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Abstract—City air terminals are small-scale terminals located 

in city center for airport transport service. To optimize the 

locations of city air terminals, first, a mathematic model of the 

problem is introduced. Three aspects including the average 

distance from passengers to city air terminals, the maximum 

tolerable path length, and the maximum terminal volume are 

considered. Then, a novel hybrid algorithm is proposed. In the 

method, the ripple-spreading algorithm is applied for solving the 

many-to-many path optimization problem and a genetic algorithm 

is used for locating city air terminals. In order to improve the 

performance and increase the convergence speed, a self-adaptive 

genetic algorithm is further developed, varying the genetic 

operations and the number of generations according to the current 

convergence status. A test case is set up based on the city center of 

Tianjin, China. The proposed method is tested and compared to 

some other existing methods to show its effectiveness and 

efficiency.  

Keywords—hybrid evolutionary method, adaptive genetic 

algorithm, city air terminal, optimization 

I. INTRODUCTION 

City air terminals are small-scale terminals located in city 
center for airport transport service. Since an airport usually 
locates far away from downtown, the city air terminals increase 
the convenience by offering airline check-in, bag-drop and 
airport shuttle services. City air terminals are an important 
measure to maintain and enhance the attractiveness and 
competitiveness of civil aviation transportation and this concept 

promotes the synergetic development of the roads, metros, 
railways, and aviation. Until now, there are more than 100 city 
air terminals constructed by 20 airports in China. Despite of the 
rapid increase in the number of city air terminals, there are still 
many problems in planning the locations and in managing the 
operations, such as the mismatch between the size of city air 
terminal and the realistic demand, and unreasonable terminal 
locations leading to inconvenient and unpleasant experience to 
passengers. Therefore, optimizing the city air terminals is a very 
important task.  

With respect to optimization methods for locating city air 
terminals, many studies have been performed. In 2000, Schank 
[1] studied the passengers’ transportation mode to airports and 
the preferred transportation facility mainly depends on the time 
consumption. Therefore, city air terminals should locate closer 
to passenger sources. In 2000 and 2002, the Transportation 
Research Board (TRB) of the American Academy of Sciences 
published two reports [2,3], which summarized the successful 
experience of major airports in the public transport domain. 
Several methods for improving the accessibility of airport traffic 
were put forward. In 2008, TRB revised these reports and the 
contents of urban terminal facilities and their functions were 
added [4]. In 2011, Goswami, Miller, and Hoel [5] studied the 
concept of off-site passenger service facilities (similar to the 
concept of city air terminal) and developed a method for 
forecasting passenger demand. Chen [10] applied a cluster 
analysis method in a preliminary study for locating city air 
terminals. Ge and Li [11] introduced several influencing factors 
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in city air terminal construction. In 2011, Sun and Jiao [12] 
proposed a qualitative method for planning city air terminals and 
a detailed description of the function and significance of city air 
terminals were also given. Dai, Liu, and Song  [13] established 
an evaluation system for city air terminals construction, which 
combines the gray clustering and index evaluation system to 
resolve the location problem. In 2017, Ren [14] studied a multi-
objective optimization model of city air terminal locations, 
considering the total volume of attracted passengers, the average 
travel time and the total investment cost of city air terminals.  

In this paper,  a self-adaptive hybrid algorithm for locating 
multiple city air terminals is proposed. In particular, a 
mathematical model of the problem is introduced in Section II. 
Then, a hybrid evolutionary algorithm combined a ripple-
spreading algorithm as path optimizer and a two-stage self-
adaptive genetic algorithm is developed in Section III. A case 
study is carried out in Section IV based on the route network of 
Tianjin, China, in order to test and verify the reported methods. 
The paper ends with some conclusions in Section V.  

II. MATHEMATICAL MODEL 

The objective is to find the most appropriate locations of city 
air terminals in a large city. Several important criteria should be 
taken into account, including the average path length from 
passenger source locations to city air terminals, the maximum 
terminal volume and the maximum passenger tolerance distance. 
A mathematical model is established as follows based on a route 
network G(𝑉, 𝐿), and it is illustrated in Fig. 1.  

