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Abstract—Convolution Neural Network (CNN) has become
a remarkable tool in solving many real-world problems of
computer vision in recent years. However, the designing of most
of CNN architectures is manual, which requires a significant trial
and error methodology as CNN’s performance highly relies on
their architectures. Thus, it gets arduous to design a promising
CNN architecture without having sufficient domain knowledge
and human expertise.

In this paper, we attempt to explore the possibility of using Ge-
netic Algorithm to design CNN architectures automatically. The
CNN architecture proposed by the Genetic Algorithm is trained
from scratch using Gradient- Descent Algorithm and evaluated
on a validation set at each evolutionary step. The algorithm does
not require any preprocessing of the data before its execution, nor
any post-processing on the evolved CNN architecture. We propose
an encoding scheme for determining the layer connectivity. This
scheme allows the formation of skip connections within the
CNN architecture. Along with the encoding scheme, the filter
dimensions, and the number of nodes in the fully-connected
layer are also genetically evolved during the subsequent evolution
using standard genetic operators, namely selection, mutation, and
crossover. We have specified algorithms for the formation of the
CNN model by combining the information about the encoding
scheme, filter dimensions, and the number of nodes of the fully-
connected layer in addition to the genetic operations.

The proposed algorithm is tested on the MNIST dataset
for handwritten digit recognition and Fashion-MNIST dataset.
QOur experiments have shown that the algorithm is capable of
successfully generating high-quality CNN architectures, which
are less studied before.

Keywords—Genetic Algorithm, Convolution Neural Networks,
Skip Architecture

I. INTRODUCTION

Visual Recognition has become an essential task for
computer-aided vision systems, which is majorly achieved by
the application of convolution neural networks. Modern day’s
image recognition task has become more intricate, which re-
quires more sophisticated CNN architectures. The first version
of CNN was first introduced in 1998 as LeNet5[1] with six
layers. With time, more complicated models like AlexNet[2],
VGGNet[3], and ResNet[4], are developed. Although they
emerge to be very efficient in several image recognition
tasks, we note that their architectures are manually designed
which requires experts having rich domain knowledge both in
investigated data and CNN architecture design. This limits the
resilience of the approach as several design parameters like
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filter parameters, connectivity of the layers, and the number
of nodes in the hidden layers of the fully connected layers
have to be managed.

In our work, we aim to propose an automatic design algo-
rithm of the CNN architecture using Genetic Algorithm. Our
algorithm accepts intervals for different parameters namely
kernel dimensions, kernel numbers, and padding information
for each convolution layer and the number of nodes in the
hidden layers of the fully connected layers along with pooling
information for each convolution layer. Even within these
intervals, the search space is massive which inspires us to use
the Genetic Algorithm to traverse the search space adroitly,

Deeper neural networks have greater accuracy for more
complicated problems. On the contrary, increasing the number
of layers leads to saturation of accuracy and then degradation,
well known as the degradation problem. It turns out that
sufficiently deep neural networks may fail to learn simple func-
tions. To solve this problem, skip architectures are introduced.
In our algorithm, we allow one layer to receive input from one
or more previous layers and perform convolution operations
on them to match up the spatial dimensions. An element-wise
average is performed on all the outputs of the convolution
operations to form that layer after which pooling is applied.

The remaining paper is organized as follows. Section II
refers to the preliminaries. Section III illustrates the details of
our algorithm. Experiments and results are noted in Section
IV. Finally, the paper is concluded in Section V in addition to
the scopes of future work.

II. PRELIMINARIES

A. Convolution Neural Networks

CNN is a hierarchical model comprising of several building
blocks, i.e., the convolution layer, pooling layer, merge layers,
and fully connected layers. Deep neural networks try to
approximate a function by application of these layers.

Convolution layers employ filters to perform convolution
operation on the input feature map. Filters are 3-D matrices.
In 2-dimension convolution, filters have a specific length and
breadth F. The depth of the filters is equal to the number of
input feature maps D. The input feature map is of dimension
L and B. The stride of the convolution is taken to be one



as generally used in literature. Then, convolution can be
summarized by the following equation.

