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Abstract—Fitness landscape analysis is an approach used
to mathematically characterize optimization problems. Random
walk algorithms are used to sample fitness landscapes in order
to perform fitness landscape analysis. Random walk algorithms
have an advantage over random samples, in that random walk
algorithms keep note of successive points in the walk, along
with the relationships between them. It is important that the
sample generated by a random walk algorithm is representative
of the entire fitness landscape. A representative sample can
be said to have good coverage of the decision space of the
optimization problem. A new measure of the coverage of random
walk algorithms, i.e. the Hausdorff distance, is proposed. The
coverage of random walk algorithms found in the literature is
investigated using the Hausdorff distance. This study shows that
it is not sufficient to consider only the robustness of a random
walk algorithm when performing fitness landscape analysis, but
that the coverage of decision space should also be considered.
This study shows that there is no significant difference in the
coverage provided by the random walk algorithms investigated.
However, the differences between the coverage of the random
walk algorithms is more prominent when the length of the
random walks is short, or the dimensionality of the optimization
problem is increased.

Keywords—random walk algorithms, fitness landscape analy-
sis, decision space coverage, Hausdorff distance

I. INTRODUCTION

Fitness landscape analysis (FLA) is an approach used to
analyze the search landscape of an optimization problem. In
order to do this, the value of the objective function, or fitness
function, of the optimization problem can be calculated for
each possible combination of values of the decision variables.
In a continuous-valued decision space, there are infinitely
many points, and it is therefore infeasible to calculate all
of the fitness values for a continuous-valued optimization
problem. Therefore, in order to perform analyses of the fitness
landscape, a sample of points in the decision variable space is
considered.

Random walk (RW) algorithms are used to sample fitness
landscapes. RW algorithms are different to regular sampling
algorithms, in that RW algorithms take into consideration the
neighbourhood of the points in the sample. As described by
Malan and Engelbrecht [9], in order to adapt RW algorithms
for continuous-valued decision spaces, there are a few con-
siderations that should be taken into account. Firstly, each
consecutive point in the RW should be within the neighbour-
hood of the previous point in the RW. It is typical to use

distance measures, such as Euclidean distance, to define these
neighbourhoods for the points in the RW. Secondly, the RW
should not make use of the fitness values to direct the random
walk. Lastly, the RW should provide as large as possible
coverage of the decision space given a certain computational
budget. It is important to note that a RW algorithm should
have significantly less computational cost than attempting to
solve the optimization problem when using a trial-and-error
process [9].

By nature, RW algorithms are stochastic. Therefore, it is
likely that two different executions of a RW algorithm will
cover different areas of the decision space. Even so, it is impor-
tant that fitness landscape characteristics, which are calculated
from these random walks, are reliable. Lang and Engelbrecht
[8] performed a study of the reliability, or robustness, of
FLA measures obtained by different RW algorithms. A RW
is said to be robust if, over multiple independent runs of the
RW algorithm, its resulting FLA measures do not fluctuate
significantly. Note when calculating the robustness of the
RW, the RW should have the same parameterization over the
multiple independent runs. The results of the study in [8]
indicated that the longer the RW, the more likely it is to
provide robust measures. However, an interesting result from
this study was that a number of short RWs also provided
robust measures for certain fitness landscape measures. Since
short RWs are likely to not cover large areas of the decision
space, it implies that these short RWs have FLA measures
that are biased to the small area of the decision space covered
by the RW. It is, therefore, not sufficient to only consider
the robustness of the FLA measures, but the coverage of the
decision space should also be considered.

The objectives of this study are the following:

• To introduce a measure of the coverage of RWs in
continuous-valued decision spaces, i.e. the Hausdorff
distance.

• To illustrate that the short RWs that were found to provide
robust FLA measures by Lang and Engelbrecht [8] do not
provide sufficient coverage of the decision space.

• To determine which RW algorithm provides the best cov-
erage of continuous-valued decision spaces. This study
provides a survey of continuous RW algorithms and their
coverage of decision spaces.
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• To investigate the effect of the length of the RWs on the
decision space coverage.

The remainder of this paper is structured as follows: Section
II provides an overview of RW algorithms for continuous-
valued decision spaces. Section III discusses the commonly
used RW coverage measures, and introduces a new coverage
measure. Section IV discusses the empirical procedure of the
study. Section V presents and discusses the results. Section VI
provides the conclusions of the study, and discusses potential
future work.