1) The set 𝑉 = {𝑉𝑖}𝑖∈[1,𝑁𝑛𝑜𝑑𝑒]  includes all nodes with a 

total number 𝑁𝑛𝑜𝑑𝑒   in the route network. The nodes are 

grouped into 3 types: 

• The subset  {𝑆𝑘}𝑘∈[1,𝑁𝑠𝑜𝑢𝑟𝑐𝑒]  includes all passenger 

sources with a total number  𝑁𝑠𝑜𝑢𝑟𝑐𝑒 . In Fig. 1, the 
sources are illustrated by the pink squares. In addition, 
{𝑤𝑘}𝑘∈[1,𝑁𝑠𝑜𝑢𝑟𝑐𝑒]  denotes the weights of the sources. 

Each weight parameter 𝑤𝑘  indicates the number of 
passengers set off from 𝑆𝑘. 

• The subset {𝑇𝑙}𝑙∈[1,𝑁𝑡𝑒𝑟𝑚] includes all city air terminals 

with a total number  𝑁𝑡𝑒𝑟𝑚 . Each terminal has a 
maximum capacity 𝑉𝑚𝑎𝑥. If more passengers get to the 
city air terminal, the service quality and queueing time 
would become unacceptably bad. 

• The rests are the ordinary nodes which are the 
intersections or turning points of main roads.    

2) The set 𝐿 = {𝐿𝑗}𝑗∈[1,𝑁𝑙𝑖𝑛𝑘]  includes all the links 

between nodes, corresponding to city roads, illustrated by those 

blue dotted lines in Fig.1. The total number of links is 𝑁𝑙𝑖𝑛𝑘 . 

The route network is recorded as a 𝑁𝑛𝑜𝑑𝑒 × 𝑁𝑛𝑜𝑑𝑒  matrix 𝑀𝐿. 

Each element 𝑀𝐿(𝑚, 𝑛) > 0 (𝑚, 𝑛 ∈ [1, 𝑁𝑛𝑜𝑑𝑒])  represents a 

connection between 𝑉𝑚  and 𝑉𝑛 , and 𝑀𝐿(𝑚, 𝑛)  is the physical 

route length between two nodes. If 𝑀𝐿(𝑚, 𝑛) = 0  means no 

direct route between 𝑉𝑚 and 𝑉𝑛. Moreover, no self-connecting 

route is allowed. 

3) The optimal routes from passenger sources to city air 

terminals are illustrated by the red lines in Fig.1. The 

corresponding route lengths are included in the 

set {𝑑𝑘}𝑘∈[1,𝑁𝑠𝑜𝑢𝑟𝑐𝑒] . Each element 𝑑𝑘  is the shortest distance 

from 𝑆𝑘 to its nearest city air terminal, which is expressed by 

𝑑𝑘 = min
𝑙∈[1,𝑁𝑡𝑒𝑟𝑚]

(𝑅𝑆𝑘𝑇𝑙
)  ,                        (1) 

where 𝑅𝑆𝑘𝑇𝑙
 denotes the shortest route length from the source 

𝑆𝑘 to the city air terminal 𝑇𝑙 . 

 

Fig. 1. An illustration of the model of city air terminals. 

Then, the optimization of city air terminal locations can be 

described as the following minimization problem 

min (𝑉𝑂𝐹),  with 𝑉𝑂𝐹 = ∑ 𝛼𝑖𝐶𝑖
3
𝑖=1 ,                   (2) 

where 𝐶1  is the average path length from sources to city air 

terminals, 𝐶2 represents the exceed quantity of the routes above 

the maximum tolerable distance, 𝐶3  denotes the exceed 

quantity of the passenger number above the maximum volume 

of the city air terminal, and 𝛼𝑖  (i = [1,3]) are the predefined 

weights based on the actual demands and considerations of 

airport.  

From Eq. (2), one can see that, to optimize the locations of 

city air terminals, there are three criteria that we need to 

consider in the objective function, which are the average path 

length, the maximum tolerable distance, and the maximum 

terminal volume. All these criteria are aggregated in the 

objective function 𝑉𝑂𝐹 . 

The first criterion represents the average path length of all 

sources to their nearest city air terminals, which is expressed by 

𝐶1 = ∑ 𝑤𝑘𝑑𝑘𝑘∈[1,𝑁𝑠𝑜𝑢𝑟𝑐𝑒] / ∑ 𝑤𝑘𝑘∈[1,𝑁𝑠𝑜𝑢𝑟𝑐𝑒] .             (3) 

The smaller the indicator 𝐶1  is, the less time spent by 

passengers to reach the nearest city air terminals.  

