visited exactly
once

• the number of utilized vehicles in pickup and delivery
processes does not exceed |V |

• the amount of loads in each vehicle does not exceed Q
One may think that solving the VRPCD is similar to solving
two independent VRPs. However, this is not the case due
to the existence of the above-mentioned constraints about
transportation time and number of vehicles which link these
two VRPs together and definitely increase the complexity of
the problem. The objective is to minimize both operational
and transportation costs. For more details, readers are referred
to [3] for the VRPCD mathematical model.

III. PROPOSED ALGORITHM

A. Solution Representation

The VRPCD solution is represented here as a two-
dimensional matrix, where rows and columns indicate the
vehicles and the route sequences, respectively. We set a fixed
number of rows, which is the upper bound of the number of
vehicles that can be used, |V |. However, each row may have a
different number of columns which depends on the number of
nodes visited by the corresponding vehicle. Fig. 2 illustrates a
solution representation of the VRPCD network with |S| = 5,
|C| = 6, and |V | = 5. It implies that vehicle 5 is not used and
therefore, H is only charged for the four vehicles used. Vehicle
1 starts its route from the cross-dock (node 0), visits Suppliers
1, 2, and 3, and returns to the cross-dock. Vehicle 4 is used
to visit Customers 4, 5 and 6. It is noted that the solution
must satisfy (1), corresponding to the total transportation time
constraint discussed in Section II.

Fig. 2. Example of solution representation

argmax{(t
′

0,S1 + t
′

S1,S2 + t
′

S2,S3 + t
′

S3,0),

(t
′

0,S4 + t
′

S4,S5 + t
′

S5,0)}+
argmax{(t

′′

0,C1 + t
′′

C1,C2 + t
′′

C2,C3 + t
′′

C3,0),

(t
′′

0,C4 + t
′′

C4,C5 + t
′′

C5,C6 + t
′′

C6,0)} ≤ Tmax

(1)

The objective function value of the solution shown in
Fig. 2, the total cost TC, is calculated by (2). It aims to
minimize both operational cost (obtained by minimizing the



number of vehicles used) and transportation cost (obtained by
constructing the least arc cost routes).

TC =4×H + c
′

0,S1 + c
′

S1,S2 + c
′

S2,S3 + c
′

S3,0+

c
′

0,S4 + c
′

S4,S5 + c
′

S5,0+

c
′′

0,C1 + c
′′

C1,C2 + c
′′

C2,C3 + c
′′

C3,0+

c
′′

0,C4 + c
′′

C4,C5 + c
′′

C5,C6 + c
′′

C6,0

(2)

B. The Adaptive Large Neighborhood Search Algorithm

The ALNS pseudocode is presented in Algorithm 1.

Algorithm 1: ALNS pseudocode
1 Sol0, Sol

∗, Sol′ ← Initial Solution
2 Temp← T0

3 NOIMPR, ITER ← 0
4 FOUNDBESTSOL ← False
5 Set sj and wj such that pj is equally likely
6 while NOIMPR < θ do
7 REMOVEDNODES ← 0
8 while REMOVEDNODES < π do
9 Sol0 ← Destroy(Rr)

10 UpdateRemovedNodes(REMOVEDNODES, Rr )
11 end
12 while REMOVEDNODES > 0 do
13 Sol0 ← Repair(Ii)
14 UpdateRemovedNodes(REMOVEDNODES, Ii)
15 end
16 AcceptanceCriteria(Sol0, Sol∗, Sol′, T emp)
17 Update sj
18 if ITER mod ηALNS = 0 then
19 Update wj and pj
20 end
21 if ITER mod ηSA = 0 then
22 if FOUNDBESTSOL = False then
23 NOIMPR ← NOIMPR + 1
24 end
25 else
26 NOIMPR ← 0
27 end
28 FOUNDBESTSOL ← False
29 Temp← Temp× α
30 end
31 ITER ← ITER + 1
32 end
33 Return Sol∗

The main idea of ALNS is to remove nodes from the
solution by using DESTROY operators and reinsert them into a
more profitable position by using REPAIR operators. A score
is assigned to each operator in order to assess its performance
upon generating a new neighborhood solution. The better
the new generated solution is, the higher the score is given
to the corresponding operator. After ηALNS iterations, each
operator’s weight is calculated based on its score. The weight
corresponds to the probability of choosing an operator over
another. The better the performance is, the higher the chance
to be selected in the next iteration.