B D-1F-1F-1 B
I(i,)=>_ > Y Ilit+zj+y2)KF -—z-1
z=0 y=0 =0

From the above equation, the maximum range of 1+ is L—1,
which concludes that ¢ extends from 0 to L — F' and the size of
the output feature maps results in (L — F+1,B—F+1,W)
where W denotes the number of filters.

Zero padding refers to the process of symmetrically adding
zeros to the input feature map. This is purposefully used to
keep information from the edges. The following equations
summarize padding.

I(i./)=0 0<i<L+2P—-1 j=0DB+2P—1
I(i,j)=0 0<j<B+2P—-1 i=0,L+2P—1

Thus, we can modify the dimensions of the output feature
maps to (L— F +2P+1,B—F+2P+1,W).

Pooling layers progressively reduce the number of pa-
rameters and computation in the network by reducing the
spatial size of the representation. Pooling layer independently
operates on each feature map. Several types of pooling layers
are used in the literature. We will use max-pooling throughout
the paper. Let the pool filter dimension be K. Following
equations summarize pooling layers.

S(iyj) =maz(I(Ki+z,Kj+y) 0<z,y<K-1

From all the above equations, we can determine the ultimate
dimensions of the output feature maps.

Output-Length = Integral part of (L — F +2P +1)/K
Output-Width = Integral part of (B — F +2P +1)/K
Output-Depth = W (no. of filters)

After each convolution operation, the feature maps are passed
through a non-linear differentiable function, regularly known
as the activation function. In our case, we will use Rectified-
Linear Unit (ReLU)[5] f(x) = max(0, ).

Also, fully-connected layers are annexed to the tail of the
CNN. We will use multilayer perceptron, which is a non-linear
mapping between input and output vector. The nodes are inter-
linked by weights after being passed through a non-linear
differentiable activation function. We will use the sigmoid
function[6] = here. The last layer of the convolution layers
is flattened into a column matrix and then taken as the input
for the fully-connected layer.

y:W.x—l—I;

where W(nzxn) is the weight matrix, y(,,x1) is the output
Vector, T (yx1) is the input vector and b, 1) is the bias vector.

In CNN, the convolution layers before the fully connected
layers hold information regarding local features of the image
such as edges, blobs, shapes, etc. Each convolution layer holds
several filters that represent one of those features. The fully

connected layer contains composite and aggregated informa-
tion from all the convolution layers that are of paramount
significance.

With the advent of the Graphics Processing Unit (GPU),
complex neural networks can be trained, containing some
millions of parameters. As we have to conduct training of
several architectures during the evolution, we will perform our
experiments only on smaller datasets like MNIST dataset for
handwritten digit recognition, and Fashion-MNIST. Although,
our algorithm is easily expandable for complex problems
requiring millions of trainable parameters.

B. Skip Connection

Skip connections[7] connect two non-adjacent layers of a
CNN. The skip connections were first introduced as a gate
mechanism in training recurrent neural networks with long
and short-term memory[8] for avoiding the Gradient Vanishing
(GV) problems. GV problems refer the gradient to be very
small or exploding while back propagating through the layers
of the deep neural network. As most of the deep neural
network algorithms are based on gradient descent algorithm,
GV problems have become a significant hindrance in training
deep neural networks. Adopting skip connections shorten
the number of layers of back-propagation, which allows the
deep neural network to have the leverage of having a higher
number of layers and also getting trained on low computational
resources A typical skip connection looks like in Figure 1.
A very modern application of skip connections is noticed in
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Fig. 1. Skip Connection

ResNet[4], applied as an identity layer F'(z) = f(x) + .
Identity layers connect two non-adjacent layers without any
convolution operations. The major drawback of this approach
is that the two layers should have the same spatial dimensions.
To overcome this hurdle, we introduce a convolution operation,
so that the spatial dimensions can be matched. In another
recent approach[9], layers interconnect within the same stage,
which requires all the layers within the same stage to have
the same spatial dimensions. Our approach also overcomes
this problem.



C. Genetic Algorithm

Genetic Algorithms (GA) are a class of meta-heuristic algo-
rithms inspired by the process of natural selection, according
to Darwin‘s theory of evolution. They belong to the larger
class of evolutionary algorithms. Genetic Algorithms work on
two basic requirements:

« An encoding strategy to denote candidates in the search
space of the optimization problem.

o An evaluation strategy for those candidates to compare
among themselves.