II. RANDOM WALKS

This section describes the RW algorithms investigated in
this study. The simple random walk was the first RW de-
veloped for continuous-valued decision spaces [9], however,
it exhibits poor coverage of the decision space, as noted by
Malan and Engelbrecht [9]. All the other RW algorithms
discussed in this section were developed to improve the
coverage of the decision space.

RW algorithms for continuous-valued decision spaces have
two parameters, namely the number of steps and a bound on
the step size. The upper bound on the length of a RW can
therefore be calculated by multiplying the number of steps
by the bound on the step size. Note that since the step size
for a RW algorithm is stochastic, the exact length of a RW
will be different over different iterations of the RW algorithm.
For brevity sake, ‘upper bound on the length of a RW’ is
abbreviated to ‘length of a RW’ for the remainder of this paper.

The simple random walk (SRW), introduced by Malan and
Engelbrecht [9], is the most basic RW algorithm in continuous-
valued decision spaces. Consider an optimization problem with
m decision variables. The first point in a SRW is then a random
point within the m-dimensional decision space defined by the
domains of the decision variables. Each subsequent step in
the walk is generated by drawing m random values in the
range [−stepSize, stepSize) from the uniform distribution,
and then adding these values to the previous point in the
RW. Note that stepSize is the bound on the step size for
the SRW. This is repeated until there are n steps in the walk.
Note that the SRW algorithm continuously generates a vector
of random values until the new point in the walk is within
the bounds of the decision space, and that the neighbourhood
of each point is defined by the bound on the step size for
the RW. Detailed pseudocode for the SRW algorithm can be
found in [9]. As noted by Malan and Engelbrecht [9], the SRW
algorithm provides poor coverage of the decision space, and
the poor coverage is more pronounced for small step sizes.

Malan and Engelbrecht [9] proposed the progressive random
walk (PRW) algorithm in order to improve on the coverage
provided by the SRW algorithm. The PRW divides an m-
dimensional decision space into 2m non-overlapping zones.
The PRW begins by randomly selecting one of these zones to
begin the walk, with the initial point in the walk on the edge
of the decision space in this zone. As with the SRW, each sub-
sequent step in the walk is generated by generating m random
values. However, for the PRW the random values are drawn

from a uniform distribution with the range [0, stepSize). In
order to improve the coverage of the PRW, the direction of
the walk is biased towards the opposite side of the decision
space to where the walk currently is. If the PRW reaches
the boundary of the decision space, the bias is switched to
the opposite direction [9]. Detailed pseudocode of the PRW
algorithm can be found in [9].

Jana et al. [7] proposed that a chaotic pseudo-random num-
ber generator be used instead of the pseudo-random number
(PRN) generator for the SRW. Jana et al. found that their
chaotic RW algorithms provide better coverage of the decision
space, when compared to the SRW and PRW. The chaotic
maps are initialized with a random value from the default
pseudo random number generator. A number of chaotic maps
were introduced in [7], namely the Logistic map, the Tent map,
the Chebyshev map, the Cubic map, and the iterative chaotic
map with infinite collapse (ICMIC). Jana et al. chose to only
investigate chaotic maps that generate numbers in the range
[−1, 1], since this value can then simply be multiplied with the
bound on the step size in order to get the next step in the walk.
Thus, the two chaotic maps investigated are the Chebyshev and
ICMIC maps. The resulting walks are respectively referred to
as Chebyshev chaotic random walk (CCRW), and the ICMIC
chaotic random walk (ICRW). Detailed pseudocode of the
CCRW and ICRW algorithms can be found in [7]. Note that
these algorithms are modifications of the SRW algorithm,
where the random numbers are drawn from chaotic maps
rather than from a uniform distribution. Jana et al. found that
the CCRW and ICRW algorithms provided better coverage of
the decision space than the SRW and PRW algorithms. On
average, the CCRW algorithm was found to provide the best
coverage across all investigated problem dimensions, but the
ICRW algorithm provided smaller standard deviations for the
coverage.

