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Abstract—Multi-label classification paradigm has had a grow-
ing interest because of the emergence of a large number of
classification problems where each of the instances of the data
can be associated with several output labels simultaneously.
Several ensemble methods were proposed to solve the multi-
label classification problem. However, most of them simply create
diversity in the ensemble by following a random procedure and
give the same importance to all members. In this paper, we
propose a Grammar-Guided Genetic Programming algorithm to
build ensembles of multi-label classifiers. Given a pool of multi-
label classifiers, each of them modeling dependencies among a
subset of k labels, they are combined into a tree-shaped ensemble.
At each node of the tree, predictions of its children nodes are
combined, while each leaf represents a classifier from the pool.
We propose two configurations for the method: using a fixed
value of k for all classifiers in the pool, or using a variable value
of k for each classifier, thus being able to capture relationships
among groups of labels of different size in the ensemble. The
experiments performed over sixteen multi-label dataset and using
five evaluation metrics demonstrated that our method performs
significantly better than the state-of-the-art ensembles of multi-
label classifiers.

Index Terms—Genetic programming, Multi-label classification,
Ensemble learning

I. INTRODUCTION

In recent years, classification problems where each of the
instances of the data may belong to several classes/output
labels simultaneously associated with it, are increasingly fre-
quent. For example, in medical diagnosis systems, patients
may have more than one disease, or complications, at the
same time. Traditional classification methods are only able
to deal with one class per instance. Thus, the Multi-Label
Classification (MLC) paradigm emerged for addressing these
situations [1]. MLC has been successfully applied to many
real-world problems in addition to medical diagnosis [2], such
as biology [3] and multimedia categorization [4].

Dealing with several output labels at the same time leads to
emergence of new challenges such as modeling the compound
dependencies among the labels, imbalance, and high dimen-
sionality of the output space. Although a wide range of MLC
methods has been proposed [1], we focus here our attention
on Ensembles of Multi-Label Classifiers (EMLCs), which have

been shown to outperform the base methods [5]–[7]. Ensemble
classifiers are methods that combine predictions of several base
classifiers, aiming to improve the overall generalization ability
of each. Selection of classifiers to combine, however, is not
trivial as they should not only be accurate but also diverse [8],
[9].

Although the EMLCs outperform their base methods, they
usually combine classifiers where the diversity is created by
following any random procedure (such as randomly selecting
instances or labels at each member of the ensemble), and the
same weight or importance is given to all base classifiers. In
this paper, we propose a Grammar-Guided Genetic Program-
ming (G3P) algorithm able to generate EMLCs. G3P, which is
an extension of Genetic Programming (GP), is an evolutionary
learning technique that uses syntax trees to represent the
individuals, and also a grammar to guide the learning process,
such as the creation of initial individuals [10]. Using G3P a
tree-shaped ensemble is obtained; at each node of the tree the
predictions of children nodes are combined, while the leaves
are the base multi-label classifiers. The use of G3P makes the
selection of members of the ensemble more flexible, allowing
to adapt to each particular problem, as well as to obtain an
optimal structure of the ensemble.

In our method each of the base classifiers of the ensemble
focuses only on a subset of k labels, also known as k-labelset.
In this way, each member is able to consider the relationship
among the labels, while drastically reducing the imbalance
and high-dimensionality of the output space. In addition, our
method is not only able to deal with fixed k for all base
classifiers, but also is able to use different values of k in
each base classifier, to capture the relationship among subsets
of labels of different size. The experimental study using 16
datasets and five evaluation metrics, demonstrated that our
method obtains significantly better performance than state-of-
the-art MLC methods.

The rest of the paper is organized as follows. Section II pro-
vides background about MLC and G3P; Section III describes
the G3P-based method for building the EMLCs; Section IV
introduces the experimental study; Section V presents and
discusses the results; and Section VI ends with conclusions.
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II. BACKGROUND

In this section, we first describe MLC and state-of-the-art
MLC methods, and then we introduce the G3P framework.