Let R = {Rr|r = 1, 2, . . . , |R|} be a set of DESTROY
operators and I = {Ii|i = 1, 2, . . . , |I|} be a set of REPAIR

operators. All operators j(j ∈ R ∪ I) initially have the same
weight wj and probability pj to be selected, such that (3) is
satisfied.

pj =

{ wj∑
k∈R wk

∀j ∈ R
wj∑

k∈I wk
∀j ∈ I

(3)

The ALNS adopts the Simulated Annealing (SA) acceptance
criteria, a worse solution may be accepted with a certain
probability [14]. Therefore, each of the operator’s score sj
is adjusted by (4).

sj =



sj + δ1, if the new solution is the
best found solution so far

sj + δ2, if the new solution improves
the current solution

sj + δ3, if the new solution does not
improve the current solution,
but it is accepted

∀j ∈ R ∪ I

(4)
with δ1 > δ2 > δ3. We implemented 0.5, 0.33, and 0.17 for
δ1, δ2, and δ3 respectively. Then, the operator’s weight wj is
adjusted by following (5).

wj =

{
(1− γ)wj + γ

sj
χj
, if χj > 0

(1− γ)wj , if χj = 0
∀j ∈ R ∪ I (5)

where γ refers to the reaction factor (0 < γ < 1) to control
the influence of the recent success of an operator on its weight
and χj is the frequency of using operator j.

Let Sol0, Sol∗, and Sol′ be the current solution, the best
found solution so far, and the starting solution at each iteration
respectively. At the beginning, Sol0, Sol∗, and Sol′ are set
to be the same as the initial solution. The initial solution is
constructed by assigning nodes to a vehicle without violating
the vehicle capacity. Then, the route sequence of each vehicle
is constructed by inserting every time the next least trans-
portation cost node. When Tmax is violated, we reduce the
trip of a vehicle that consumes the highest transportation time
by transferring some of its visited nodes to other vehicles.
The current temperature (Temp) is set to be equal to the
initial temperature (T0) and will be decreased by α after ηSA
iterations. The score sj and weight wj of each operator j are
set such that the probability of choosing an operator pj is
equally likely in the beginning.

At each iteration, the Sol0 is modified by applying DE-
STROY and REPAIR operators. π nodes are removed from Sol0
by using a selected DESTROY operator Ri. Ri is applied until
π is reached. Then, the removed π nodes are reinserted to
Sol0 by a selected REPAIR operator Ii. We use π = 5. Each
of the removed nodes is only considered as a candidate to be
inserted in a route of Sol0 if it satisfies both vehicle capacity
and time horizon constraints. Therefore, the feasibility of Sol0
is guaranteed, unless the removed nodes cannot be inserted to



any positions in Sol0. If that happens, a high penalty value
(e.g. a very large number) is added to the objective function
value. The details of ALNS operators are introduced in Section
III-C.
Sol0 is directly accepted if its objective function value is

better than Sol∗ or Sol′. Otherwise, it will only be accepted

with probability e
−(Sol0−Sol′)

Temp . Each of the operator’s score
sj is then updated according to (4). After ηALNS iterations,
each of the operator’s weight wj is updated by (5) and its
probability pj is updated according to (3). The ALNS is
terminated when there is no solution improvement after θ
successive temperature reductions.

C. The Adaptive Large Neighborhood Search Operators

Random removal (R1): select one node randomly and re-
move from the current solution. Once R1 is applied, RE-
MOVEDNODES is increased by 1.
Worst removal (R2): remove the node with the xth highest
removal cost. The removal cost is defined as the difference in
objective function values between including and excluding a
particular node. For each nodes in Sol0, the removal cost is
calculated and sorted in a descending order. x is determined
by (6), in which the value ranges between 1 to ξ, with x =
1 having the highest chance to be drawn, and the chance is
decreasing for larger xs. It means that R2 tries to remove
a node which contributes a high cost if it is located in the
current position. Instead of always choosing a node with the
highest removal cost (e.g. x = 1), R2 also considers other
nodes in order to diversify the removal process (in which 2 ≤
x ≤ ξ), but with a lower chance. We implement p = 3. y1
is introduced to maintain the randomness, y1 ∼ U(0, 1). ξ is
the number of candidate nodes which is formally formulated
in (7) case 1. By referring to Algorithm 1 lines 8 – 11, if we
consider |C| = 6, |S| = 4 with REMOVEDNODES = 0, the
number of candidate nodes that can be removed in the current
iteration is |C| + |S| − 0 = 10. Once a node is removed,
REMOVEDNODES is increased by 1, then in the next iteration,
the number of candidate nodes that can be removed becomes
|C|+ |S|−1 = 9. It means that every time a node is removed
from the Sol0, the number of candidate nodes that can be
removed from the Sol0 in the next iteration is decreased.

x = dyp1 × ξe (6)