Viktorin et al. [11] proposed a modified PRW (mPRW) that
also makes use of a chaotic pseudo-random number generator.
Viktorin et al. investigated a number of chaotic maps in their
study, namely the Burgers, Dissipative, Lozi and Tinkerbell
chaotic maps. Furthermore, a mechanism called direction
switching, is proposed to change the direction bias of the
PRW. The direction switching in the mPRW algorithm works
as follows: a predetermined switching probability threshold is
chosen. Then, for each dimension of the RW, there is a chance
that the bias of that dimension changes. This is determined by
generating a PRN from the uniform distribution, and if this
value is less than the threshold, the bias changes. The direction
switching also keeps track of the previous dimension that had
a bias change, so that the bias of the same dimension does
not change twice (which would result in the RW going in the
same direction, and therefore coverage is not improved). Only
the coverage of the Lozi chaotic map mPRW (LPRW) and
the Dissipative chaotic map mPRW (DPRW) algorithms were
investigated with both of the above mentioned modifications.
The pseudocode of the mPRW algorithm modifications can be
found in [11]. Viktorin et al. found that both the LPRW and
the DPRW algorithms provided better coverage of the decision



space than the PRW.
The coverage provided by the RW algorithms introduced by

Jana et al. and Viktorin et al. have yet to be compared with
one another.

III. COVERAGE MEASURES

This section discusses existing approaches used to quantify
the coverage of RW algorithms in continuous-valued decision
spaces. Thereafter, a new coverage measure is proposed.

Previous research measured coverage of RW algorithms by
binning the points of the RW into a predetermined number
of bins, B, of equal size [7], [9], [11]. This process is
performed for m ≥ 1 dimensions in the decision space.
Suppose a RW has P points in the walk. The points from
the RW are then placed into the appropriate bins, depending
on each point’s position in the decision space. The number, or
frequency, of points in each bin is then calculated. Thereafter,
the average frequency of points per bin, across all decision
variables, can be calculated. In the literature, this is termed
the mean frequency of points in a bin. This process can be
seen as a generalization of using histograms to determine the
distribution of the points in higher dimensional spaces. A RW
algorithm is then said to exhibit good coverage if its mean
frequency of points in a bin is similar to P

B , which is the ideal
mean frequency of points in a bin.

However, there are a number of issues that arise from
estimating coverage by using a binning approach. If the
number of bins is too small, then the granularity of the point
distribution will be lost, and therefore the measure will not
give a true representation of the distribution of points in the
decision space. If the number of bins is too large, then the
standard deviation of the mean frequency of points will be
large, because there are likely to be many bins that end up
with very few points in them. Therefore, the choice of the
number of bins can be seen as an additional parameter for the
problem of analyzing the coverage of a RW.

This paper proposes the use of the Hausdorff distance as
a metric to measure the coverage of a RW algorithm. It will
be noted that the Hausdorff distance metric does not introduce
additional control parameters. The Hausdorff distance, dH [5],
measures the distance between two finite subsets of a metric
space. Two finite sets are close in the Hausdorff distance if
every point of either set is close to some point of the other set.
Note that the Hausdorff distance has been used in a number
of applications, most notably in multiobjective optimization
[1], [6], [10]. In the case of multiobjective optimization, it is
used to compare the solution set obtained by a multiobjective
evolutionary algorithm (MOEA) with the true Pareto front.
The solution set from a MOEA, or the approximation set, is
denoted by A = {a1,a2, ...,a|A|}, and the true Pareto front,
or the reference set, is denoted by R = {r1, r2, ..., r|R|}.

The Hausdorff distance is composed of the generational
distance, GD, and the inter-generational distance, IGD. The
GD of a solution set is the average distance from each solution
point to the nearest reference point in the decision space, and
the IGD of a solution set is the average distance from each

reference point to the nearest solution point in the decision
space [6].

The GD between the reference and approximation sets is
denoted as GD(A,R), and is defined as follows:

GD(A,R) =
1

|A|

(∑
a∈A

min
r∈R

d(a, r)p

) 1
p

(1)

where d(a, r) can be any distance measure, but it is typically
the Euclidean distance. Note that a value of p = 2 was initially
used in the calculation of GD; however, a value of p = 1 is
typically used to simplify interpretability and computation [1].