Secondly, if the distance 𝑑𝑘  exceeds the maximum tolerance 

of passengers, the willingness of passenger for using city air 

terminals would decrease. The maximum tolerable distance 

𝐷𝑚𝑎𝑥 could be defined according to a survey.  

In order to reduce the occurrence of cases in which  𝑑𝑘 >
𝐷𝑚𝑎𝑥, the second criterion is defined as 

𝐶2 = ∑ 𝑤𝑘𝑃𝑒𝑥𝑐𝑘𝑘∈[1,𝑁𝑠𝑜𝑢𝑟𝑐𝑒] ,                        (4) 

with 

𝑃𝑒𝑥𝑐𝑘 = {
 𝑑𝑘−𝐷𝑚𝑎𝑥   if 𝑑𝑘 > 𝐷𝑚𝑎𝑥

0        else        
. 

Finally, the maximum volume of a city air terminal is limited 

by 𝑉𝑚𝑎𝑥  and it is predefined. If more passengers get to the city 

air terminal, the service quality is hard to guarantee and the 



waiting time becomes much longer, which may result in a 

negative impact. Therefore, the third criterion to be minimized 

is  
𝐶3 = ∑ 𝑉𝑒𝑥𝑐𝑙𝑙∈[1,𝑁𝑡𝑒𝑟𝑚] ,                            (5) 

with 

 𝑉𝑒𝑥𝑐𝑙 = {
𝑊𝑙−𝑉𝑚𝑎𝑥      if  𝑊𝑙 > 𝑉𝑚𝑎𝑥

0        else        
, 

and 𝑊𝑙 = ∑ 𝑤𝑘𝑘∈Ω𝑙
, where Ω𝑙  includes the indices of all the 

passenger sources connected to the city air terminal 𝑇𝑙 . 

III. HYBRID EVOLUTIONARY ALGORITHM 

Based on the mathematical model, a hybrid algorithm is 

proposed to optimize the best locations of city air terminals. 

The method is a combination of two parts. The first part 

includes algorithms for calculating the shortest average path 

length between passenger sources and terminals. This length is 

an important indicator in the objective function. The second 

part corresponds to the evolutionary algorithms for finding the 

optimal locations of city air terminals. Different approaches are 

compared for these two parts and finally a hybrid evolutionary 

method is developed. 

A. Algorithms for calculating shortest average path length 

To calculate the shortest average path length (PL) from 

sources to terminals, the best routes from all sources 

{𝑆𝑘}𝑘∈[1,𝑁𝑠𝑜𝑢𝑟𝑐𝑒] to their nearest city air terminals, i.e., 

{𝑑𝑘}𝑘∈[1,𝑁𝑠𝑜𝑢𝑟𝑐𝑒] , should be efficiently calculated. Thus, it 

corresponds to a many-to-many path optimization problem 

(POP). There are two major branches for solving the POP, 

which are stochastic and deterministic algorithms. To guarantee 

the optimality, deterministic algorithms are chosen for 

calculating the shortest PL. The most popular best-first search 

methods are the A-star algorithm and the Dijkstra’s algorithm.  

In this work, a more efficient deterministic many-to-many 

POP method is applied, which is the ripple-spreading algorithm 

(RSA) [6,7]. One advantage of the RSA is that a many-to-many 

POP could be resolved by a single run of the algorithm. While 

using the A-star and Dijkstra’s algorithms, the resolving 

process could be regarded as repeating multiple times of one-

to-many POPs, and then, the short paths from one source to all 

terminals should be compared to obtain the shortest. Thus, the 

ripple-spreading algorithm is more efficient. 

B. Evolutionary algorithms for locating city air terminals 

To optimize the city air terminal locations, the computational 

complexity relies on 𝑁𝑛𝑜𝑑𝑒, 𝑁𝑠𝑜𝑢𝑟𝑐𝑒 , and 𝑁𝑡𝑒𝑟𝑚. In our model, 

𝑁𝑡𝑒𝑟𝑚  city air terminal locations should be chosen among 

𝑁𝑛𝑜𝑑𝑒  nodes, and then should be evaluated by the objective 

function value, which includes solving a 𝑁𝑡𝑒𝑟𝑚-to-𝑁𝑠𝑜𝑢𝑟𝑐𝑒  POP. 