A. Multi-Label Classification

Let X = X1 × · · · ×Xd be the d-dimensional input space,
and Y = {λ1, λ2, . . . , λq} the output space composed by
q > 1 labels. Let D be a multi-label dataset composed of
m instances, as D = {(xi, Yi)|1 ≤ i ≤ m}, where each multi-
label instance is a pair composed by an input feature vector
x ∈ X and a set of relevant labels Y ⊆ Y associated with it [1].
The goal of MLC is to construct a model able to provide a
set of predicted relevant labels Ŷ for an unknown instance x.

MLC algorithms are categorized into three groups: I) prob-
lem transformation, which transform the multi-label problem
into one or several single-label problems; II) algorithm adapta-
tion, which directly adapt traditional classification methods to
be able to deal with multi-label data without transforming it;
and III) EMLCs, defined as a set of n multi-label classifiers,
each of them providing prediction for all or part of the
labels [7]. Finally, the prediction of all n classifiers are
combined, usually by majority voting, although many other
combining methods can be used [11].

Ensemble of Binary Relevances (EBR) algorithm [5] com-
bines the predictions of n Binary Relevance (BR) meth-
ods [12]. As BR creates an independent binary model for
each label, EBR is not able to model the relationship among
the labels. Also, diversity of classifiers in EBR is obtained by
simply randomly selecting a subset of the instances for each
of the members, which is a weakness.

Ensemble of Classifier Chains (ECC) [5] combines the pre-
dictions of n Classifier Chain (CC) methods. CC also creates
binary models for each label, but they are not independent
as in BR as they are chained in such a way that predictions
of previous labels in the chain are introduced as additional
input features in the subsequent binary classifiers. Therefore,
ECC is able to model some of the relationship among labels.
The diversity in ECC is obtained not only by selecting random
subsets of the instances but also using different random chains
at each member.

Ensemble of Pruned Sets (EPS) algorithm [13] combines the
predictions of n Pruned Sets (PS) methods. PS follows the
Label Powerset (LP) [14] approach, transforming the multi-
label problem into a multi-class problem, where different com-
binations of labels (a.k.a. labelsets) are considered as different
classes; then, PS prunes those instances associated with very
infrequent classes, leading to less imbalanced problems. In this
way, EPS is able to model the relationship among all labels;
however, although it prunes infrequent labelsets, the resulting
multi-class problem still tends to be imbalanced with a high
number of classes, resulting in a still complex problem. As for
the diversity, EPS selects random subset of instances at each
member of the ensemble.

RAndom k-labELsets (RAkEL) [6] builds an ensemble of
LP methods, but in this case each member of the ensemble
focuses on a small subset of k labels, being k fixed for all

members. Therefore, each member of the ensemble is able
to deal with the relationships among k labels, leading to
less imbalanced and lower dimensional problems than if all
labels were considered at the same time. RAkEL selects the
k-labelsets randomly to generate diversity in the ensemble.

Random Forest of Predictive Clustering Trees (RF-
PCT) [15] builds an ensemble of Predictive Clustering Trees
(PCTs) [16]. Each member uses a random selection of training
instances, and at each node of the tree selects the best feature
from a random subset of attributes.

In all described methods, the diversity among the members
is generated following a random process, and the combination
of labels is performed by majority voting, with the same
weight given to each member of the ensemble.

B. Grammar-Guided Genetic Programming (G3P)

GP is an evolutionary and very flexible heuristic technique
which allows the use of very complex individual represen-
tations. G3P is an extension of GP, where a free-context
grammar is used to generate the individuals. Each individual
is represented as a syntax tree, where internal or non-terminal
nodes correspond to functions taking their children as argu-
ments, and leaves or terminal nodes correspond to variables
and constants. The use of the grammar provides ability of
applying certain constraints at each node of the tree, such as
the number or type of the child nodes, and also ensures that
all generated individuals represent a valid solution [17].