The IGD between the reference and approximation sets is
denoted as IGD(A,R), and is defined as follows:

IGD(A,R) = GD(R,A) (2)

The Hausdorff distance is then defined as follows:

dH = max{GD(A,R), IGD(A,R)} (3)

When the Hausdorff distance is applied to quantify the
coverage of a RW, the metric space is the decision space,
D, of the optimization problem, and the two subsets are:
• R ⊂ D, which is the set of randomly sampled points of

D, and
• W ⊂ D, which is the set of points in D which are visited

by a RW algorithm.
In order for a RW to provide a representative sample of

the decision space, the points in R should be drawn from a
uniform distribution. Therefore, R can be seen as the reference
set, and W can be seen as the approximation set.

When dH = 0, the reference and the approximation sets
are equal. However, note that when dH = 0, it does not
imply perfect coverage of the decision space, but rather that
the RW has provided uniform coverage of the decision space.
It is infeasible for a sample produced by a RW algorithm to
have perfect coverage of a continuous-valued decision space.
Since the reference set in this application of the Hausdorff
distance is drawn from a uniform distribution, the points in the
reference set will uniformly cover the entire decision space for
a sufficiently large sample. Therefore, the smaller the value of
dH , the better a RW algorithm covers the decision space.

In initial attempts at finding a new technique to quantify
decision space coverage of a RW, the authors investigated sta-
tistical techniques such as Kolmogrov-Smirnov and Kullback-
Leibler divergence. However, these statistical techniques often
require a number of assumptions such as normality of the
distribution of the points, and that the points in a sample are
identically and independently distributed (i.i.d.). The Haus-
dorff distance requires no assumptions beyond the need of
two finite sets of points, and therefore has the benefit of no
assumptions about the distribution of the points in the RW,
nor does it require the assumption that the points in the RW
to be i.i.d.



TABLE I
LIST OF THE RW ALGORITHMS INVESTIGATED IN THIS STUDY, ALONG

WITH THEIR ABBREVIATIONS

Random Walk Algorithm Abbreviation

Simple random walk SRW
Progressive random walk PRW
Chebyshev chaotic simple random walk CCRW
ICMIC chaotic simple random walk ICRW
Lozi chaotic progressive random walk LPRW
Dissipative chaotic progress random walk DPRW

IV. EMPIRICAL PROCEDURE

This section discusses the empirical procedure followed
in this study to evaluate the applicability of the Hausdorff
distance metric as a RW coverage measure. Section IV.A
discusses the RW algorithms evaluated in this study. Section
IV.B discusses the experimental procedure followed in this
study.

A. Random Walk Algorithms

Table I lists the RW algorithms that are investigated in this
study, along with their respective abbreviations.

For the LPRW and DPRW, the implementation used in this
study makes use of both the chaotic pseudo-random number
generator and the direction switching modifications. In this
study, a switching probability of 5% is used, as in [11].

B. Experimental Procedure

This section describes the experimental procedure for each
of the experiments in this paper. The experiments are as
follows:
• To determine which RW algorithm provides the best cov-

erage of the decision space, that is which RW algorithm
has the smallest Hausdorff distance.

• To illustrate that the short RWs that were found to
produce robust FLA measures in [8] do not have sufficient
coverage of the search space.

• To investigate the effect of the length of the RWs on the
decision space coverage.

In order to determine the applicability of the Hausdorff
distance as a coverage measure, and to determine which RW
algorithm provides the best coverage of the decision space, the
empirical process of Malan and Engelbrecht [9] is followed:
the decision space is the hypercube with bounds [−100, 100]
in all dimensions. The step size of the RW algorithms is set
to 10% of the domain, which implies that the upper bound on
the step size is 20. The number of steps in each of the RW
algorithms is 104×m, where m is the number of dimensions
in the decision space. The RW algorithms are investigated
in 2, 3, 4, 6 and 10 dimensions. This procedure is repeated
for 30 independent runs. The coverage of the RWs in one
dimension is not investigated, since the direction switching
modification for the RW algorithms in [11] has no effect in
a single dimension. It is important to note that this study
investigates the coverage of a single RW in the decision space.