In general, 𝑁𝑛𝑜𝑑𝑒  and 𝑁𝑠𝑜𝑢𝑟𝑐𝑒  are large. Since the optimization 

of city air terminal locations is a NP-hard problem, it is often 

useful to apply meta-heuristic evolutionary methods, such as 

the simulated annealing algorithm (SA) and the genetic 

algorithm (GA).The GA is an iterative procedure that maintains 

a population of individuals, which are candidate solutions, and 

the individuals of each generation are evolved using specific 

genetic operations, while the SA is an iterative procedure that 

continuously updates one candidate solution until a termination 

condition is reached.  

In our work, the GA is adopted, and in particular, an adaptive 

genetic algorithm with varying genetic operation possibilities 

and varying generation number is developed for improving the 

searching efficiency. In the following sections, the designs of 

chromosomes and genetic operations are firstly introduced, and 

then, the self-adaptive genetic algorithm is presented. 

1) Chromosome: 

The chromosome structure is illustrated in Fig. 2. The length 

of chromosome is 𝑁𝑡𝑒𝑟𝑚 (e.g., 𝑁𝑡𝑒𝑟𝑚 = 3 in the figure). Each 

gene 𝑛𝑗  (j = [1, 𝑁𝑡𝑒𝑟𝑚]) records a network node that is chosen 

as city air terminal, satisficing 𝑛𝑗1
≠ 𝑛𝑗2

 ( 𝑗1 ≠ 𝑗2) . Each 

generation contains 𝑁𝐼 chromosomes, and 𝑁𝑡𝑒𝑟𝑚 different city 

air terminals locations are chosen in one chromosome. The 

fitness of a chromosome is defined as follows, based on the 

objective function value of the solution represented by the 

chromosome 

F𝑓𝑖𝑡 =
1

𝑉𝑂𝐹
.                                  (6) 

 

Fig. 2. Illustration of one chromosome. 

2) Genetic operations 

Genetic operations are applied on the chromosomes in a 

generation to produce the next generation. These operations 

include inheritance, mutation, crossover, and natural selection. 

a) Elite inheritance (application possibility 𝑝𝑑 ): In each 

generation, the chromosomes are sorted according to their 

fitness values. The first 𝑝𝑑𝑁𝐼  best chromosome are directly 

inherited to the next generation. 

b) Mutation (  𝑝𝑚 ): 𝑝𝑚𝑁𝐼  chromosomes are randomly 

chosen. For each chromosome, first, one gene is randomly 

chosen. Then the node recorded in this gene is mutated.  

c) Uniform crossover (  𝑝𝑐 ): 𝑝𝑐𝑁𝐼  chromosomes are 

generated. One offspring chromosome is generated by two 

parent chromosomes which are randomly chosen by referring 

to fitness from the previous generation. 

d) Random re-initialization (  𝑝𝑟𝑔 ): 𝑝𝑟𝑔𝑁𝐼  chromosomes 

in the next generation are randomly generated. 

e) Random inheritance (  1 − 𝑝𝑑 − 𝑝𝑚 − 𝑝𝑐 − 𝑝𝑟𝑔 ): The 

rest chromosomes are obtained by randomly inheriting 

chromosomes from the previous generation. 

By repeating the previous genetic operations for 𝑁𝐺 

generations, the optimal or sub-optimal solutions could be 

achieved.  

 



3) Self-adaptive genetic algorithm 

The local optimization capability of canonical GA is usually 

insufficient. In this work, a two-stage adaptive genetic 

algorithm (AGA) is proposed for adjusting the main genetic 

operation possibilities. Firstly, the largest fitness value of each 

generation 𝑛𝑔 ∈ [1, 𝑁𝐺] is denoted by  

𝐹𝑓𝑖𝑡
𝑚𝑎𝑥(𝑛𝑔) = max

𝑛𝑖∈[1,𝑁𝐼]
𝐹𝑓𝑖𝑡(𝑛𝑔, 𝑛𝑖).                    (7) 

An indicator 𝑘𝑛𝑐 is introduced, which represents the number of 

the generations during which the largest fitness value remains 

unchanged. It satisfies 

{
 𝐹𝑓𝑖𝑡

𝑚𝑎𝑥(𝑛𝑔) =  𝐹𝑓𝑖𝑡
𝑚𝑎𝑥(𝑛𝑐𝑔), with 𝑛𝑔 ∈ [𝑛𝑐𝑔 − 𝑘𝑛𝑐 + 1, 𝑛𝑐𝑔]