ξ =


|C|+ |S| − REMOVEDNODES, for R2

|C|+ |S| − REMOVEDNODES − 2, for R4, R5

REMOVEDNODES, for I9

(7)

Route removal (R3): randomly select a vehicle and remove its
z visited nodes. z is determined by (8), where β is the number
of nodes visited by the corresponding vehicle. Therefore, once
R3 is applied, REMOVEDNODES is increased by z. R3 is
implemented to speed up the removal process compared to
the one of R1. When implementing R1 requires at least π
iterations (see Algorithm 1 lines 8 – 11), the implementation

of R3 may only require one iteration if β ≥ π (see (8) case 1).
The worst case is that if all vehicles only visit one node each,
then, the implementation of R3 would also need π iterations
(see (8) case 2).

z =

{
π, if β ≥ π
β, otherwise

(8)

Historical node pair removal (R4): remove a pair of nodes
with the xth highest transportation cost. x is determined by
(6) while ξ is determined by (7) case 2. However, it should
be noted that applying R4 means that two nodes are removed
simultaneously from the Sol0 in one iteration and therefore,
REMOVEDNODES is increased by 2. When applying R4 is
impossible (e.g. when REMOVEDNODES = 4 while π = 5),
then, we apply R1 instead. R4 tries to remove two adjacent
nodes with a high transportation cost from the Sol0, such that
when REPAIR reinserts them back to Sol0, they can be located
in better, and probably separated, positions.
Worst pair removal (R5): similar to R2, but instead of
only one node, R5 chooses a pair of nodes. The underlying
difference between R4 and R5 is that R4 only focuses in the
transportation cost between two nodes, while R5 considers the
overall costs. Same as R4, applying R5 means that two nodes
are removed simultaneously from the Sol0 in one iteration and
therefore, REMOVEDNODES is increased by 2. When applying
R5 is impossible, we apply R1 instead. x is determined by (6)
while ξ is determined by (7) case 2.
Shaw removal (R6): remove a node that is highly related
with other removed nodes in a predefined way. R6 tries to
remove some similar nodes, such that it is easier to replace
the positions of one another during the repair process. The last
removed node is denoted as node i while the next candidate of
the removed node is denoted as node j. The relatedness value
(ϕj) of node j to node i is calculated by (9). R6 starts by
randomly selecting a node to be removed, set this node as i,
and then calculating ϕj for the remaining nodes in Sol0. The
next removed node is the node with the lowest ϕj . Since R6

removes one node at a time, REMOVEDNODES is increased by
1. The φ1 to φ4 are weights given to each of the relatedness
components, in which we set as 0.25 each. lij = −1 if nodes
i and j are in the same vehicle; 1 otherwise.

ϕj =

{
φ1c

′

ij + φ2t
′

ij + φ3lij + φ4|Pi − Pj |, if i ∈ S
φ1c

′′

ij + φ2t
′′

ij + φ3lij + φ4|Di −Dj |, if i ∈ C
(9)

Greedy insertion (I1): insert a node to a position resulting
in the lowest insertion cost (i.e. the difference in objective
function value after and before inserting a node to a particular
position). For each of the removed nodes, the insertion cost to
all possible positions is calculated and sorted in an ascending
order. The node with the lowest insertion cost is then selected
and inserted to the corresponding position. Once I1 inserts one
node to the Sol0, REMOVEDNODES is decreased by 1.
k-regret insertion (I2, I3, I4): the regret value is calculated
by the difference in Total Cost (TC) when node j is inserted



in the best position (denoted as TC1(j)) and in the k-best
position (denoted as TCk(j)). The idea is to select a node
which leads to the largest regret value if it is not inserted in
its best position, which is formally formulated in (10). This
node is then inserted in its best position. In other words, this
operator tries to insert the node that we will regret the most if it
is not inserted now [9]. We implemented k = 2, 3 and 4. Once
I2, I3, or I4 inserts one node to the Sol0, REMOVEDNODES
is decreased by 1.

argmax
j∈REMOVEDNODES

{
k∑
i=2

(TCi(j)− TC1(j))

}
(10)

Greedy insertion with noise function (I5): an extension of
I1. A noise function is applied to the objective function value
(11) when selecting the best position of a node [10], where e
is the maximum transportation cost between nodes (problem-
dependent), µ is a noise parameter that we set to 0.1, and
y2 ∼ U(−1, 1).

TCnew = TC + e× µ× y2 (11)

k-regret insertion with noise function (I6, I7, I8): an
extension of I2, I3, and I4 by applying a noise function to
the objective function value (11) when calculating the regret
value [10].
GRASP insertion (I9): similar to I1, but instead of choosing
a node with the lowest insertion cost, I9 chooses the node with
the xth lowest insertion cost. x is determined by (6) while ξ
is determined by (7) case 3.