To find the RW algorithm that provides the best coverage
from the above-mentioned procedure, a statistical analysis is
performed as suggested by Derrac et al. [3]. Note that the
smaller the Hausdorff distance of a RW, the better the RW
covers the decision space of the optimization problem. Since
the distribution of the sample of points generated by RW algo-
rithms cannot be assumed to follow a normal distribution, non-
parametric statistical tests are required. To compare perfor-
mance of the RW algorithms, the Friedman, Friedman Aligned
Ranks, and Quade statistical tests are applied. The Friedman
test is a commonly used non-parametric statistical test, used
to compare multiple paired groups. However, the Friedman
test only allows for intra-dataset comparisons, and not for
inter-dataset comparisons [4]. The Friedman Aligned test was
created to address this issue. The Quade test assigns more
weight to datasets which are deemed more difficult [4], which
emphasises differences among the investigated algorithms. In
the case of this experiment, the higher the dimensionality of
the decision space, the more difficult it is considered. For a
more in depth discussion of these tests, the reader is directed
to [3]. The null hypothesis for these statistical tests is that
there is no difference in the Hausdorff distance resulting from
each of the investigated RW algorithms. A significance level
of 0.05 is chosen a priori.

For the Hausdorff distance metric, the approximation set is
the set of points in the decision space generated by the RW
algorithm. The reference set is the set of points that are drawn
from a uniform distribution. The complementary-multiply-
with-carry (CMWC) pseudo-random number generator [2] is
used to generate the reference set. In each experiment, the
number of points in the reference set is equivalent to the
number of steps in the RW. For example, with the above-
mentioned experiment, there is 104 × m, points in both the
reference and approximation sets, where m is the number of
dimensions in the decision space. In order to simplify the
calculations and the computations of the Hausdorff distance,
the value of p in the GD and IGD calculations is set to 1.

In order to investigate the effect of increasing RW lengths
on the coverage of the decision space, the Hausdorff distance
is calculated for increasing number of steps in the RWs. The
empirical procedure for this experiment is set up the same
as the experiment used to determine which RW algorithm
provides the best coverage of the decision space, which is
described above. However, the number of steps in the RW
algorithms are chosen as 10%, 20%, ..., 100% of 104 × m
steps, where m is the number of dimensions investigated.

In the study on the robustness of RW algorithms [8], Lang
and Engelbrecht found that a number of relatively short RWs
produced robust FLA measures. To illustrate the poor coverage
of these RWs, the Hausdorff distance is calculated for the SRW
in 10 dimensions, with a domain of [−100, 100]. As in [8],
the number of steps in the RW is between 250 and 3050, and
the bound on the step size is between 0.1 and 3.1. Each of
these combinations of parameters of the SRW is used, so long
as the upper bound on the length of the RW is below 2000
units. This experiment is repeated for 30 independent runs.



The results are plotted on a parallel coordinate plot, as in [8].

V. RESULTS AND DISCUSSION

This section contains the results of the study, along with
a discussion of the results. Section V.A contains the results
for the experiment to determine which RW provides the best
coverage. Section V.B contains the results relating to the
coverage of short robust random walks. Section V.C contains
the results relating to the experiment of the effect of increasing
walk lengths and increasing dimensionality of the decision
space.

A. Coverage of Random Walk Algorithms

Table II summarizes the results of the experiments con-
ducted in order to determine the applicability of the Hausdorff
distance as a coverage measure, and to determine which RW
algorithm provides the best coverage. Since the experimental
procedure is the same as in [7], [9], [11], the coverage provided
by the Hausdorff distance metric can be compared to the
coverage used by the binning method. Note that the results
in Table II are averaged over 30 independent runs.

Jana et al. [7] investigated the coverage of the SRW, PRW,
CCRW and ICRW algorithms. In order to compare the Haus-
dorff distance with the results in [7], the aforementioned RW
algorithms are analyzed in isolation. From Table II, the PRW
algorithm provides the best coverage in 2, 3 and 4 dimensions.
However, in 6 and 10 dimensions, the CCRW provides the best
coverage. Similarly, as the dimensionality of the decision space
increases, the performance of the ICRW improves. The SRW
provides a lower Hausdorff distance in 2 and 3 dimensions
than both the CCRW and the ICRW. This is counter-intuitive,
since the CCRW and ICRW are modifications of the SRW
algorithm.