𝐹𝑓𝑖𝑡
𝑚𝑎𝑥(𝑛𝑐𝑔 − 𝑘𝑛𝑐) <  𝐹𝑓𝑖𝑡

𝑚𝑎𝑥(𝑛𝑐𝑔)
 ,           

(8) 

where 𝑛𝑐𝑔 is the index of the current generation. The value 𝑘𝑛𝑐 

reflects the current status of optimization process and affects 

the adjustments of 𝑝𝑚 and 𝑝𝑐. The method is illustrated in Fig. 

3 and the flowchart is shown in Fig. 4. The following steps are 

performed: 

a) Initially, the possibilities of mutation and uniform 

crossover are set up as 𝑝𝑚0 and 𝑝𝑐0.  

b) If 𝐹𝑓𝑖𝑡
𝑚𝑎𝑥(∙) does not change for 𝑘𝑛𝑐1  generations, the 

possibilities of mutation and crossover are changed to  𝑝𝑚1 

and  𝑝𝑐1 , with 𝑝𝑚1 > 𝑝𝑚0 and 𝑝𝑐1 < 𝑝𝑐0 , i.e., the mutation 

possibility increases and the crossover possibility decreases. 

The randomness is increased, which helps to jump out of a local 

optimal area.  

c) If 𝐹𝑓𝑖𝑡
𝑚𝑎𝑥(∙)  does not change for 𝑘𝑛𝑐2  generations 

(𝑘𝑛𝑐2>𝑘𝑛𝑐1), the mutation possibility continues to increase to 

𝑝𝑚2  (𝑝𝑚2 > 𝑝𝑚1 ) and the crossover possibility continues to 

decrease to 𝑝𝑐2 (𝑝𝑐2<𝑝𝑐1). It means that after the adjustment of 

step 2, the effect is not obvious and the solution is still trapped 

in a local optimal area. Therefore, more randomness is needed.  

d) When the operation possibilities are adjusted, once 

𝐹𝑓𝑖𝑡
𝑚𝑎𝑥(∙) changes, which means a better solution is found, the 

operation possibilities will be changed back to 𝑝𝑚0 and 𝑝𝑐0, so 

that the method may explore the area associated with the new 

𝐹𝑓𝑖𝑡
𝑚𝑎𝑥(∙) value and converge rapidly. 

Furthermore, the numbers of the city air terminals and the 

network nodes (i.e., 𝑁𝑡𝑒𝑟𝑚 and 𝑁𝑛𝑜𝑑𝑒) impact the convergence 

speed of the AGA. The computational complexity for finding 

the global optimal solution is O(𝑁𝑛𝑜𝑑𝑒
𝑁𝑡𝑒𝑟𝑚). With the increase 

of  𝑁𝑡𝑒𝑟𝑚 , a larger 𝑁𝐺  should be chosen to obtain a good 

solution. Here, a method is proposed for adaptively varying 𝑁𝐺  

according to the current status of convergence.  

The minimum objective function value in terms of 

generation 𝑛𝑔 is represented by  

𝑉𝑂𝐹
𝑚𝑖𝑛(𝑛𝑔) = min

𝑛𝑖∈[1,𝑁𝐼]
𝑉𝑂𝐹(𝑛𝑔, 𝑛𝑖),                   (9) 

which corresponds to the best solution found by each 

generation. An indicator is introduced, denoted as  𝑝𝑒𝑟𝐼(𝑛𝑔), 

which represents the percentage of the elements of the 𝑛𝑔-th 

generation, with which the objective function values are within 

(1+γ)𝑉𝑂𝐹
𝑚𝑖𝑛(𝑛𝑔). 

 

 

Fig. 3. Illustration of the two-stages adaptive genetic algorithm. 

 

 

Fig. 4. Flowchart of the self-adaptive genetic algorithm. 𝑛𝑐𝑔 is the current 

generation number. 

The algorithm flowchart is illustrated in Fig. 5. The initial 

value of the maximum generation number is denoted as 𝑁𝐺1. 

