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Abstract—A challenge in engineering design optimization is
that sufficient information may not be available to define the exact
specifications beforehand. While iterative trial optimization using
different specifications is widely used in industry, multiobjective
optimization is attracting much attention in the academic field.
However, off-the-shelf methods in both categories are time-
consuming due to the involved computationally expensive simu-
lations. In this paper, the characteristics of the targeted problem
are summarized; the gap between off-the-shelf methods and the
practical need is then analyzed. A simple yet effective frame-
work, called two-stage multi-fidelity surrogate model-assisted
optimization (TMSO), is proposed to improve efficiency. TSMO
is implemented by two state-of-the-art optimization algorithms
and two real-world design cases demonstrate its effectiveness
in practice. The research topics in multiobjective optimization
and surrogate model-assisted optimization inspired by the TSMO
framework is finally discussed.

Index Terms—multi-fidelity optimization, engineering opti-
mization, multiobjective, simulation-based optimization, sur-
rogate model, MOEA/D, surrogate model-aware evolutionary
search

I. INTRODUCTION

Engineering design often follows the top-down design flow

[1], including system-level design and building block-level de-

sign. The whole (sub)system is firstly divided into a number of

building blocks, each of which has a behavioral model. Based

on the behavioral models, design specifications are coarsely

allocated to each of the building blocks. With the assigned

specifications, the building block-level design can often be

formulated as a simulation-based optimization problem. The

example of an analog-to-digital converter design is as follows:

the converter (i.e., system) is firstly decomposed into a certain

number of amplifiers and comparators (i.e., building blocks),

and a set of approximate design specifications is set to each

of them. For the more than ten design specifications of an

amplifier, most of them are not exact. For instance, the phase

margin should be around 60◦; 55◦ can still be used although

not preferred; higher than 70◦ is not necessary. Using these

design specifications, the transistor implementation will be

carried out, which is a simulation-based optimization problem

[2] and is the target of this paper.

This optimization is not trivial because of the following two

reasons: (1) the involved simulation is often computationally

expensive; (2) the specifications assigned to each building

block are often inexact like the above example. It is clear that

excessively strict specifications may cause the optimization

to fail, whereas overly relaxed specifications may not obtain

design solutions with sufficient quality. To address the above

challenges, the closely related research in the computational

intelligence field are surrogate model-assisted evolutionary al-

gorithms (SAEAs) and multiobjective evolutionary algorithms

(MOEAs).

To cope with the computationally expensive simulations,

surrogate models are employed. Surrogate models are com-

putationally cheap approximation models predicting the re-

sponse from design parameters, which are often constructed

by statistical learning techniques. By replacing computation-

ally expensive simulations to computationally cheap surrogate

model predictions, the optimization time can be substantially

reduced. Surrogate model predictions have errors, which may

mislead the optimization. The way to make surrogate models

and optimization work harmoniously is the key of SAEA,

which is called model management [3]. Using different model

management methods, different SAEAs are produced.

To cope with the inexact design specifications, the way that

is widely used in industry is trial-and-error. Different design

specifications are tried assisted by design experience to find the

appropriate ones and thus the optimal design. This often leads

to a number of trial optimization runs, especially when there

are many specifications. The other way that is well investigated

in the computational intelligence field is multiobjective opti-

mization [4]. A Pareto front (PF) is generated showing optimal

trade-offs of different design specifications. Designers can then

select a design that best fits their interests. Note that the

computing overhead of MOEAs is much higher than single ob-

jective evolutionary algorithms (EAs). To improve efficiency,

surrogate model-assisted MOEAs [5] and interactive MOEAs

[6] are introduced. Although surrogate modeling and iterative

selection of region of interest (ROI) in the multiobjective

optimization save much computing overhead, the optimization

time is still very long [4].