Viktorin et al. [11] investigated the coverage of the PRW,
LPRW and DPRW algorithms. In order to compare the Haus-
dorff distance with the results in [11], the aforementioned
RW algorithms are analyzed in isolation. From Table II, the
LPRW provides the best coverage of the decision space in
all dimensions except for the 2 dimensional decision space.
Note that Viktorin et al. found that the DPRW provided
the best coverage using the binning technique. However, the
results in Table II indicate that the LPRW provides the best
coverage using the Hausdorff distance. Furthermore, as the
dimensionality of the decision space increases, DPRW actually
provides worse coverage than the PRW.

When taking all of the RW algorithms into consideration,
the RW algorithm that provided the lowest average Hausdorff
distance, over 30 independent runs, in each dimension in Table
II is boldfaced. Thus, the LPRW provides the best coverage in
2, 4 and 6 dimensions, the DPRW provides the best coverage
in 3 dimensions, and the CCRW provides the best coverage
in 10 dimensions. The RW algorithm that provides the best
coverage is therefore problem dependent.

The average Hausdorff distance from all of the RW al-
gorithms are quite similar for each of the dimensions in-
vestigated. Therefore, in order to determine if there is a

statistically significant difference in the coverage obtain by the
RW algorithms, a statistical analysis is performed as discussed
in Section IV. Table III presents the rankings of the RW
algorithms, along with the test statistic, and the p-value of
the statistical test for the Friedman, Friedman Aligned and
Quade tests.

Using a significance level of 0.05, and given the p-values
for each of the statistical tests in Table III, the null hypothesis
can not be rejected for any of the statistical tests. The null
hypothesis states that there is no significant difference between
the average Hausdorff distance for each of the RW algorithms
investigated. Therefore, it cannot be concluded that any RW
algorithm provides significantly better coverage of the decision
space than any other RW investigated.

Despite rejecting the null hypothesis, the performances of
the RW algorithms can still be ranked, as is indicated in Table
III. The RW algorithm that has the highest ranking in each of
the statistical tests is boldfaced in the table. From this table,
it can be observed that, as expected, the SRW consistently
provides the worst coverage, and the LPRW provides the best
coverage according to each of the statistical tests.

The RW algorithms introduced in [7] and [11] both make
use of the idea of replacing the PRNG with a PRN generated
from a chaotic map. The RW algorithms in [7] modify the
SRW, and the RW algorithms in [11] modify the PRW. Since
the SRW has been shown to provide worse coverage than
the PRW both here, and in [9], it is expected that the RWs
introduced in [11] will provide better coverage than the RWs in
[7]. However, this is not the case. From Table III, the CCRW
is ranked higher than the DPRW by each of the statistical
tests, while the ICRW ranks lower than the DPRW only in the
Friedman test.

B. Coverage of short robust random walks

This section analyzes the coverage provided by the short
RWs, that were found to produce robust FLA measures in in
[8].

Figure 1 plots the average Hausdorff distance, over 30 inde-
pendent runs. This experiment contains all of the combinations
of parameter values of a SRW that result in a RW length
of less than 2000 units. This experiment is conducted in 10
dimensions so that the coverage of the walks may be compared
with both the results in Table II and the results found in [8].
Note that the boundary of the decision space is [−100, 100]
in all dimensions.

Figure 1 shows that increasing the length of the SRW results
in lower Hausdorff distances. This is expected, because as the
length of the RW increases, the more likely the RW is to
explore more of the decision space. In this plot, the average
Hausdorff distance ranges from 215.83 to 262.32. Therefore,
the Hausdorff distances obtained for these short RWs are
significantly higher than the Hausdorff distances in Table II.

In Figure 2, the path of a SRW that has 1000 steps and a
step size of 1.0 can be visualized in its 2 dimensional decision
space. Note that the x and y axes represent individual decision
variables. This particular combination of parameters for a RW



TABLE II
AVERAGE HAUSDORFF DISTANCE FOR MAXIMUM NUMBER OF STEPS, OVER 30 RUNS. (STANDARD DEVIATION IN PARENTHESES.)
ENTRIES IN BOLD INDICATE THE RW ALGORITHM WHICH PROVIDES THE SMALLEST AVERAGE HAUSDORFF DISTANCE PER DIMENSION