When 𝑛𝑐𝑔 = 𝑁𝐺1 , the indicator 𝑝𝑒𝑟𝐼(𝑛𝑐𝑔)  is compared to a 

predefined value 𝑉𝑝𝑒𝑟𝐼
. If 𝑝𝑒𝑟𝐼(𝑛𝑐𝑔) < 𝑉𝑝𝑒𝑟𝐼

 (i.e., the status of 

convergence does not reach the desired level), the total 

generation number 𝑁𝐺 is added by 𝑁𝐺2. The maximum times of 

the addition operations is 𝑁𝑚𝑎𝑥 .  If  𝑝𝑒𝑟𝐼(𝑛𝑐𝑔) ≥ 𝑉𝑝𝑒𝑟𝐼
 or 𝑛𝑐𝑔 

reaches  𝑁𝐺1 + 𝑁𝑚𝑎𝑥𝑁𝐺2  (i.e., the predefined maximum 

generation number), the iterations finish. When optimizing the 

city air terminal locations with a large𝑁𝑡𝑒𝑟𝑚, this method avoids 

terminating the optimization procedure before a desired 

convergence status is achieved. 



 

Fig. 5.  Flowchart of the method for adaptively varying the total number of 

generations  𝑁𝐺 in the self-adaptive genetic algorthm. 

IV. A CASE STUDY 

The case of a large city Tianjin (in China) is studied. The 

route network of Tianjin is considered, and passenger source 

locations are obtained by a survey carried out at the airport. 

First, the hybrid method, using RSA as the evaluation solver 

and AGA as the evolutionary method, is tested and compared 

to the other relevant methods to show its efficiency and 

effectiveness. Finally, the method is applied in the cases with 

different number of city air terminals to show its scalability of 

dealing with different terminal distribution problems. 

The mathematical models and methods are coded in Matlab 

(version 2014b) and the optimizations are performed on an 

ordinary computer with a processor Intel Core i7-7700 @ 3.6 

GHz and a RAM of 16 GB. 

A. Route network and passenger data 

The route network based on a real urban city map is 

established, as plotted in Fig. 6. The green links ( 𝑁𝑙𝑖𝑛𝑘 = 929) 

correspond to the trunk roads commonly chosen by buses and 

taxis. The network nodes (𝑁𝑛𝑜𝑑𝑒 = 601) correspond to the 

intersection points of main roads, the turning points of the roads, 

or passenger sources. Among all the nodes, the original (i.e., 

first-hand) passenger sources (𝑁𝑠𝑜𝑢𝑟𝑐𝑒 = 93) from a survey in 

Tianjin airport are represented by the pink squares. The blue 

points (𝑁𝑒𝑠 = 525) are the secondary passenger sources, which 

are weighed according to an information diffusion process 

introduced in [8] to resolve the small sample problem. The 

numbers nearby are the weights of the passenger sources. The 

following simulations are based on this model. 

B. Tests of different solvers for calculating the shortest 

average path length 

To evaluate the objective function value of each chromosome, 

three different solvers for calculating the shortest average PL 

are compared, which are the RSA, A-star, and Dijkstra’s 

algorithms. Since they are all deterministic methods, the 

shortest path results should be all the same. Here, we mainly 

compare their computational efficiency.  

 

Fig. 6. Urban network with passenger sources after applying an information 

diffusion method. 

 

Fig. 7.  Average computation times for one single search with 3 solvers 

calculating the shortest paths from passenger sources to terminals. 

 In the experiment, 10 different configurations of city air 

terminals with a fixed 𝑁𝑡𝑒𝑟𝑚 = 3  are randomly chosen. The 

three methods are applied to solve many-to-many POPs. The 

result is plotted in Fig.7, the average computation times for one 

single search of the solvers using RSA, Dijkstra’s, and A-star 

are 0.0143s, 0.0490s, and 0.0959s, respectively. The average 

time with the Dijkstra’s algorithm is 3.45 times more than the 

RSA, and the A-star is 6.69 times more than the RSA. The RSA 

has the highest computational speed and the result meets to our 

expectation, as discussed in Section IIIA. In the following 

experiments for optimizing the terminal locations, the RSA is 

applied as the solver to calculate the fitness of chromosome. 

 

C. Comparison between the self-adaptive genetic algorithm 

and the simulated annealing method 

This section aims to compare the efficiency and the 

capability of finding the optimal solutions between the AGA 

and SA. The model parameters are: 𝑁𝑡𝑒𝑟𝑚 = 3,  𝐷𝑚𝑎𝑥 = 5km, 

and 𝑉𝑚𝑎𝑥 is about 1/𝑁𝑡𝑒𝑟𝑚 the passenger sources total weights.   