This paper aims at identifying the gap between off-the-shelf

methods in MOEA research and practical need for engineering

design problems, providing an efficient optimization frame-

work for the targeted problem as well as the inspired research
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topics. The remainder of this paper is organized as follows:

Section II summarizes the characteristics of the targeted

problem and the gap for off-the-shelf methods. A simple yet

effective framework, called two-stage multi-fidelity surrogate

model-assisted optimization (TMSO), hybridizing MOEA and

SAEA is then proposed in Section III. Section IV demonstrates

and verifies TSMO using a multi-physics electro-thermo-

elastic micro-actuator and a microwave dielectric resonator

antenna, respectively. Section V discusses the inspired research

topics when employing TSMO. The concluding remarks are

provided in Section VI.

II. MOEAS AND COMPUTATIONALLY EXPENSIVE

ENGINEERING DESIGN OPTIMIZATION PROBLEMS

Engineering design optimization problems often have the

following characteristics: (1) Simulation is often a must, which

is computationally expensive when the required accuracy is

high. (2) The objectives are often constraints themselves be-

cause of the design specifications. In addition, only the PF near

the design specifications is of interest to the designer. Again

taking the phase margin of an amplifier as an example, when

using it as an objective, PF with performances higher than

70◦ or lower than 55◦ are redundant. (3) The designers may

only need a few Pareto-optimal designs in typical locations to

compare with so as to obtain the final design. A large number

of Pareto-optimal designs adjacent to each other are often not

essential or needed. (4) Pareto optimal may sometimes not be

necessary as long as the design specifications are met.

It can be seen that characteristics (2), (3) and (4) show

a subset of a conventional PF with a sufficient number of

evenly distributed Pareto-optimal solutions. The requirements

in completeness, distribution and quality are reduced consid-

ering these characteristics. To satisfy characteristics (2), (3)

and (4), a conventional PF is obviously better but employing

a conventional MOEA leads to too long optimization time

due to the computationally expensive simulations. In other

words, does the outcome of a conventional MOEA worth the

computing efforts? To obtain a high-quality PF, the population

size cannot be small (e.g., a population size of several hundred

has to be used), but arguably only a few typical Pareto-optimal

points are sufficient for the designer. An even distribution

of the Pareto-optimal points is one of the important goals

for MOEAs but it is less useful when compared against its

long optimization time in real-world design practice. The

importance of objective constraints is highly emphasized in

engineering design optimization, but considering them only

attracts attention in the MOEA field in recent years [7], [8]

and no surrogate model is considered.

Owing to the above, to the best of our knowledge, there

is no off-the-shelf method for the targeted engineering design

optimization problem, although SAEA and MOEA have been

well investigated. This asks for an alternative efficient method

to address the challenge of inexact design specifications. An

opportunity is to make use of the simulation models with

different fidelities. Simulations models, especially those using

numerical techniques (e.g., finite element analysis), are able to

make a trade-off between the accuracy and the simulation time.

For example, for a numerical model, when reducing the mesh

density or the number of solver iterations, a less accurate but

computationally much cheaper model can be obtained, which

is often 2 to 50 times faster than the high-fidelity accurate

model [9]. By employing the low-fidelity model, real-world

designers often carry out iterative optimization. For example,

the low-fidelity model is firstly used for various kinds of

design specifications; knowledge is then acquired and new

specifications are proposed until a potential appropriate design

specification is found. The high-fidelity model will then be

employed. However, this is not a systematic approach and

the iterative optimization process often largely depends on the

designer’s experience.

In Section III, a simple yet efficient systematic framework,

called TSMO, is proposed. A multiobjective optimization us-

ing a low-fidelity simulation model is firstly carried out to get

a preview of the performance space. The appropriate design

specifications are then obtained from the PF. A single objective

surrogate-based optimization with a high-fidelity simulation

model is then applied to obtain the final design. Various

optimization algorithms can be employed to implement this

framework. In this paper, the MOEA/D-DE method [10]

and the surrogate model-aware evolutionary search (SMAS)

method [11], [12] are employed for the implementation. Be-

sides this hybrid optimization framework, a equally important

contribution is that novel research topics for MOEAs and

SAEAs for engineering design can be put into this framework,

bridging the two domains.

III. THE TMSO FRAMEWORK AND ITS IMPLEMENTATION

A. The General Framework

The general framework of TMSO is shown in Fig. 1. TMSO

works as follows:

Step 1: Carry out a conventional multiobjective optimiza-

tion with a low-fidelity simulation model to obtain a

preview of the possible optimal performance.