G3P has been widely used in the literature on a large number
of different problems, such as bankruptcy prediction [18],
predicting student performance [19], and discovery of sub-
groups within a population [20], as well as it has been proven
to work well on high-dimensional scenarios [21]. However,
there are not many multi-label classification methods that
are based on G3P. In [22] a G3P algorithm to build a rule-
based multi-label classifier was proposed. In [23], an algorithm
that automatically selects the most appropriate multi-label
classifier is proposed using G3P. Nonetheless, to the best of
our knowledge, no studies exist in applying either GP or G3P
to the construction of EMLCs.

III. G3P-KEMLC

In this section we present the proposed method, called G3P-
kEMLC. First, the main steps of the algorithm are presented,
and then, the individuals, fitness function, and genetic opera-
tors are described.

A. Algorithmic strategy

The main steps of the G3P-kEMLC algorithm are
shown in Fig. 1. First, a pool of n multi-label classifiers
MLC1,MLC2, . . . ,MLCn, where each is focused on predict-
ing k labels, is created. Although any multi-label classifier
could be used, we will use LP, in order to model the re-
lationship among all k labels at the same time [6]. Unlike
other methods, such as RAkEL, G3P-kEMLC is able to handle
multi-label classifiers using different values of k. Therefore,
two parameters kmin and kmax are given, so that each classifier



pool	<-	generateMLCs(n,	kmin,	kmax)

p	<-	initPopulation(popSize,	mC,	mD)

g	<	ng

s	<-	selectInds(p)

s	<-	applyOperators(s,	pc,	pm)

evaluate(p,	pool,	β)

evaluate(s,	pool,	β)

p	<-	replace(s,	p)

getBestIndividual(p)
No

Yes

Fig. 1. Main steps of G3P-kEMLC.

will focus on a subset of k labels, being k a random value
in the range [kmin, kmax]. Note that repeated k-labelsets are
not allowed, so if the generated random k-labelset is currently
present in the pool, it is discarded and a new one is created.
To increase diversity of the base classifiers, each of them
is built over a random subset of the instances. Although
building the base classifiers over random subsets of instances
and labels, the difference between G3P-kEMLC and other
EMLCs is that G3P-kEMLC will look for an optimal structure
of the ensemble by means of the evolutionary procedure,
instead of just giving the same weight to all base classifiers in
the combination of predictions. In our tree-shaped ensemble,
classifiers that are placed at a shallower depth have more
importance in the final prediction than classifiers that are
deeper in the tree.

Then, the initial population p of popSize individuals is
generated by using the grammar (see Section III-B). Note that
mC and mD parameters indicate the maximum number of
children of each node of the tree, and the maximum allowed
depth of the tree, respectively. Once initial individuals are
created, they are evaluated (see Section III-C).

Until the maximum number of generations ng is reached,
individuals are selected by tournament selection, genetic op-
erators are applied (see Section III-D), and new individuals
are evaluated. For the replacement of the population, the
population at next generation is formed by all new children.
However, if the best parent is better than the best child,
it replaces the worst child, thus maintaining elitism. Once
the maximum number of generations is reached, the best
individual is returned as the optimal ensemble.

B. Individuals

Each individual in G3P-kEMLC is represented as a string
encoding a tree-shaped ensemble. As non-terminal nodes,
only one function called Comb is used, which combines the
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Fig. 3. Individual as string and its corresponding tree.

predictions of children nodes. For each label λl that is included
in any of the children of the Comb node, it computes the
ratio of positive predictions among all the children; if it is
greater or equal than a given threshold t (as default t = 0.5
is used), the combined prediction for λl is positive, and
negative otherwise. On the other hand, as terminal nodes, we
use the previously generated pool of multi-label classifiers,
represented as integers from 1 to n. Each of the multi-label
classifiers gives prediction for the labels in their own k-
labelsets. Note that, since each leaf is focused on a subset of
k labels (and k could be different for each leaf), the number
of labels considered at each Comb node can be different.