Average Hausdorff distance

Dimension Number of points in walk SRW PRW CCRW ICRW LPRW DPRW

2 20000 0.72983 0.71113 0.73739 0.74368 0.71042 0.7135
(± 2.59e-05) (± 7.92e-06) (± 4.81e-05) (± 9.59e-05) (± 1.07e-05) (± 1.91e-05)

3 30000 3.71466 3.62583 3.72901 3.74031 3.60962 3.60860
(± 2.53e-04) (± 1.59e-04) (± 2.56e-04) (± 5.17e-04) (± 6.09e-05) (± 1.05e-04)

4 40000 9.14666 8.89653 9.06195 9.10765 8.82804 8.93189
(± 9.98e-04) (± 5.16e-04) (± 5.58e-04) (± 9.47e-04) (± 2.38e-04) (± 5.75e-04)

6 60000 25.31897 24.70655 24.56895 24.67359 24.42923 24.83061
(± 0.00234) (± 0.0025) (± 0.00243) (± 0.00304) (± 0.00144) (± 0.00115)

10 100000 65.26578 64.50012 63.16687 63.28287 64.19945 66.19231
(± 0.06565) (± 0.05951) (± 0.05289) (± 0.0594) (± 0.07265) (± 0.07075)

TABLE III
RANKS ACHIEVED BY THE FRIEDMAN, FRIEDMAN ALIGNED, AND QUADE

TESTS FOR THE RW ALGORITHMS IN TABLE II.
ENTRIES IN BOLD INDICATE THE HIGHEST RANKING RW ALGORITHM

Algorithm Friedman Friedman Aligned Quade

SRW 5 24.2 5.267
PRW 3 13.8 3.34
CCRW 3.4 13.6 2.67
ICRW 4.4 15.8 3.67
LPRW 1.6 7.6 1.8
DPRW 3.6 18 4.267

Statistic 9.9143 8.5638 2.0937

p-value 0.0777 0.1278 0.1086

Fig. 1. Parallel coordinates plot of average Hausdorff distance for SRW in
10 dimensions, over 30 runs

is observed in [8] to produce FLA measures that are robust
in 10, 20 and 50 dimensions. The SRW in Figure 2 resulted
in a Hausdorff distance of 70.383, which is significantly
lower than any of the Hausdorff distances found in Figure 1.
Despite this lower Hausdorff distance, Figure 2 illustrates that
this SRW provides extremely poor coverage of the decision
space. This implies that when a RW algorithm provides a
Hausdorff distance of 70, the coverage of the decision space
is insufficient. Since the Hausdorff distances found in Figure
1 are much larger than 70, it is clear that the coverage of the
decision space provided by these short RWs is poor, despite
the fact that the resulting FLA measures for these short walks

Fig. 2. Example of SRW with 1000 steps and step size 1.0 in 2 dimensions,
resulting in a Hausdorff distance of 70.383. The points in the reference set
are blue, and the points in the SRW are red.

have been shown to be robust. Thus, these short RWs that
provided robust FLA measures are not representative of the
entire fitness landscape.

C. Effect of dimensionality and increasing random walk
lengths

This section discusses the results of the experiments per-
formed to investigate the effects of increasing RW lengths
and increasing dimensionality of the decision space on the
Hausdorff distance metric.

The Hausdorff distance for each of the RWs listed in Table
I are plotted for various dimensions. In order to investigate
increasing RW lengths, the bound on the step size is 10% of
the decision space boundaries as in [9], while the number of
steps in the walk is increased. The maximum number of steps
for the RW is the same as in Table II. In each dimension, the
boundaries of the decision space is [−100, 100]. Figures 3 to
7 contain the plots for the average Hausdorff distance in 2, 3,
4, 6 and 10 dimensions respectively.



Fig. 3. Average Hausdorff distance for increasing RW lengths in 2 dimen-
sions, based on 30 runs

The average Hausdorff distance observed for the different
RW algorithms in Figures 3 to 7 are similar in each dimension.
This can be seen by noting how close the plots of the
average Hausdorff distance from the different RWs are in each
dimension. This gives support to the finding in Section V.A
that no RW algorithm provides significantly better coverage
of the decision space that the other RW algorithms.

Figure 3 indicates that the average Hausdorff distance
decreases exponentially for each of the RW algorithms as the
length of the RW increases. The same pattern is observed in
the remaining figures. This result is in line with intuition: as
the length of the RW increases, the more likely the walk is to
cover more of the decision space.