Step 2: Based on the information obtained from Step 1

and the assigned requirements for the building block,

select the design specifications.

Step 3: Carry out surrogate model-assisted single-objective

optimization to address the design specifications. A

high-fidelity model is used.

Some clarifications are given below:

• The efficiency improvement of the first stage comes from

the low-fidelity simulation model. This simulation model

is a coarse mesh numerical model, which is often 2-50

times faster than the high-fidelity model [13].

• In the first stage, standard MOEAs, MOEAs considering

objective constraints [7], surrogate-based or interactive

MOEAs [5], [6] can all be employed. When the low-

fidelity simulation model is computationally reasonably

cheap, the first two are preferred because of higher

solution quality. Otherwise, the latter two are preferred

because of efficiency.
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Fig. 1. The TMSO Framework.

• The low-fidelity model should still be reasonable. For

example, excessively low mesh density is not recom-

mended. The discrepancy between the low- and high-

fidelity models can be observed in the initial sampling,

which is a reference for the designers.

• Although the low-fidelity model is inaccurate, numerous

design cases show that reasonable low-fidelity models

still represent meaningful positions in the performance or

objective space. It is true that for the same performance,

the corresponding designs are different using simulation

models of different fidelities. However, only information

from the performance or objective space, instead of the

design space, is used in the TMSO framework.

• The efficiency improvement of the second stage comes

from surrogate model-assisted optimization techniques.

Although using a high-fidelity model, the employment

of surrogate models saves a number of simulations.

• SAEAs only using the high-fidelity model or making use

of both low-fidelity and high-fidelity simulation data for

surrogate modeling are alternatives for the second stage.

When the high-fidelity simulation model is computation-

ally very expensive, the latter is preferred. Otherwise, the

former is preferred for easier implementation.

B. Implementation

It can be seen that there are several implantation methods

for the TSMO framework. In the following, a conventional

MOEA and an SAEA only using the high-fidelity model are

selected to form the implementation.

MOEA/D-DE [10] is selected for the first stage and the

flow diagram is shown in Fig. 2. MOEA/D-DE works by

decomposing the approximation of the PF into N scalar

optimization sub-problems using the Tchebycheff approach

[?]. The scalar function is as follows:

minimize g(x|λ, z∗) = max{λi|fi(x)− z∗i |}
s.t. x ∈ Ω

(1)

Fig. 2. The MOEAD/D-DE flow diagram.

where λ = (λ1, ...., λm) is a weight vector and
∑m

i=1 λi = 1,

Ω is the solution space and z∗ = (z∗1 , ..., z
∗
m) is the reference

point. If N is reasonably large, the optimal solutions to the

scalar functions yield a very good approximation to the PF.

Differential Evolution (DE) [14] is the search engine in

MOEA/D-DE. If P is a population having x = (x1, . . . , xd) ∈
Rd as an individual solution in it, DE creates a child solution

c = (c1, . . . , cd) for x by producing a donor vector via

mutation and carrying out crossover operations on it [14].

More details can be found in [14].

As shown in Fig. 2, after initialization, in each iteration

of MOEA/D-DE, the mating pool is randomly selected and

reproduction is carried out using DE operators and polynomial

mutation to generate new solutions. Solutions out of the

bounds of Ω in (1) are repaired, updated and replaced. If a

stopping criterion is met, a PF of design solutions is generated

as the output.

The optimizer of the second stage is the surrogate model-

aware evolutionary search (SMAS) method [11], [12] and

the flow diagram is shown in Fig. 3. In SMAS, DE is also

the global search engine and Gaussian process is used for

surrogate modelling [15]. SMAS carries out single-objective

optimization and comparisons show its advantages over several

popular SAEAs [11], [12].

As shown in Fig. 3, following a small number of initial

samples, in each iteration, a fixed number (k) of top-ranked

candidate solutions are used to generate new solutions by

applying DE operators. Surrogate models are then constructed

using the nearest number (τ ) of training data points in the

search space. The new child solutions are prescreened using

the lower confidence bound method [16] and numerical sim-

ulation is carried out only on the best solution, i.e., the top 1

individual. More details can be found in [11], [12].