In Fig. 2 the grammar used to build individuals is shown.
The initial node S is always replaced by a Comb node.
Each Comb node starts and ends with ‘(’ and ‘)’ characters
respectively, to represent (in the string) the hierarchy of the
nodes. Each Comb node may contain from 2 to mC children
nodes, each of them being either another Comb node or a MLC
(leaf). The number of children is randomly selected in the
given range [2,mC] at each node, so each internal node could
have a different number of children. However, the maximum
depth (mD) of the tree is controlled in such a way that if the
depth of the current Comb node is equal to mD − 1, only
MLC nodes can be selected as children of this Comb. In Fig.
3 an example of an individual obtained using the grammar is
shown, both as a string and as its corresponding tree.

The use of the grammar is helpful in two main aspects.
On the one hand, it allows to determine the number of child
nodes at each Comb node, as well as if these children are either
other Comb nodes or leaves. On the other hand, if different
types of combiner nodes for the predictions were used (as



we propose for future work), the use of the grammar would
become essential, since it would select the appropriate type
and/or number of child nodes depending on different type of
combiner node.

C. Evaluation

For evaluation of the individuals, we use a fitness function
(Eq. 1) which differentiates between incomplete and complete
trees. Hereafter, it is indicated with ↑ and ↓ if metrics are
maximized or minimized, respectively. Lt is the set of labels
that the tree is considering among all the leaves. We define
complete trees as those that include at least one vote for each
label in the dataset (|Lt| = l), while incomplete trees are not
able to give prediction for all labels (|Lt| < l).

↑ fitness =

{
− (l − |Lt|) /l if |Lt| < l

β · ExF + (1− β) ·MaF if |Lt| = l
(1)

If the individual represents an incomplete tree, its fitness
is a negative value, being closer to zero as the number of
labels that are not considered is lower. We aim to remove
incomplete individuals in the population, but in case when
several incomplete individuals are chosen to compete with
each other in the selection procedure, the one that is closer
to be a complete tree is selected.

On the other hand, if the individual is a complete tree,
first the predictions for the whole training set are obtained
by combining predictions of internal nodes, until the final
prediction of the ensemble is obtained at the root node. Then,
the fitness function, composed of two terms, is computed.
FMeasure is a robust evaluation metric that has been widely
used to evaluate models in cases where the output space is
imbalanced [24]. In MLC, several approaches are defined
to compute the FMeasure, such as Example-based FMeasure
(ExF) and Macro-averaged FMeasure (MaF) [25]. ExF (Eq.
2) computes the FMeasure of each instance as a whole, thus
capturing the relationships among the labels in its calculation.
On the other hand, MaF (Eq. 3) computes the FMeasure for
each label independently and averages it by the number of
labels, thus giving the same importance to all labels in its
calculation. Note that tpl, fpl, and fnl stand for the number
of true positives, false positives, and false negatives of the l-th
label, respectively.

↑ ExF =
1

m

m∑
i=1

2|Ŷi ∩ Yi|
|Ŷi| ∪ |Yi|

(2)

↑ MaF =
1

q

q∑
l=1

2 · tpl
2 · tpl + fpl + fnl

(3)

Therefore, using a combination of both ExF and MaF, we
not only consider the relationship among labels when calculat-
ing the FMeasure, but also ensure that minority labels are also
considered. Further, the fact of calculating the fitness function
over the whole training set, while each base classifier is built
over a subset of the same data, also offers an approximation
of how each of them performs on unseen data.

D. Genetic operators

Each individual of the population is selected for crossover
and mutation operators based on probabilities pc and pm
respectively. Fig. 4 illustrates use of both operators.

1) Crossover operator: Given two parents, the crossover
operator creates a new individual as follows: I) a random
subtree st1, not including the whole tree, is selected from the
first parent; II) a random subtree st2, including the possibility
to select the whole tree, is selected from the second parent;
III) if the maximum depth of st2 is greater than the maximum
allowed depth of the tree minus the depth of the root node of
st1, step II is repeated again but selecting a random subtree of
st2; IV) st2 replaces st1 in the first parent, obtaining the child
individual. Crossed individuals include genetic material of
both parents, and because of step III they are always feasible,
as we ensure not to exceed the maximum allowed depth of
the tree.