The parameters of the AGA include 𝑁𝐼 = 400, 𝑁𝐺 = 200,
𝑝𝑑 = 0.1, 𝑝𝑚 = 0.2, 𝑝𝑐 = 0.6, and 𝑝𝑟𝑔 = 0.1. The parameters 

of SA include the initial temperature 𝑇0, which is relevant to the 

initial value of 𝑉𝑂𝐹 , and usually chosen 𝑇0 = 12 for a proper 

level about 0.8 of the initial probability of accepting the worse 

solution [9]. At the t -th annealing, the temperature is T =
𝑇0 × 𝜃𝑡 , with 𝜃 = 0.9 and the probability of accepting a new 
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solution with a worse 𝑉𝑂𝐹  is  P = 𝑒−∆𝐹/𝑇(𝑡) , where ∆𝐹  is the 

difference of the objective function values between two 

solutions. Finally, the final temperature is 𝑇𝑓 = 0.8, at which P 

approaches 0.  

Both the AGA and SA have certain randomness in each 

optimization, thus 𝑁𝑡𝑒𝑠𝑡 = 50  tests are performed and the 

results are recorded. The best objective function values in the 

final generation of 𝑁𝑡𝑒𝑠𝑡  tests, denoted as 𝑉𝑂𝐹
𝑓𝑖𝑛𝑎𝑙

(𝑝) with p ∈
[1, 𝑁𝑡𝑒𝑠𝑡], may not be all the same. The best one of all these 

values is denoted as 

 𝑉𝐵𝑂𝐹
𝑓𝑖𝑛𝑎𝑙

= min
𝑝∈[1,𝑁𝑡𝑒𝑠𝑡]

𝑉𝑂𝐹
𝑓𝑖𝑛𝑎𝑙(𝑝).                       (10) 

To compare the performance and efficiency of the two 

methods, tests with different passenger source distributions are 

performed. In 50 tests, the passenger source positions are 

randomly chosen from the network nodes, with a total number 

varying from 10%𝑁𝑛𝑜𝑑𝑒 to 50%𝑁𝑛𝑜𝑑𝑒 . The optimal solutions 

with the AGA and SA in 50 tests are plotted in Fig. 8(a). In 

most cases, the result of the AGA is better than SA. The 

computation times are plotted in Fig. 8 (b). The SA is more than 

5 times slower than AGA. The convergence speed of SA relies 

heavily on the initial positions of city air terminals, which are 

randomly set up at the beginning of SA. For example, if the 

initial positions of terminals are set far from the optimal ones, 

a much longer convergence process is highly probably required. 

The result of this experience shows that in terms of both 

optimization solution and computational speed, the AGA has 

advantages. Therefore, in the following experiments, we will 

concentrate on GA, and the network in Fig. 6 is used for 

optimizing city air terminal locations. 

Fig. 8. Optimization results of AGA and SA with 50 different passenger 

source distributions. 

D. Tests of the self-adaptive genetic algorithm with 

different numbers of city air terminals 

The requirement of the number of city air terminals could 

be modified by the airport according to the realistic 

passenger demands. In this experiment, the optimizations 

with different numbers of city air terminals 𝑁𝑡𝑒𝑟𝑚  are tested.  

The AGA parameter values are 𝑘𝑛𝑐1 = 20 , 𝑘𝑛𝑐2 =
40 ,  𝑝𝑚0 = 0.25 , 𝑝𝑚1 = 0.35 ,  𝑝𝑚2 = 0.45 ,  𝑝𝑐0 = 0.60 ,  
𝑝𝑐1 = 0.50 , 𝑝𝑐2 =0.40, 𝑁𝐺1 = 200 , 𝑁𝐺2 = 100, 𝑁𝑚𝑎𝑥 = 5, 

𝑉𝑝𝑒𝑟𝐼
= 50%, and γ = 20%, which are the best parameters 

tested in massive experiments. Thus, the possible maximum 

generation number is 𝑁𝐺1 + 𝑁𝑚𝑎𝑥𝑁𝐺2 = 700. 