Fig. 3. The SMAS flow diagram.

IV. REAL-WORLD DESIGN CASES

In this section, two real-world engineering design problems

are used to demonstrate the TSMO framework. The first

problem is the design and optimization of the four-variable

multi-physics electro-thermo-elastic micro-actuator [17] and

the second problem is the design and optimization of the

seven-variable hybrid dielectric resonator antenna [18]. For

both problems, the implementation of TSMO is according to

Section II. The parameter settings for MOEA/D-DE are the

same for all experiments: a population size of 100 is used and

other algorithmic settings are based on the recommendations

in [10]. For the SMAS method, all the parameter setting

rules are the same for all experiments and are based on the

recommendations in [11], [12]. All experiments are carried out

on a workstation with an Intel 4-core i7-4770 3.50 GHz CPU

and a 24 GB RAM and the time consumption reported is wall

clock time.

A. Case 1: Multi-physics Electro-thermo-elastic Micro-
actuator

The first design case is a multi-physics electro-thermo-

elastic micro-actuator and the layout is shown in Fig. 4.

It is modeled in COMSOL Multiphysics according to the

forward problem in [17]. Its parametric 3-D finite-element

model has a typical mesh composed of about 5,000 and

40,000 3-D elements for the low-fidelity and high-fidelity

models, respectively. Each low-fidelity simulation costs 15 to

40 seconds and each high-fidelity simulation costs 4 to 10

minutes on the adopted workstation.

The micro-actuator is a part of a sensor, which follows a

top-down design flow. The coarse specifications assigned are

as follows: the maximum temperature (Tmax) should be at

most 450K, but if Tmax can reach 430K, it is preferred; the

Fig. 4. Geometry and design variables of the micro-actuator.

TABLE I
RANGES OF THE DESIGN VARIABLES FOR THE DESIGN EXPLORATION OF

THE MICRO-ACTUATOR (ALL SIZES IN μm)

V ariables l hh dw d
Lower bound 56 2 7 1
Upper bound 300 5 30 7

total displacement (u) should be around 2μm, but a larger

value such as 2.1μm is preferable; the stress (S) must be

smaller than 1.44GPa. Considering all these, the size of the

micro-actuator should be as small as possible.

The optimization goal is to find optimal values for the

following design variables, as shown in Fig. 4: L (length of

the actuator), hh (thickness of the actuator), dw (width of

the cold arm) and d (width of the hot arms). For the design

exploration, the search boundaries are shown in Table I. The

TMSO framework is then employed.

In the first stage, a multi-objective optimization problem

(Problem 1) is defined to preview the feasibility of the

anticipated design requirements; find a set of solutions that

simultaneously minimizes the maximum temperature (Tmax)

and maximizes the total displacement (u), subject to the

following constraints:

Geometric congruency: dw < 2× d (2)

S < 1.44 GPa (3)

Fig. 5 shows the approximated PF obtained (using the

low-fidelity simulation model) after 79 iterations (7900 low-

fidelity simulations, 45.5 hours). From the approximated PF

found by solving Problem 1 using MOEA/D-DE, the designer

selects one non-dominated solution (Tmax−ND, uND), where

Tmax−ND and uND are the real specifications identified and

selected to be: Tmax−ND = 435K and uND = 2.1μm.

Using the selected specifications from the outcome of the

first stage, the second stage is a single-objective optimization

(Problem 2) solved by using the SMAS method with the high-

fidelity model of the micro-actuator. The aim of this stage

of the optimization is to find the optimal solution, which

minimizes the micro-actuator area (A) defined by:

minimize A = L× (dw + 2× d)
s.t.

T < Tmax−ND

u > uND

S < 1.44 GPa

(4)



Fig. 5. Pareto front of the multi-objective optimization (Stage 1) for example
1.

Fig. 6. Layout and design variables of the hybrid dielectric resonator antenna.