IV. COMPUTATIONAL RESULTS

A. Benchmark Instances

Benchmark VRPCD instances are available online in http:
//web.ntust.edu.tw/∼vincent/ovrpcd/. They are grouped by the
number of nodes (|S| + |C|): 10-nodes, 30-nodes, and 50-
nodes. The parameter values are listed in Table I.

TABLE I
VRPCD PARAMETER VALUES [3]

Parameter Set 1 Set 2 Set 3
|S| 4 7 12
|C| 6 23 38
|V | 10 20 30
Q 70 150 150
H 1000 1000 1000
Tmax 960 960 960
e
′
ij , e

′′
ij U∼(48,560) U∼(48,480) U∼(48,560)

t
′
ij , t

′′
ij U∼(20,200) U∼(20,100) U∼(20,200)

Pi, Di U∼(5,50) U∼(5,20) U∼(5,30)

B. Results and Discussion

The proposed ALNS is coded in C++. The experiments were
performed on a computer with Intel Core i7-8700 CPU @
3.20 GHz processor, 32.0 GB RAM. The ALNS parameter
values are γ = 0.7, θ = 20, T0 = 500, α = 0.9, ηALNS =
200, ηSA = (|S| + |C|) × 2. We perform 10 replications for

each instance and record the average results.We compare our
results against those of state-of-the-art algorithms: tabu search
(TS) [3], improved tabu search (imp-TS) [1] and simulated
annealing (SA) [6], in terms of the solution quality and
CPU time (in seconds), as summarized in Table II and III
respectively. We converted the CPU times of the state-of-the-
art algorithms, based on https://cpu.userbenchmark.com/, to
make a fair comparison. The Improvement (%) made by ALNS
towards the best known solution (BKS) is calculated by (12).
ALNS is able to either improve the BKS (for 80 instances)
or obtain the same solution as the BKS (for the remaining 10
instances). On average, ALNS improves the BKS up to 1.4%,
13.6%, and 21.8% for three sets of instances respectively.

Improvement(%) =
(TCALNS − TCBKS)

TCBKS
× 100 (12)

Compared against TS [3], ALNS is able to obtain better
total cost for all instances. The improvement is 32.87% on
average, with slightly longer computational time. Compared
against the imp-TS [1], ALNS performs better in solving
88 instances while obtains the same solution for another
two instances, with an improvement of 15.72%, although
with longer computational time. Compared to SA [6], ALNS
improves the solution of 80 instances and obtains the same
solution for the remaining 10 instances, with an improvement
of 12.54% and faster computational time. We conclude that our
proposed ALNS outperforms the state-of-the-art algorithms.

C. The Importance of the Adaptive Scheme

Here, we assess the importance of applying the adaptive
scheme during the search process. We set the static probability
(13) and (14) as the baseline, in which during the search
process, each operator is equally likely to be selected. In order
to assess adaptive performance, we calculate the gap between
TC obtained by the adaptive scheme (TCALNS) towards the
TC obtained by the baseline (static) scheme (TCbaseline),
using (15).

p(Ri) =
1

|R|
∀i ∈ R (13)

p(Ii) =
1

|I|
∀i ∈ I (14)

Gap(%) =
(TCALNS − TCbaseline)

TCbaseline
× 100 (15)

In most instances (see Fig. 3), the gap obtained is negative,
which implies that the adaptive scheme outperforms the static
scheme. However, due to the randomness aspect in selecting
the operators, the adaptive scheme does not always outper-
form the static scheme. Also worse performing operators can
sometimes be selected. The adaptive scheme is worth to use
as it improves the baseline in all sets on average up to 0.51%,
0.67%, and 0.41% for Set 1, Set 2, and Set 3 respectively,
without significant difference in computational time.



TABLE II
TOTAL COST COMPARISON OF PROPOSED ALNS AND STATE-THE-ART ALGORITHMS

Instance [3] [1] [6] BKS ALNS Improvement (%)
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