A simple example would be solving the Knapsack
problem[10] where it aims at finding the items to include
where each item has a particular weight and cost so that the
total weight is less than a specific value and the total cost is
maximum for the included items. GA does not perform an ana-
Iytic search, thus providing a near optimal solution. The near-
optimal solution is achieved using much less computational
resources. Hence, this algorithm is extensively used where the
search space is massive, or there is no specific greedy approach
to find the optimal solution. To the best of our knowledge, both
the factors apply to our problem.

Genetic Algorithm allows the evolution of individuals us-
ing five genetic operators namely - Initialization, Evaluation,
Crossover, Selection and Mutation.

1) Initialization: Initialization is the process of randomly
selecting some candidates in the search space, usually dis-
tributed over the entire search space (for enclosed search
spaces). The extent of the search space generally decides the
number of candidates. In our algorithm, we take it as an input
from the instruction set. To ensure the uniform distribution of
candidates on the search space, we use Gaussian distribution.

2) Evaluation: Evaluation is the process of recognizing
how close a candidate (chromosome) is to the optimal solution.
Each chromosome is evaluated using a fitness function. Here,
our chromosome denotes the architecture of the CNN. The fit-
ness value is the accuracy of the CNN on a specific validation
set after being trained using back-propagation algorithm.

3) Crossover: Crossover is the process of combining ge-
netic information from parents chosen from the current popula-
tion to produce more enriched population set. New off-springs
are produced by exchanging or varying genetic information
from the selected set of parents. There are many types of
crossover algorithms. Multi-Point crossover[11] is one such
algorithm, used in our approach, where alternating segments
of the parents are swapped to produce new off-springs.

4) Selection: Selection is the process of eliminating weaker
individuals in each evolution step. In each epoch, some candi-
dates are discarded according to the evaluation score provided
by the fitness function. Since, our problem is a maximization
problem, where we aim to maximize the accuracy of the CNN
architecture on the validation set, we will discard chromo-
somes with low accuracy in each evolution step.

5) Mutation: Mutation denotes the random alteration of
some parts of the chromosome within the boundaries of
the search space to produce required variation within the

population set and maintain diversity. In mutation, the solution
may differ entirely from the previous solution. Generally, the
percentage of mutation is meagre so as not to revamp the
population set much.

In many cases, we use a strategy known as Elitist
strategy[12] where we copy a small proportion of the fittest
individuals without any alteration. It ensures that the GA
does not waste time in re-discovering previously discarded
partial solutions. This enriches it’s performance dramatically.
Candidate solutions remain eligible for selection as parents in
the next evolution step when preserved through elitism.

III. THE PROPOSED ALGORITHM

This section presents the framework of the proposed algo-
rithm. Our first objective is to provide an encoding scheme to
represent the CNN architectures. Next, we provide algorithms
for the genetic operators which allow efficient traversal of the
search space.

We only encode chromosomes to denote the architecture
of the convolution neural networks (convolution layers and
fully connected layers). Combining the information from the
encoding strategy and layer dimension sections of the chromo-
some, we design the CNN architecture and evaluate it on the
validation set. The accuracy is noted and used as the fitness
value of the chromosome.

The genetic algorithm traverses the search space to max-
imize the accuracy of the predicted CNN on the validation
set. The intervals provided in the instruction set defines the
boundaries of the search space.

A. Encoding Strategy
Each gene consists of three parts:

« Structure encoding information for each convolution layer
« Convolution information for each convolution layer

— Number of filters
— Kernel/Filter dimension
— Padding dimension

« Number of nodes in each dense layer (except the first and
last layer)

First, the layer dimensions are calculated using Algorithm 2.
The formation of the layer connection and convolution filters
follows it, using Algorithm 1. At last, the fully connected
layers are formed.