Regarding the example in Fig. 4a, consider that the subtree
whose root is the shaded node of the first parent is selected as
st1. Then, the node marked with a dotted line in the second
parent is first selected as st2. However, considering mD = 3,
if st2 replaces st1, the maximum depth constraint would not
be met in the generated child; therefore, a new random subtree
below this node is then selected as st2 (shaded node of the
second parent). Finally, the first child is created by replacing
st1 with st2.

Given this crossover operator, just one child is obtained
by each pair of parents. Proposing an operator where two
children were obtained, for example swapping subtrees of
the parents, would make more difficult the selection of these
subtrees in such a way that they both fit in the other parent and
do not break the maximum depth restriction in any of them.
Therefore, the second child is obtained by following the same
procedure but swapping the roles of each of the parents.

2) Mutation operator: For the mutation operator, the steps
are: I) a random subtree st, not including the whole tree, is
selected; II) a subtree is created following the grammar, but
using as maximum depth the maximum allowed depth minus
the depth of the root node of st; III) the generated tree replaces
st. Therefore, a subtree of the individual is replaced by a
random subtree, ensuring that it is feasible thanks to the use
of the grammar and control of the maximum depth.

According to Fig. 4b, assume that the shaded node is
randomly selected as root of the subtree to mutate. Then,
a random new subtree is created following the grammar to
replace it, creating the mutated individual.

IV. EXPERIMENTAL STUDY

In this section, first the datasets and evaluation metrics used
in the experiments are described, and then, the configuration
of both G3P-kEMLC and the state-of-the-art MLC methods
are presented.
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Fig. 4. Genetic operators.

TABLE I
DATASETS AND CHARACTERISTICS. THE DATASETS ARE ORDERED BY

THE NUMBER OF LABELS.

Dataset m d q card avgIR rDep
Emotions 593 72 6 1.868 1.478 0.933
Reuters1000 294 1000 6 1.126 1.789 0.667
Guardian1000 302 1000 6 1.126 1.773 0.667
Bbc1000 352 1000 6 1.125 1.718 0.733
3s-inter3000 169 3000 6 1.142 1.766 0.400
GnegativePseAAC 1392 1717 8 1.046 18.448 0.536
PlantPseAAC 978 440 12 1.079 6.690 0.318
Water-quality 1060 16 14 5.073 1.767 0.473
Yeast 2417 103 14 4.237 7.197 0.670
HumanPseAAC 3106 440 14 1.185 15.289 0.418
Birds 645 260 19 1.014 5.407 0.123
Genbase 662 1186 27 1.252 37.315 0.157
Medical 978 1449 45 1.245 89.501 0.039
NusWide2 2696 128 81 1.863 89.130 0.087
Stackex coffee 225 1763 123 1.987 27.241 0.017
CAL500 502 68 174 26.044 20.578 0.192

A. Datasets

A selection of 16 multi-label datasets from the KDIS
repository1, covering a wide range of characteristics, were
used in the experiments and are shown in Table I. The number
of instances (m), attributes (d), and labels (q) of each dataset
are shown, as well as the cardinality or average number
of labels associated with each instance (card), the average
imbalance ratio (avgIR), and the ratio of dependent label pairs
(rDep) [26].

B. Evaluation metrics

Five evaluation metrics are used to assess the performance
of the multi-label methods [25]. The Adjusted Hamming loss

1http://www.uco.es/kdis/mllresources
2In order to execute it in reasonable time, a random selection of instances

of NusWide cVLAD+ dataset was performed.

(AHL) [27] was proposed because of the drawbacks of the
Hamming loss, which tends to be zero in cases with a large
number of labels but low cardinality. AHL, defined in Eq.
4, computes the ratio of misclassified labels divided by the
number of positive labels (in both true and predicted sets),
and averages it by the total number of instances. Note that ∆
is the symmetric difference between two binary sets.