1 7571.4 12366.7 24284.6 6847.6 7692.9 20704.6 6953.0 7550.2 19804.5 6847.6 7550.2 19804.5 6823.0 6678.5 16006.4 -0.4 -11.5 -19.2
2 7103.7 14173.0 23435.6 6816.8 7787.2 20816.8 6741.0 7832.7 18248.1 6741.0 7787.2 18248.1 6741.0 6702.8 14243.4 0.0 -13.9 -21.9
3 9993.5 13836.8 23449.4 9615.6 7893.6 19612.2 9269.0 7747.4 18133.9 9269.0 7747.4 18133.9 9269.0 6669.6 13969.9 0.0 -13.9 -23.0
4 8338.0 10995.4 23471.1 7289.7 7792.2 19549.0 7255.0 7677.4 19083.6 7255.0 7677.4 19083.6 7229.0 6379.3 15190.5 -0.4 -16.9 -20.4
5 8709.9 11757.8 23406.2 6599.0 7224.8 20448.0 6524.0 7579.7 18877.3 6524.0 7224.8 18877.3 6475.0 6296.7 14801.5 -0.8 -12.8 -21.6
6 9143.5 11027.7 24026.6 9324.6 7245.9 21212.0 7613.0 7053.0 19783.0 7613.0 7053.0 19783.0 7434.0 5656.7 15383.8 -2.4 -19.8 -22.2
7 12721.2 11899.2 24190.0 12083.0 8206.9 20640.2 11990.0 7720.1 19690.0 11990.0 7720.1 19690.0 11713.0 6938.0 16035.2 -2.3 -10.1 -18.6
8 9275.7 12825.5 23158.9 8719.6 7880.9 20664.1 8158.0 7709.8 18939.2 8158.0 7709.8 18939.2 8158.0 6733.7 14738.6 0.0 -12.7 -22.2
9 8096.5 12718.6 23594.7 7362.2 8157.3 18920.0 7120.0 7882.5 18510.6 7120.0 7882.5 18510.6 6989.0 6853.1 14258.5 -1.8 -13.1 -23.0
10 7044.8 11794.7 23530.5 6204.5 7924.7 20384.2 6056.0 7734.9 19607.3 6056.0 7734.9 19607.3 5960.0 6787.0 15903.0 -1.6 -12.3 -18.9
11 8051.8 12094.9 23371.7 7635.3 7452.6 19941.6 7434.0 7721.7 18675.8 7434.0 7452.6 18675.8 6916.0 6425.1 14922.6 -7.0 -13.8 -20.1
12 8661.0 12132.5 21082.8 7867.2 8320.0 17258.4 7800.0 7899.8 17550.3 7800.0 7899.8 17258.4 7656.0 6725.2 13318.5 -1.8 -14.9 -22.8
13 7370.2 13223.4 21610.7 7097.9 8222.7 17829.9 6934.0 7863.7 18039.2 6934.0 7863.7 17829.9 6783.0 6770.5 13435.3 -2.2 -13.9 -24.6
14 7132.3 12413.9 23397.9 5208.0 8211.7 19845.2 4704.0 8141.1 18252.5 4704.0 8141.1 18252.5 4417.0 6776.3 13818.7 -6.1 -16.8 -24.3
15 7563.4 12521.4 24041.9 7103.2 8144.6 21863.0 7088.0 7941.6 19803.8 7088.0 7941.6 19803.8 7072.0 6712.3 15504.6 -0.2 -15.5 -21.7
16 9983.6 12044.4 22893.4 8768.7 7451.7 20144.2 8616.0 7901.9 18808.3 8616.0 7451.7 18808.3 8440.0 6788.3 14427.6 -2.0 -8.9 -23.3
17 9538.1 12699.4 22950.4 9003.0 8086.2 20093.3 9003.0 8055.0 18713.8 9003.0 8055.0 18713.8 9003.0 6727.4 14692.6 0.0 -16.5 -21.5
18 8057.4 11001.4 24358.2 6887.5 7576.0 20244.8 6911.0 7798.3 18579.7 6887.5 7576.0 18579.7 6760.0 6682.1 14410.1 -1.9 -11.8 -22.4
19 9042.6 12724.4 25068.7 7123.0 7871.2 19955.0 7051.0 7964.3 18453.2 7051.0 7871.2 18453.2 7051.0 6826.9 15111.9 0.0 -13.3 -18.1
20 10478.0 12357.7 23232.1 10471.0 7883.7 19267.7 10004.0 7522.4 18167.3 10004.0 7522.4 18167.3 9786.0 6820.5 14066.8 -2.2 -9.3 -22.6
21 8380.5 13177.0 22564.8 5431.4 7914.1 19533.4 4753.0 7886.2 19226.0 4753.0 7886.2 19226.0 4644.2 6679.5 14299.2 -2.3 -15.3 -25.6
22 9016.9 11545.0 24360.7 6908.0 8005.3 19032.1 6442.0 7841.1 18551.6 6442.0 7841.1 18551.6 6442.0 6716.1 14330.8 0.0 -14.3 -22.8
23 9489.2 12308.1 24377.9 9224.1 7883.5 20562.5 9156.0 7791.5 18514.8 9156.0 7791.5 18514.8 9156.0 6600.3 14642.0 0.0 -15.3 -20.9
24 12513.6 12722.7 22008.7 11976.0 7731.2 19288.2 11976.0 7957.8 18558.5 11976.0 7731.2 18558.5 11976.0 6615.1 13690.2 0.0 -14.4 -26.2
25 7114.3 12844.9 24256.6 6638.0 7884.8 19695.9 6346.0 7839.4 18574.2 6346.0 7839.4 18574.2 6346.0 6799.8 14716.2 0.0 -13.3 -20.8
26 8421.3 13297.5 23424.9 7216.9 8001.6 20610.5 6880.0 7846.2 18995.7 6880.0 7846.2 18995.7 6817.0 6971.5 14803.2 -0.9 -11.1 -22.1
27 10666.8 13415.2 22961.4 9709.8 8899.4 18942.8 9541.0 8128.6 18128.7 9541.0 8128.6 18128.7 9541.0 7215.7 14711.4 0.0 -11.2 -18.9
28 10123.3 12613.0 23822.3 7408.0 10131.0 20097.3 7107.0 8367.5 18952.4 7107.0 8367.5 18952.4 6782.0 7279.0 14546.7 -4.6 -13.0 -23.2
29 7503.2 12840.8 23678.3 6748.5 8276.9 22248.1 6762.0 8003.1 19056.1 6748.5 8003.1 19056.1 6591.0 6917.8 14856.4 -2.3 -13.6 -22.0
30 7642.6 13796.2 23149.8 7304.4 8251.6 19321.9 6942.0 7760.9 18268.6 6942.0 7760.9 18268.6 6919.0 6648.5 14654.2 -0.3 -14.3 -19.8