1) Structure Encoding of Convolution Layers: We present a
binary encoding strategy to determine the connectivity among
the convolution layers. A series of binary numbers denotes
the presence of a connection between two convolution layers.
A convolution layer/block consists of several convolution
operations on the output feature maps of the previous layers
followed by the averaging of those convolution outputs and
pooling on them. The input convolution layer is considered as
the input image without any modifications. The i*" convolution
layer can accept input from any of it’s ¢ previous layers. For
instance, the third convolution layer can accept input from the
input, first and second convolution layers. Thus, an i-bit binary
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Fig. 2. A typical encoding procedure for 4 layer gene 1-01-101-1010. Here,
the first layer takes input from the input layer. The second layer has the first
bit 0. So, a dotted line signifies the possible connection. Second bit is 1 thus
it takes input from the first layer. Similarly the third layer takes input from
the input and second layers. For the fourth layer, note that, it does not take
input from the immediately previous third layer. It only takes input from the
input and second layers as the encoding for the 4** layer is 1010.

code encodes its information of connectivity. Among i bits, at
least one has to be positive to ensure that each convolution
layer takes input from minimal one layer.

For n convolution layers, the total number of bits is
1+2+3+..+n= % When there is a positive bit, the
convolution layer dimensions are compared. The layer from
where input is taken, dimensions are considered after pooling
(except for the input layer), but not for the current layer. If
dimensions mismatch, padding, as specified in the chromo-
some, is applied, followed by the convolution operation. For a
match in the dimensions, that layer is connected as an identity
layer without any convolution operation. The filter dimension
is calculated from the formula L — L 4+ 1 + 2P where L
is the input feature map dimension, L is the output feature
map dimension and P is the padding dimension. If the filter
dimensions emerge out to be negative, padding is increased to
ensure it is positive, All the convolution output feature maps or
identity mappings are element-wise averaged and then pooling,
as specified in the instruction set, is performed. We denote the
series of % bits as layer-bit-info. An example is in Figure
2. The input layer is denoted as the 0" layer. The detailed
algorithm is given in Algorithm 1.

For example, let the encoding for the third convolution layer
is 101. The algorithm checks if the third layer dimension
before pooling matches with the input layer. If not, padding
and convolution operations are performed as specified above.
Otherwise, it is added as an identity layer. Similarly, the same
is performed for the second layer (the dimension of the second
layer here is after the pooling operations). The first layer is
skipped as its corresponding bit is negative. This ensures that
there are convolution operations between two adjacent layers

Algorithm 1 Layer Connection Algorithm

1: for [ in layer-bit-info do

2. for binl do

3: if b is 1 then

4 if input layer dimension = current layer dimension
then

5 Connect them as identity layer

6 else

7 Add the padding specified in the chromosome

8 Find the kernel size F = L — L+ 1+ 2P

9: while K is non-positive do

10: P=P+1

11: F=L-L+1+2P

12: end while

13: Set depth D = Depth of the Input Layer

14 end if

15: end if

16:  end for

17:  Place the padding P on the input feature map.

18:  Perform the convolution with kernel (FFD).

19:  Average the outputs of all convolution operations.
20:  Pool as specified in the instruction set.

21: end for

until and unless they have the same spatial dimensions.

2) Convolution Layer Information Encoding: In this sec-
tion, we provide the convolution information encoding scheme
and the layer dimension calculation algorithm. Each layer has
an interval supplied for each of the three quantities in the
instruction set.

o Number of filters

« Kernel/Filter dimension

« Padding dimension
Each chromosome consists of three parameters for every
convolution layer. This part of a chromosome is a 2-D matrix
of size n X 3 where each row corresponds to one convolution
layer consisting of n convolution layers. The first element
denotes the number of filters, the second is the filter dimension,
and the third is the padding dimension. A typical example
would be :

1
39 5 0
15 3 0

This signifies that the CNN has three convolution layers

with the following details:

o First layer has 59 filters of dimension 4 each and a
padding of 1 is applied to the layers on which convolution
is performed.

o Second layer has 39 filters of dimension 5 each and no
padding is applied.

o Third layer has 15 filters of dimension 3 each and no
padding is applied.

To calculate layer dimensions, we first take the previous

layer dimensions (L,B,D). Each layer dimension is (integral

part of w, integral part of w, W) where



Algorithm 2 Layer Dimension Calculation Algorithm.