The cases with different 𝑁𝑡𝑒𝑟𝑚 are listed in the first 

column of Table I. Six cases are considered with  𝑁𝑡𝑒𝑟𝑚 

varying from 4 to 9. Since 𝑁𝑡𝑒𝑟𝑚 increases, 𝐷𝑚𝑎𝑥  and 𝑉𝑚𝑎𝑥 

are reset in terms of 𝑁𝑡𝑒𝑟𝑚. 𝑉𝑚𝑎𝑥 is chosen as 𝑊𝑡𝑜𝑡/𝑁𝑡𝑒𝑟𝑚 to 

provide an even distribution of service in  𝑁𝑡𝑒𝑟𝑚  city air 

terminals. For each case, 𝑁𝑡𝑒𝑠𝑡𝑠 = 50 tests are performed. 

For the sake of clarity, only the optimization results for the 

Cases 1, 3, 5 are plotted in Fig. 9. The city air terminals are 

illustrated by the yellow circles. While 𝑁𝑡𝑒𝑟𝑚 increases, the 

layout of terminals is modified to adapt to the requirements. 

The optimization results are given in Table I. In all cases, 

𝐶3 = 0 guarantees the equivalence of the passenger volume 

in each terminal. Moreover, the optimization process search 

for reducing the path length from passengers to terminals. 

There are a few sources of which distances exceed 𝐷𝑚𝑎𝑥 , but 

this value increases with  𝑁𝑡𝑒𝑟𝑚 . The average times are 

similar in all cases. This is due to the RSA, all the ripples are 

simultaneously launched from all the terminals. Thus, the 

computational load does not have a significant increase. The 

average 𝑁𝐺 values are listed in the last column of Table I. 

The values increase in terms of 𝑁𝑡𝑒𝑟𝑚, which meets to the 

theoretic analysis. More generations are needed when 𝑁𝑡𝑒𝑟𝑚 

increases. In general, the AGA could efficiently and 

effectively resolve the city air terminal location problem. 

V. CONCLUSION 

A novel hybrid self-adaptive genetic algorithm has been 

proposed for optimizing the locations of city air terminals. 

Three aspects including the average distance from 

passengers to city air terminals, the maximum tolerable 

distance, and the maximum terminal volume have been 

considered in the objective function. In the method, the 

ripple-spreading algorithm has been applied for solving the 

many-to-many path optimization problem and a self-

adaptive genetic algorithm is developed, which online 

changes the parameters of genetic operations and the 

maximum generation number according to the current 

convergence situation. A test case has been set up based on 

the city center of Tianjin, China. The hybrid self-adaptive 

genetic method has been tested and compared to several 

other methods to show its effectiveness and efficiency. A 

final test has shown the scalability of the reported method in 

optimizing the cases with different city air terminal 

configurations. 

 

(a) Result of the best objective function values 𝑉𝐵𝑂𝐹
𝑓𝑖𝑛𝑎𝑙

. 

 

(b) Result of the computation times.’ 



TABLE I.  TEST PARAMETERS AND RESULTS WITH DIFFERENT  NTERM. 

Parameters 𝑽𝑩𝑶𝑭
𝒇𝒊𝒏𝒂𝒍

 𝑪𝟏 𝑪𝟐 𝑪𝟑 Time 

(s) 

Average 

𝑵𝑮 

Case-1 (Nterm=4, 

Dmax=7.5, 
Vmax=160) 

2.54 2.54 0 0 1305 200 

Case-2 (Nterm=5, 

Dmax=7, 

Vmax=130) 

2.23 2.23 0 0 1316 205 

Case-3 (Nterm=6, 

Dmax=6.5, 

Vmax=110) 

2.11 2.08 0.03 0 1303 224 

Case-4 (Nterm=7, 
Dmax=6, 

Vmax=95) 

1.93 1.68 0.25 0 1411 266 

Case-5 (Nterm=8, 
Dmax=5.5, 

Vmax=85) 

1.95 1.52 0.43 0 1458 294 

Case-6 (Nterm=9, 

Dmax=5, 
Vmax=75) 

1.82 1.43 0.39 0 1486 320 

 

 

 
(a) Case 1: 𝑁𝑡𝑒𝑟𝑚 = 4 

 
(b) Case 3: 𝑁𝑡𝑒𝑟𝑚 = 6 

 
(c) Case 5: 𝑁𝑡𝑒𝑟𝑚 = 8 

Fig. 9. City air terminal locations in the cases with different 𝑁𝑡𝑒𝑟𝑚. 
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