Avg -1.4 -13.6 -21.8



Fig. 3. Gap comparison with and without adaptive scheme (a negative gap
indicates the adaptive scheme performs better)

D. The Importance of the SA Acceptance Criteria

Here, we assess the importance of embedding the SA
acceptance criteria into the ALNS, which allows ALNS to
accept a worse solution within a certain probability. We define
the baseline approach as when the ALNS only accepts a better
solution. For comparison purpose, we record the TC obtained
by Algorithm 1 (TCALNS), and also the TC obtained by the
baseline approach (TCbaseline). We again calculate the gap
between TCALNS and TCbaseline by (15).

Fig. 4. Gap comparison with and without SA acceptance criteria (a negative
gap indicates using SA acceptance criteria performs better)

The SA acceptance criteria plays an important role towards
the TC obtained, as can be observed from Fig. 4 since most
of the gap values are negative. The SA acceptance criteria
significantly affects TC especially for larger instances. This
is due to its ability to avoid a local optima solution such that
it may search a vast search space, rather than always focus
on one space. The improvement made by the SA acceptance
criteria is up to 0.32%, 1.46%, and 3.21% for Set 1, Set 2, and
Set 3, respectively. No significant difference in computational
time is observed for both scenarios.

E. Analysis of ALNS Operators

Additional experiments are conducted to evaluate the impor-
tance of each ALNS operator introduced in Section III-C. We

calculate the gap difference (15) between using all operators
(TCALNS) and removing one of the operators (TCbaseline).
In total, there are 15 baseline combinations, as listed in Table
IV. We randomly select a subset of instances, ranged from
Set 1 to Set 3, and the average gap of each combination is
illustrated in Fig. 5.

Fig. 5. Average gap of each ALNS operator combination

All different combinations produce negative average gap
values. By removing one particular operator, the performance
of ALNS is deteriorated. Operators R2, R3, I1, I5, I9 play
an important role to improve the TC. Even though some
operators (such as I2, I3, I7) are not significantly improve
the TC, they still reduce the TC, and therefore worth to be
implemented. Removing one of the ALNS operator does not
significantly affect the computational time.

V. CONCLUSION

We study an integration of vehicle routing problem with
cross-docking (VRPCD). Given a fleet of homogeneous vehi-
cles, products supplied by the suppliers are delivered trough
a cross-dock facility before sending them to the customers.
The objective is to determine the number of vehicles used
to perform the two processes and the corresponding vehicle
routes, such that the operational and transportation costs are
minimized, respecting the time horizon and vehicle capacity.
An ALNS algorithm which employs different DESTROY oper-
ators and REPAIR operators is designed. The idea is to remove
some nodes from the solution repetitively and to insert them
to a more profitable position. The SA framework is embedded
to discover a vast search space during the search process.

Assessing the performance of the proposed ALNS through
the benchmark VRPCD instances, it improves the BKS for
80 out of 90 instances and obtains the same solution for
the remaining 10 instances. However, the parameter value
selection could be improved. It can be done by splitting the
instances into training and testing sets to avoid overfitting and
to determine the collaboration aspect between operators [15].
It would be interesting to group customers/suppliers first since
they may be too far, then the route sequence can focus on a
particular cluster. Generating and solving larger instances, e.g.
with 100 or 200 nodes, would be interesting for future research
as well.