Pooling_instruction — max-pool filter size for i'" layer
Arr =[] layer sizes before pooling
ArrP =[] layer sizes after pooling
n = no. of convolution layers
Arr = Arr + Input Dimension
ArrP = ArrP + Input Dimension
for:=0,1,2,3,....,n—1 do
W, F, P = chromosome[i] convolution layer informa-
tion
9: K = Pooling_instruction[i]
10:  Index —1 — last element of the array
11: L = ArrP[-1][length]

A A R ol

12: B = ArrP[-1][breadth]

132 L = Int(w

14 B = Ing(BEL2R)

155 Ar=Ar+(L—-F+142P,B—F+1+2P, W)
16: AP = AP +(L', B". W)

17: end for

F is the filter dimension, L is the previous layer dimension,
P is the padding, W is the number of filters, and K is the
stride and dimension of max-pool filter (same here). A detailed
algorithm is given in Algorithm 2. For each convolution layer,
the bias and weights are randomly initialised using Gaussian
estimation. The activation function used here is ReLU f(z) =
max(0, z)[5].

3) Dense Layer Encoding: This section deals with the
encoding procedure for the dense (fully-connected layers)
using a row matrix with size m x 1.

Two more layers exist where the first layer is the input dense
layer, obtained from flattening of the output feature map of the
last convolution layer. The last layer contains the number of
nodes in the output layer, like for a classification problem,
the number of classes. We use sigmoid activation function[6]
—L except for the last layer. For classification problems, we

T+e® !

use softmax activation[13] Zceiez where C is number of
j=1

th

J

classes, z; is the activation for the ¢*" class. For regression
problems, we use linear activation f(x) = x. Each element in
the matrix consists of numbers within the intervals given in
the instruction set.

An example chromosome section is (65 32)T. This de-
notes that the hidden layers contain 65 and 32 nodes respec-
tively. A detailed analysis is given in Figure 3.

B. Genetic Operations

In this section, we present the algorithms for the genetic
operations, namely crossover, selection, mutation, and gene
correction.

1) Crossover: Crossover is the genetic operator to pro-
duce new enriched population form the current population
by alternating genetic information from the existing parent
chromosomes.

Let the population size be N. We take Int(%) chromo-
somes randomly as first set of parents, and other half as
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Fig. 3. A complete encoding procedure for the gene given in the image.
The dotted lines provide possible connections but not present as their
corresponding bit is 0. The convolution layer information matrix and the dense
layer information matrix are also given. This is a 3 convolution layer and 2
hidden dense layer convolution neural network.

second set of parents. In case of odd N, we ignore any one
of the chromosomes in the population. Then, crossover occurs
for every pair from the first and second set of parents. Each
chromosome consists of three main sections:

o Structure information of convolution layers.

o Filter number, dimension and padding information of
convolution layers.

o Number of nodes in the hidden layers of the fully-
connected layers.

For the structure encoding section, XOR operation is per-
formed between the corresponding bits. The reason behind
choosing XOR operator is that given two bits, the output will
be 1 or 0 is with equal probability, which helps in keeping
sufficient variations. Other operators like AND or OR tend to
saturate at a particular bit (0 for AND and 1 for OR).

Example : 1-11-110 ¢ 1-10-100 — 0-01-010.

For the convolution information, we take alternating infor-
mation from the parents. The first parent gives its information
of number of filters and padding sizes. The second parent gives
its information of filter size and dense/fully-connected layer
information. An example is provided in Figure 4.

Using the above algorithm, we make half the number of
population of off-springs. These off-springs replace the weaker

63 A 67 2 0\ /o 63 2 1\ oo
59 1 (_,’()) and |64 4 0 (;)>>—> 50 4 1 (.;.,>
62 0) \& 59 6 1) \7° 62 6 0) \>°

Fig. 4. Crossover between two parent gene sections denoting the convolution
and dense layer information of the Convolution Neural Network.
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Algorithm 3 Crossover Algorithm

1: P < Population Set

2: OP <« Off-spring Set

3: for 1 =0,2,4,.. do

4: Pl <« P[i] Parentl

s P2 < P[i+ 1] Parent2
6: P < New off-spring
;
8
9

Operator ’:> — Columns are copied
P[:, no. of filters] = P1[:, no. of filters]
. P[:, filter sizes] = P2[:, filter sizes]
10:  P[:, padding values] = P1[:, padding values]
11:  P[no. of nodes] = P2[no. of nodes]
12:  P[structure] = P1[structure] XOR P2[structure]
13: OP=O0OP+P
14: end for

chromosomes by applying the algorithm explained later. The
crossover algorithm is explained in Algorithm 3.