↓ AHL =
1

m

m∑
i=1

|Ŷi∆Yi|
|Ŷi ∪ Yi|

(4)

Subset accuracy (SA), Eq. 5, is a strict metric which
evaluates the number of instances where the set of predicted
labels exactly matches the set of true labels. Note that JπK
returns 1 if predicate π is true, and 0 otherwise.

↑ SA =
1

m

m∑
i=1

JŶi = YiK (5)

Also, we use different versions of the FMeasure, namely
Example-based FMeasure (ExF; Eq. 2), Micro-averaged
FMeasure (MiF; Eq. 6), and Macro-averaged FMeasure (MaF;
Eq. 3). While ExF captures the relationship among the labels
in its calculation, MiF and MaF give different weight to the
labels; MiF is biased by more frequent labels, while MaF gives
the same importance to all of them.

↑ MiF =

∑q
l=1 2 · tpl∑q

l=1 2 · tpl +
∑q

l=1 fpl +
∑q

l=1 fnl
(6)



C. Methods and configurations

G3P-kEMLC has been built using JCLEC [28], Mulan [29],
and Weka [30] libraries, and the code is publicly available in
a GitHub repository3.

In the experiments, we use two different configurations of
G3P-kEMLC: I) with a fixed value of k = 3 for all base
classifiers; and II) with a variable value of k for each of them.
For the second configuration, the size of the k-labelset of each
multi-label classifier is in the range [3, q/2]. In this way, we
observe how the method works both using fixed k value as
in RAkEL, and also by considering the relationships among
a large number of labels. Regarding the size of the pool of
classifiers, Eq. 7 indicates how to calculate the number of
classifiers needed to have, on average, v votes for each label
in the pool. For n we also use two different configurations: I)
n for v = 10; and II) n for v = 20. Note that in our approach,
the fact of using a large number of base classifiers in the
pool does not mean that all of them will be included in the
ensemble, since the G3P algorithm selects the most suitable
models. For each dataset, the results of the best of these two
configurations are reported; the best configuration is the one
with better ranking among all five evaluation metrics.

n =
v

(kmin + kmax) /2
· q (7)

Concerning the size of the tree, we use the maximum
number of children at each node mC = 7, while the maximum
depth is fixed to mD = 3 for most cases. However, when
using fixed k = 3, for those datasets with more than 50 labels,
mD = 4 is used. Note that for example for NusWide dataset,
which has 81 labels, the size of the pool for v = 20 is n = 540,
while a tree of mD = 3 and mC = 7 can have, as most,
73 = 343 leaves, so it could not include all classifiers in the
pool if it was necessary. Using mD = 4, more complex trees
including at most 74 = 2401 leaves can be created, which is
enough for these cases.

For the selection of the rest of parameters of the al-
gorithm, we performed a brief preliminary study. Due to
space constraints, additional material including this study is
available at the KDIS Group Webpage4. We use popSize = 50
individuals; ng = 150 generations; probabilities pc = 0.7
and pm = 0.2 for genetic operators; β = 0.5 for the
fitness function; and 75% of instances are sampled without
replacement at each multi-label classifier. Finally, not only in
G3P-kEMLC but also in other EMLCs, the C4.5 [31] decision
tree algorithm is used as a single-label classifier (except for
RF-PCT, which uses PCTs).

A comparison with RAkEL, which also uses subsets of k
labels at each base classifier, shall demonstrate whether the
fact of evolving an optimal structure for the ensemble instead
of just giving the same weight to each classifier improves (or
not) predictive performance. The recommended configuration
for RAkEL is with k = 3 and n = 2q, so that each

3https://www.github.com/kdis-lab/G3P-kEMLC
4http://www.uco.es/kdis/G3P-kEMLC/

label has, on average, 6 votes. However, to perform a fair
comparison, RAkEL was executed with n = 2q (so v = 6,
as recommended), n = 3.33q (meaning v = 10, as in other
EMLCs), and also with n calculated in such a way that v is the
same as in the best configuration of G3P-kEMLC; we report
the results of the best configuration. In this way, we aim to
show that the performance of our method is not only biased
by the number of base classifiers.