TABLE III
CPU TIME COMPARISON OF PROPOSED ALNS AND STATE-OF-THE-ART ALGORITHMS

Instance [3] [1] [6] ALNS
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

1 1.52 3.00 5.62 0.22 0.37 0.49 1.91 2.80 7.49 0.22 1.03 3.63
2 1.74 3.55 5.73 0.23 0.16 0.64 1.78 2.90 6.62 0.15 1.04 3.60
3 2.37 4.32 5.80 0.19 0.43 0.30 2.44 3.00 7.10 0.14 1.05 3.57
4 1.60 2.09 5.87 0.27 0.23 0.44 1.75 3.00 6.89 0.14 0.86 3.37
5 2.28 2.26 7.28 0.21 0.39 0.61 1.75 3.50 7.09 0.15 1.29 4.57
6 1.82 2.10 5.38 0.03 0.22 0.56 1.81 3.10 7.47 0.11 0.86 3.95
7 2.80 2.61 7.65 0.01 0.11 0.55 2.77 3.00 6.11 0.13 0.99 4.29
8 1.85 3.00 9.88 0.04 0.16 0.42 2.21 3.30 6.91 0.14 1.00 3.15
9 2.04 3.10 5.54 0.25 0.16 0.38 1.75 2.80 7.11 0.12 0.84 3.89
10 1.82 2.38 5.77 0.36 0.20 0.52 2.05 2.60 7.10 0.12 1.01 4.01
11 1.80 3.03 5.37 0.00 0.29 0.37 1.93 3.00 7.15 0.12 0.80 3.56
12 1.72 2.64 4.46 0.24 0.16 0.17 1.76 2.90 6.75 0.13 0.93 3.85
13 1.54 2.92 4.62 0.24 0.15 0.16 1.88 2.90 6.32 0.13 0.96 3.82
14 1.53 2.76 5.44 0.00 0.18 0.53 1.69 3.60 7.38 0.11 0.94 3.60
15 1.61 3.06 6.31 0.41 0.38 0.55 1.75 3.10 7.97 0.12 0.99 4.32
16 2.05 3.15 5.18 0.03 0.28 0.30 2.05 3.10 6.95 0.11 0.81 3.81
17 2.26 2.14 6.93 0.06 0.34 0.44 2.60 3.00 6.72 0.13 0.89 3.86
18 1.74 1.70 6.25 0.19 0.28 0.53 1.88 2.90 7.07 0.13 0.83 4.00
19 2.21 2.77 5.68 0.03 0.36 0.28 1.92 3.10 7.93 0.11 1.06 3.72
20 2.55 2.72 4.79 0.00 0.24 0.36 2.32 2.50 7.56 0.11 0.91 3.95
21 2.06 3.39 5.43 0.00 0.26 0.61 1.51 3.40 6.97 0.12 0.97 4.76
22 2.42 2.43 6.04 0.01 0.35 0.37 1.85 2.90 7.83 0.12 0.95 3.90
23 2.31 2.93 5.88 0.11 0.38 0.51 2.28 3.20 7.35 0.14 0.96 4.04
24 2.64 2.87 5.36 0.00 0.48 0.05 2.78 3.00 6.81 0.11 1.01 3.80
25 1.68 2.67 5.76 0.10 0.20 0.33 1.94 3.00 7.55 0.13 0.75 4.15
26 2.04 3.31 5.05 0.03 0.16 0.14 1.86 3.30 7.80 0.13 1.08 3.65
27 2.47 3.25 5.17 0.06 0.17 0.31 2.39 3.30 7.12 0.13 0.78 3.70
28 2.69 2.60 5.56 0.01 0.00 0.39 1.84 2.80 7.41 0.11 1.14 3.49
29 1.73 3.28 64.84 0.18 0.38 0.20 1.86 2.90 6.96 0.14 0.90 3.54
30 1.82 3.78 5.91 0.09 0.28 0.65 3.51 2.70 8.29 0.13 0.87 3.17