2) Selection and Mutation: The selection algorithm is
based on the median of the fitness values (accuracy of the CNN
on the validation set). CNN’s having fitness values lower than
the median are eliminated from the current population and are
replaced by the new off-springs created from the crossover
algorithm. As a result, the average accuracy of the population
increases.

A particular fraction of the population is mutated. Usually,
this number is conventionally meagre (=.2) and is kept con-
stant throughout the process. We change 50% of the values
present in this fraction of population randomly. A chromosome
specifically contains nx3+4mx1 layer information and %
structure information where n is the number of convolution
layers and m is the number of fully-connected layers. For
layer information, we choose randomly 50% of positions and
replace it with a new random value within the intervals given
in the instruction set. For structure information, we choose
50% of the positions in the bit-string and flip the bits at that
position.

3) Gene Correction: A glitch occurs when a layer takes
no input from its previous layers but delivers input to its
subsequent layers resulting in an invalid structure information.
An example is 1-00-101. According to this, the second layer
provides input to the third layer, but itself accepts no input
from its previous layers.

To avoid this, if we find that in a particular chromosome,
for a specific convolution layer, all the corresponding bits are
zero, we reinitialize it entirely with a new bit string for that
layer in a random fashion so that at least 1 bit is one. For this
example, the bit string for the second layer will be 11 or 01 or
10. Thus, the new bit-string will be 1-11-101 or 1-01-101 or
1-10-101. This ensures that the second layer takes input from
at least one of the previous layers.

A second kind of invalid chromosomes occurs when layer
sizes becomes negative due to size-reduction of the layers after
subsequent convolution operations. We are going to simply
ignore those chromosomes during evaluation and mark them
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Fig. 5. A bi-directional layer configuration formed using the encoding schema
described in this paper. Note here the pooling, average and padding operations
are hidden. Only the convolution layers are shown with the given encoding
structure. The number of dense layers is taken to be 1.

as invalid.

C. Population Initialization and Genetic Operator Sequence

This section deals with the formulation of the instruction
set for population initialization and step-wise execution of
the algorithms mentioned earlier for every GA iteration. The
instruction set mainly comprises of :

o Number of convolution and fully-connected layers

« Maximum range of convolution layer parameters

« Minimum range of convolution layer parameters

« Pooling kernel dimension for each convolution layer

« Maximum range of dense layer parameters

« Minimum range of dense layer parameters

o Number of epochs for the genetic algorithm and back-

propagation algorithm

« Size of the population set
The intervals mentioned in the previous sections of the paper,
are provided in the instruction set. For all the parameters, there
exists a particular interval in which the gene can take values
(both limits inclusive). This essentially bounds the search
space, and the GA does not unnecessarily go on finding all
values.For the pooling layers, we denote the pool filter size as
an exponential of 2 as 27 like 1,2,4,8,....

During population initialization, the instruction set is read,
and for each section of the chromosome, except for the
structure part, a random value is chosen within the interval.
For example, if the interval for the number of filters in the
first convolution layer is from 64 to 32, then a random value
within that interval is chosen.

The encoding section is formed using random bits for each
convolution layer. There is a constraint that in each layer, at
least one bit should be positive. To handle this, for each ith
layer, there are ¢ bits present, and only ¢ — 1 bits are randomly
chosen. Then positive bit is inserted randomly at any position
among those ¢ — 1 bits. This forms a random string with ¢
bits, and also ensures that at least one bit is positive so that
no invalid structures are formed during initialization.
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when pooling is used in the first layer. We can see here that in the skip
connections have very large convolution filters of size 23 and 25 which are
not conventionally used in the literature. Although it opens up a new field of
exploration where such filters are used.