Figure 3 indicates that the differences between the average
Hausdorff distance for the RW algorithms is much more
prominent for short RW lengths. Likewise, this occurs in the
remaining figures for the different dimensions. This result
suggests that the choice of RW algorithm is more important
for shorter RW lengths than for longer RW lengths.

The plots in Figures 3 and 4 are quite similar. However,
it is important to note the increase in the scale of the y-
axis (the average Hausdorff distance) from Figure 3 to Figure
4. Similarly, each increase in dimension shows significant
increases in the average Hausdorff distance. This is likely due
to the curse of dimensionality, indicating that the coverage of
a RW becomes increasingly worse as the dimensionality of
the problem increases.

The poor performance of the SRW becomes apparent in
Figure 5, indicated by the gap between the SRW plot and
the remaining RW algorithms’ plots. Likewise, the good
performance of the LPRW is observed in Figure 5, particularly
with shorter RW lengths. The PRW begins to provide lower
average Hausdorff distances in 4 dimensions than the DPRW.

In Figure 6, the SRW shows higher average Hausdorff
distances than in Figure 5. Further, the ranking of the ICRW
improves for 10 dimensions compared to previous dimensions.

Figure 7 shows more significant gaps between the plots
of the various RW algorithms. This indicates that the choice

Fig. 4. Average Hausdorff distance for increasing RW lengths in 3 dimen-
sions, based on 30 runs

Fig. 5. Average Hausdorff distance for increasing RW lengths in 4 dimen-
sions, based on 30 runs

Fig. 6. Average Hausdorff distance for increasing RW lengths in 6 dimen-
sions, based on 30 runs



Fig. 7. Average Hausdorff distance for increasing RW lengths in 10 dimen-
sions, based on 30 runs

of which RW algorithm to use becomes more important for
higher dimensional decision spaces. The DPRW becomes the
worst performing RW algorithm in 10 dimensions, even worse
than the SRW. In 10 dimensions, the CCRW and the ICRW
become the best performing RW algorithms, as discussed in
Section V.A.

VI. CONCLUSIONS AND FUTURE WORK

Random walk (RW) algorithms are used to sample points
of a fitness landscape in order to perform fitness landscape
analysis (FLA) on an optimization problem. A number of RW
algorithms have been introduced for optimization problems
with continuous-valued decision spaces. This paper introduced
a new measure of decision space coverage of a RW algorithm,
i.e. the Hausdorff distance. The coverage of a number of RW
algorithms were investigated. The effects of increasing RW
lengths and dimensionality of the decision space were also
investigated.

The results of this study indicate that considering the
robustness of a RW [8] in isolation is not sufficient, and that
it is important to also investigate the coverage of the decision
space that the RW provides. It is necessary that the sample that
a RW provides is representative of the entire fitness landscape.
If FLA is based on a sample generated by a RW with poor
coverage, the results will be biased towards the properties of
the portion of the fitness landscape that the RW sampled.

The results of this study indicate that there is no signif-
icant difference between the coverage provided by the RW
algorithms investigated in this study. Despite this, the Lozi
map based progressive RW (LPRW) was shown to provide
the lowest Hausdorff distances, and thus provides the best
coverage.

This study also indicates that the shorter the length of
the RW, the more important the choice of RW algorithm
becomes. This is because the differences between the coverage
provided from different RW algorithms for short RWs is more
significant than for long RWs. Increases to the dimensionality
of the decision space also emphasizes the differences in

coverage provided from different RWs. Therefore, the results
suggest that there is a link between the coverage provided by
a RW and the hypervolume of the decision space.

Possible future work can include the following:
• Investigate the coverage of alternative RW algorithms
• Investigate the coverage of RWs in more complicated

decision spaces
• Investigate the effect of the size of the decision space on

the coverage of the RW algorithms.
• Compare each of the RW samples against multiple ran-

dom samples in order to reduce the bias of a single
random sample on the coverage measures

• Analyze the coverage of RWs in higher dimensions
• Investigate the effect of step sizes and number of steps

on the Hausdorff distance
• Investigate alternative reference point generators for the

Hausdorff distance
• Up to now, all analysis of the coverage of a random walk

has been on the decision space of a problem. The analysis
can be expanded to coverage of the function space
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