A second comparison involving state-of-the-art EMLCs was
also performed. The best EMLCs according to the study in [7]
were selected for the comparison. For all EMLCs, the default
parameters proposed by their authors were used. EBR, ECC
and RF-PCT use sampling with replacement of the original
training dataset at each member, while EPS uses samples
without replacement of 66% of the instances. Note that for
CAL500 dataset, which has as many different labelsets as
instances, EPS was executed without pruning the infrequent
labelsets. Finally, all of them use n = 10.

In all cases, the datasets were partitioned using random 5-
fold cross-validation, and all methods were executed using 6
different seeds for random numbers. Finally, the results were
averaged over 30 runs.

V. RESULTS AND DISCUSSION

In this section, the results of the experimental study are
presented and discussed. First, analysis and comparison of
G3P-kEMLC and RAkEL is performed; then, G3P-kEMLC
is compared to other state-of-the-art EMLCs. Hereafter, the
two versions of our proposed method are indicated as G3P-
kEMLC-3 when k = 3 is used, and as G3P-kEMLC-V when
a variable value of k in the range [3, q/2] is used.

A study of the efficiency of G3P-kEMLC was also carried
out; however, due to space constraints, the results of this study
are available in the additional material, as well as detailed
results of the experiments and also p-values of statistical tests.

A. G3P-kEMLC vs RAkEL

In this section, we compare the performance of G3P-
kEMLC and RAkEL, as methods that use base classifiers
focused on k-labelsets. In Table II, the average ranking values
for each metric, computed for all datasets, are shown. For each
pair dataset-metric, the method that performs best obtains a
ranking of 1, the next a ranking of 2, and so on; the lower the
value the better. We can see that in four of the metrics G3P-
kEMLC-V has the best average ranking, while G3P-kEMLC-3
is the best in one. Further, both methods are ahead of RAkEL
in all cases except in SA, where RAkEL has a better average
ranking than G3P-kEMLC-3.

In order to determine if significant differences exist among
algorithms, Friedman’s [32] and Holm’s [33] tests were per-
formed, using a confidence value α = 0.05. Friedman’s test
has shown that significant differences existed for all metrics
except for SA. Further, Holm’s test has shown that for the rest
of the metrics, the performance of both configurations of G3P-
kEMLC is statistically the same, and both are significantly
better than RAkEL. Fig. 5 shows the critical diagrams for



TABLE II
AVERAGE RANKINGS IN THE COMPARISON AMONG G3P-KEMLC AND

RAkEL.

G3P-kEMLC-3 G3P-kEMLC-V RAkEL
AHL 1.72 1.47 2.81
SA 2.19 1.81 2.00
ExF 1.72 1.47 2.81
MiF 1.76 1.65 2.59
MaF 1.53 1.78 2.69

1 2 3

G3P−kV

G3P−k3

RAkEL

(a) AHL

1 2 3

G3P−kV

G3P−k3

RAkEL

(b) ExF

1 2 3

G3P−kV

G3P−k3

RAkEL

(c) MiF

1 2 3

G3P−k3

G3P−kV

RAkEL

(d) MaF

Fig. 5. Critical diagrams of Holm’s test at 95% confidence for the comparison
between G3P-kEMLC and RAkEL. G3P-kEMLC-3 and G3P-kEMLC-V are
indicated as G3P-k3 and G3P-kV, respectively.

the four metrics comparing G3P-kEMLC with RAkEL; in
these diagrams, a line linking two methods indicates that their
performance is statistically the same at 95% confidence.

Fig. 6 shows the average number of votes per label, v, of the
best configuration in each case. Note that, although RAkEL
was executed with a large number of classifiers (such as n
calculated for v = 10 and for v equal to the best configuration
of G3P-kEMLC), in most cases it performed better just with
6 votes on average for each label. We see that G3P-kEMLC is
able to model and adjust the number of classifiers depending
on each dataset, and is flexible to adapt to each specific case. In
many cases, G3P-kEMLC obtained better results than RAkEL
using less classifiers. Therefore, we also show that the number
of classifiers used in the ensemble is not the only characteristic
that contributes for our method to achieve good performance,
but the selection of classifiers into an optimal tree-shaped
ensemble structure is decisive for its performance.