Avg 0.51 0.72 1.96 0.03 0.07 0.10 1.37 2.01 4.79 0.13 0.95 3.82

TABLE IV
ALNS OPERATOR COMBINATIONS

Combination Operators employed
1 {R2, R3, R4, R5, R6, I1, I2, I3, I4, I5, I6, I7, I8, I9}
2 {R1, R3, R4, R5, R6, I1, I2, I3, I4, I5, I6, I7, I8, I9}
3 {R1, R2, R4, R5, R6, I1, I2, I3, I4, I5, I6, I7, I8, I9}
4 {R1, R2, R3, R5, R6, I1, I2, I3, I4, I5, I6, I7, I8, I9}
5 {R1, R2, R3, R4, R6, I1, I2, I3, I4, I5, I6, I7, I8, I9}
6 {R1, R2, R3, R4, R5, I1, I2, I3, I4, I5, I6, I7, I8, I9}
7 {R1, R2, R3, R4, R5, R6, I2, I3, I4, I5, I6, I7, I8, I9}
8 {R1, R2, R3, R4, R5, R6, I1, I3, I4, I5, I6, I7, I8, I9}
9 {R1, R2, R3, R4, R5, R6, I1, I2, I4, I5, I6, I7, I8, I9}
10 {R1, R2, R3, R4, R5, R6, I1, I2, I3, I5, I6, I7, I8, I9}
11 {R1, R2, R3, R4, R5, R6, I1, I2, I3, I4, I6, I7, I8, I9}
12 {R1, R2, R3, R4, R5, R6, I1, I2, I3, I4, I5, I7, I8, I9}
13 {R1, R2, R3, R4, R5, R6, I1, I2, I3, I4, I5, I6, I8, I9}
14 {R1, R2, R3, R4, R5, R6, I1, I2, I3, I4, I5, I6, I7, I9}
15 {R1, R2, R3, R4, R5, R6, I1, I2, I3, I4, I5, I6, I7, I8}

ACKNOWLEDGMENT

This research is supported by the Singapore Ministry of
Education (MOE) Academic Research Fund (AcRF) Tier 1
grant.

REFERENCES

[1] C. J. Liao, Y. Lin, and S. C. Shih, “Vehicle routing with cross-docking
in the supply chain,” Expert Systems with Applications, vol. 37, no. 10,
pp. 6868–6873, 2010.

[2] U. M. Apte and S. Viswanathan, “Effective cross docking for improving
distribution efficiencies,” International Journal of Logistics, vol. 3, pp.
291–302, 2000.

[3] Y. H. Lee, J. W. Jung, and K. M. Lee, “Vehicle routing scheduling for
cross-docking in the supply chain,” Computers and Industrial Engineer-
ing, vol. 51, no. 2, pp. 247–256, 2006.

[4] A. I. Nikolopoulou, P. P. Repoussis, C. D. Tarantilis, and E. E. Zachari-
adis, “Moving products between location pairs: Cross-docking versus
direct-shipping,” European Journal of Operational Research, vol. 256,
no. 3, pp. 803–819, 2017.

[5] M. Wen, J. Larsen, J. Clausen, J. F. Cordeau, and G. Laporte, Journal
of the Operational Research Society, vol. 60, no. 12, pp. 1708–1718,
2009.

[6] V. F. Yu, P. Jewpanya, and A. A. N. P. Redi, “Open vehicle routing
problem with cross-docking,” Computers and Industrial Engineering,
vol. 94, pp. 6–17, 2016.

[7] J. M. Urtasun and E. Montero, “An study of operator design under an
adaptive approach for solving the cross-docks vehicle routing problem,”
in 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE,
2019, pp. 2098–2105.

[8] P. Shaw, “Using constraint programming and local search methods
to solve vehicle routing problems,” in International conference on
principles and practice of constraint programming. Springer, 1998,
pp. 417–431.

[9] S. Ropke and D. Pisinger, “An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows,”
Transportation science, vol. 40, no. 4, pp. 455–472, 2006.

[10] E. Demir, T. Bektaş, and G. Laporte, “An adaptive large neighborhood
search heuristic for the pollution-routing problem,” European Journal of
Operational Research, vol. 223, no. 2, pp. 346–359, 2012.

[11] V. C. Hemmelmayr, J.-F. Cordeau, and T. G. Crainic, “An adaptive large
neighborhood search heuristic for two-echelon vehicle routing problems
arising in city logistics,” Computers & operations research, vol. 39,
no. 12, pp. 3215–3228, 2012.

[12] D. Sacramento, D. Pisinger, and S. Ropke, “An adaptive large neighbor-
hood search metaheuristic for the vehicle routing problem with drones,”
Transportation Research Part C: Emerging Technologies, vol. 102, pp.
289–315, 2019.

[13] D. Pisinger and S. Ropke, “Large neighborhood search,” in Handbook
of metaheuristics. Springer, 2010, pp. 399–419.

[14] R. Lutz, “Adaptive large neighborhood search,” 2015.
[15] C.-Y. Chuang and S. Smith, “Learning and utilizing interaction patterns

among neighborhood-based heuristics,” in Twelfth Annual Symposium
on Combinatorial Search, 2019.