After the completion of population initialization, the serial
execution of the above mentioned algorithms for each GA
iteration are as listed below :

1) Calculate the layer dimensions using Algorithm 2 by
decoding the convolution and dense layer information
for all genes in the population set as referred in Section
III-A2 and Section III-A3.

2) Calculate the kernel dimensions for each convolution
operations using Algorithm 1 by decoding the structure
information of convolution layers for all genes in the
population set as referred in Section III-Al.

3) Build and evaluate the model for every gene. Find their
accuracy on the validation set.

4) Construct the new set of off-springs using Algorithm 3
as referred in Section III-B1.

5) Replace all those genes in the population having accu-
racy less than the median accuracy of current population
set as referred in Section III-B2.

6) Perform mutation followed by gene correction as ex-
plained in Section III-B2 and Section III-B3 to get the
new population set ready for the next iteration.

D. Formation of large-sized convolution filters

A significant observation is that we can form extensive
convolution filters if we allow pooling operations on the earlier
layers. An example is the formation of convolution filters with
size 23 and 25, as shown in Figure 6. This occurs as pooling
operations abruptly decreases the layer sizes to half. So while
taking input from initial layers, such large convolution filters
need to be formed to match up the layer dimensions. This

MNIST
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digit dataset MNIST dataset

Informati Informati
[ 1-11-110 ] [ 1-11-001 ]

Convelution Layer Cenvelution Layer
Information

Information
3330 3551
2660 1831
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Information Information
68 33 66 30

[Fully Connected Leyer] [Fully Connected Lny:r]

Fig. 7. Final Genes

opens up a new domain that allows us to explore filters of
large dimensions, not conventionally used in literature.

IV. EXPERIMENTS AND RESULTS

The algorithm is implemented using keras module[14] in
python3.5 using an instance of Google Colab. Google Colab,
for an instance, has the following specifications:

e« GPU : IxTesla K80 , having 2496 CUDA cores, 12GB
GDDR5 VRAM

e CPU : Xeon Processors @2.2Ghz (1core, 2 thread)

¢« RAM : 12.6 GB available

e Disk : 32 GB available

We perform our training on two datasets, namely MNIST
handwritten digit dataset and Fashion-MNIST dataset. Each
of these consists of 28 x 28 black and white images of digits
and clothing items. There are ten classes for each dataset
representing digits and clothing items, respectively. We have
used 50,000 images from the train set for training each neural
network architecture and 5,000 images from the test set for
validation of each model. The latter half of the test set,
consisting of 5,000 images, is used for testing the best model
from the algorithm. 10 GA iterations are used for the MNIST
handwritten digit dataset and 15 GA iterations for the Fashion-
MNIST dataset trained for 5 and 8 hours respectively on
average. The population size is 10 and pooling is allowed only
in the last convolution layer. The number of epochs for the
back-propagation algorithm is 5, and it is performed twice. The
best set of weights are noted for validating on the validation
set.

The loss function used here is the softmax cross-entropy
loss. The optimizer used here is Adam optimizer with learning-
rate .001, By = .9, B2 = .999, € = 1.0 x 1078, The learning
rate is kept constant throughout the 5 epochs. The mutation
rate for the GA is kept constant at .2 for all iterations.

After the execution of the algorithm, we find that the best
accuracy for the MNIST handwritten digit dataset is 98.54%
and 88.58% for the Fashion-MNIST dataset, when the best
model is evaluated on the test set. The fittest gene found are
present in Figure 7.

A detailed graph for accuracy vs GA iterations is given in
Figure 8. We compare our algorithm with other state-of-the-
art algorithms, as listed in Table I. The maximum accuracy
for these CNN architectures is noted after five epochs, except



TABLE 1
COMPARISON WITH OTHER ALGORITHMS ON FASHION-MNIST

Fashion-MNIST dataset
Model Name Maximum Accuracy (%)
VGG16 Base model [15] 89.60
VGG16 H-CNN model [15] 85.42
VGG19 Base model [15] 89.54
VGG19 H-CNN model [15] 85.63
Spiking Neural Networks [16] 82.21

for the last one. As Genetic Algorithm is a meta-heuristic
algorithm, we have executed it 15 times independently and
have recorded an average F1-score of 88.43% for the Fashion-
MNIST dataset.