B. G3P-kEMLC vs state-of-the-art

Once we have shown that the performance of G3P-kEMLC
is significantly better than RAkEL, we next compare it with
other state-of-the-art EMLCs. As in the previous experiment,
Table III shows the average ranking values of each method
on all datasets. In it, G3P-kEMLC-3 and G3P-kEMLC-V
are indicated as G3P-3 and G3P-V respectively. We see that
both G3P-kEMLC configurations always have better average
ranking than the rest of EMLCs, except for SA, where EPS is
better ranked.

Friedman’s test determined that there existed significant
differences in the performance of the algorithms for all met-
rics. Fig. 7 shows the critical diagrams of the Holm’s test
for all metrics. For AHL, ExF, and MiF, the performance of
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Fig. 6. Average number of votes per label in each dataset.

TABLE III
AVERAGE RANKINGS IN THE COMPARISON AMONG G3P-KEMLC AND

STATE-OF-THE-ART EMLCS.

G3P-3 G3P-V ECC EBR EPS RF-PCT
AHL 1.81 1.44 4.59 4.69 3.81 4.66
SA 3.22 2.88 3.22 4.09 2.66 4.94
ExF 2.00 1.63 4.41 4.34 3.88 4.75
MiF 1.75 1.50 4.72 4.16 4.25 4.63
MaF 1.47 1.97 4.41 3.75 4.50 4.91

1 2 3 4 5

G3P−kV

G3P−k3

EPS

ECC

RFPCT

EBR

(a) AHL

2 3 4 5

EPS

G3P−kV

G3P−k3

ECC

EBR

RFPCT

(b) SA

1 2 3 4 5

G3P−kV

G3P−k3

EPS

EBR

ECC

RFPCT

(c) ExF

1 2 3 4 5

G3P−kV

G3P−k3

EBR

EPS

RFPCT

ECC

(d) MiF

1 2 3 4 5

G3P−k3

G3P−kV

EBR

ECC

EPS

RFPCT

(e) MaF

Fig. 7. Critical diagrams of Holm’s test at 95% confidence for the comparison
between G3P-kEMLC and state-of-the-art EMLCs. G3P-kEMLC-3 and G3P-
kEMLC-V are indicated as G3P-k3 and G3P-kV, respectively.

both G3P-kEMLC configurations is significantly better than all
other methods. For MaF, the performance of G3P-kEMLC-V
is statistically comparable to EBR, while for SA, RF-PCT is
the only method that perform significantly worse than both
EPS and G3P-kEMLC-V.

Therefore, we demonstrate that given the optimal structure
of the ensemble that G3P-kEMLC obtains, independently
of the configuration used, it outperformed state-of-the-art
EMLCs.



VI. CONCLUSIONS

In this paper, we introduced a method based on G3P for
building EMLCs. Given a pool of multi-label classifiers, each
focused on a subset of k labels, where k could be different
for each, the algorithm evolves individuals representing a tree-
shaped ensemble. At each node of the ensemble, predictions
of children nodes are combined, while the leaves represent
any multi-label classifier of the pool. The experimental study
on 16 multi-label dataset using 5 evaluation metrics yielded
promising results, demonstrating that the fact of building a
tree-shaped ensemble where not all members have the same
importance in the final prediction not only outperformed
RAkEL (which also is focused on small subsets of the labels)
but also the other state-of-the-art EMLCs, obtaining the model
in acceptable time. Moreover, the proposed method is flexible
and able to adapt the number of members of the ensemble
according to each specific case.

In the future, we will explore other types of non-terminal
nodes to combine the predictions, which also may use different
types or number of child nodes. Further, we will develop a
heuristic or evolutionary process to get a pool of multi-label
classifiers that are accurate, diverse, and have an optimal size
of the k-labelsets.
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