V. CONCLUSIONS AND FUTURE SCOPE

In this paper, we have explored the possibility of using
Genetic Algorithm to find the best possible CNN architecture
without human intervention. We have proposed an encoding
method to determine layer connectivity along with other strate-
gies to evolve the layer dimensions. We have then tested our
algorithm on two familiar datasets, namely MNIST dataset for
handwritten digit recognition and Fashion-MNIST dataset. Our
experiments have shown that they accomplish good results.

Despite the well-accomplished results, we find that our
algorithm has good scopes of improvement. Our algorithm
does not incorporate the evolution of max-pooling filter sizes
and up-convolution or up-sampling operations. It would also
be quite interesting to incorporate Genetic Algorithm to allow
the simultaneous evolution and training of CNNs instead of
using GA to predict network structures only. I acknowledge
Professor Dipankar Dasgupta and Professor Shamik Sural for
my work.

REFERENCES

[1]1 Y. B. Y. LeCun, L. Bottou and P. Haffner, “Gradient-
based learning applied to document recognition,” Pro-
ceedings of the IEEE, November 1998, 1998.

[2] L. S. A. Krizhevsky and G. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances
in Neural Information Processing Systems, 2012.

[3] K. Simonyan and A. Zisserman, “Very deep convo-
Iutional networks for large-scale image recognition,”
Proceedings of the 32nd International Conference on
Machine Learning, 2014.

[4] S.R.J. S. K. He, X. Zhang, “Identity mappings in deep
residual networks,” European Conference on Computer
Vision, 2016.

[5] T. C. M. L. B. Xu, N. Wang, “Empirical evaluation
of rectified activations in convolutional network,” arXiv
1505.00853v2, 2015.

Accuracy vs GA iteration
Fashion-MNIST dataset MNIST handwritten digit dataset

88.7 eooo" "% w0
87.9 9%.8

87.1

86.3

85.5

Accuracy(%)
Accuracy (%)
8
>

84.7

83.9

831 95.2

823 95.0
12345678 9101112131415

1 2 3 4 5 6 7 8 9 10
GA Iteration

Fig. 8. Variation of accuracy with GA iterations.The blue line denotes the
variation of maximum accuracy and the orange line denotes the variation of
average accuracy.

[6] A. G. C.E. Nwankpa, W. [jomah and S. Marshall, “Ac-
tivation functions: Comparison of trends in practice and
research for deep learning,” arXiv:1811.03378v1, 2018.

[71 K. G. R. K. Srivastava and J. Schmidhuber, “Training
very deep networks,” Advances in Neural Information
Processing Systems, Montral, Canada, 2015.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, 1997.

[9] L. Xie and A. Yuille, “Genetic cnn,” IEEE International
Conference on Computer Vision (ICCV), 2017.

[10] J. B. P.C. Chu, “A genetic algorithm for the multidimen-
sional knapsack problem,” Journal of Heuristics, 1998.
K. D. Jong and W. Spears, “A formal analysis of the role
of multi-point crossover in genetic algorithms,” Annals of
Mathematics and Artificial Intelligence, 1992.

S. A. K. Deb, A. Pratap and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: Nsga-ii,”
IEEE TRANSACTIONS ON EVOLUTIONARY COMPU-
TATION, VOL. 6, NO. 2, 2002.

R. A. Dunne and N. A. Campbell, “On the pairing of the
softmax activation and cross-entropy penalty functions
and the derivation of the softmax activation function,”
Conference on Neural Networks, Melbourne, 1997.

FE. Chollet et al., “Keras.” https://keras.io, 2015.

S. K.-s. Seo, Yiana, “Hierarchical convolutional neural
networks for fashion image classification,” Expert Sys-
tems with Applications, 2019.

M. W. K. N. A. M. P. Opielka, J.T. Starczewski, “Appli-
cation of spiking neural networks to fashion classifica-
tion,” International Conference on Artificial Intelligence
and Soft Computing, 2019.

(11]

[12]

(13]

(14]

[15]

(16]