The ensuing single-objective optimization obtains a design

geometry that satisfies all the constraints after 122 simula-

tions (7.7 hours). It then converges after 370 simulations

(40.5 hours) to obtain a micro-actuator area of 9.46nm2,

Tmax = 433.9K, u = 2.1μm and S = 0.251GPa. Note that a

satisfactory design is obtained after about 140 simulations (16

hours) with 9.6nm2. The final micro-actuator design has the

following geometry: L = 300 μm, hh = 5 μm, dw = 8.1 μm
and d = 1.73 μm . The total design time is 86 hours.

MOEA/D-DE with the high-fidelity model is also employed

for comparison. After 86 hours, the latest PF is still far from

optimal. Note that the PF in Fig. 3 is formed after 7900 low-

fidelity simulations and the use of high-fidelity simulations

is about 15 times slower. Thus, generating a PF with a

conventional MOEA with the high-fidelity model directly

could be prohibitive.

B. Case 2: Hybrid Dielectric Resonator Antenna

The second case is the hybrid dielectric resonator antenna

(DRA) [18] and the layout is shown in Fig. 6. The hybrid

DRA is modeled and discretized in Computer Simulation

Technology - Microwave Studio using the time domain finite

integration technique method with an accuracy of -30 dB.

Mesh densities of 10 cells per wavelength (resulting in about

16,000 hexahedral mesh cells) and 30 cells per wavelength

(resulting in about 162,000 hexahedral mesh cells) are used

TABLE II
RANGES OF THE DESIGN VARIABLES (ALL SIZES IN MM) FOR HYBRID

DRA DESIGN EXPLORATION

V ariables ax ay az ac us ws ys
Lower bound 6 12 6 6 0.5 4 2
Upper bound 10 16 10 8 4 12 12

for the low-fidelity and high-fidelity models, respectively.

Each low-fidelity simulation costs 10 to 30 seconds and each

high-fidelity simulation costs 1 to 5 minutes on the adopted

workstation.

The hybrid DRA is implemented on a RO4003C substrate

using a relative permittivity (εr) of 3.38, a loss tangent (tan(δ))

of 0.0027 and a thickness of 0.5 mm. The excitation is via

aperture coupling with TEδ11 mode. The excitation mode,

coupling, and resonances of the hybrid DRA are all influenced

by its physical dimensions [19]. As shown in Table II and Fig.

6, the dimensions of the DR brick (ax, ay and az) and slot

(us and ws), the length of the microstrip slab(ys), and the

location of the DR relative to slot (ac) are the critical design

parameters for the design exploration. A geometric constraint

(ac ≤ 0.5 × ay) is used to ensure the slot remains under the

DRA in all possible cases during the optimization.

For a typical wideband wireless LAN (WLAN) application

using the hybrid DRA [20], a design solution providing a

maximum in-band S11 of around -20 dB and a minimum

in-band GR of around 4 dBi is sufficient. Optimal design

solutions with a lower value for the maximum in-band S11

(e.g., -21 dB) is not necessary. This is because a return loss

of -20 dB means 99% of the signals are received. For the

minimum in-band GR, lower or higher values may be required

(especially in the hybrid DRA’s boresight) depending on the

application [21]. In practice, a value of around 4 dBi for

the minimum in-band GR is essential for 5-GHz WLAN

application [20].

As explained above, considering a WLAN application for

the hybrid DRA in the wideband 5.28 GHz to 5.72 GHz for

this example, the designer is not certain to what extent the

hybrid DRA will be able to meet the specifications for S11 and

GR in the bandwidth. As a result, using a low-fidelity model,

the performance or objective space of the hybrid DRA is firstly

explored inexpensively to identify the feasible performance

region for both S11 and GR. This constitutes a multi-objective

optimization problem which aims to find a set of solutions that

satisfies the goals in (5) and (6) at the first stage.

minimize max(S11) 5.28GHz − 5.72GHz (5)

maximize min(GR) 5.28GHz − 5.72GHz (6)

After 2764 low-fidelity EM simulations in a total of 21

hours, a design solution is found on the current PF which is

yet to converge: max(S11)ND = -20.6 dB and min(GR)ND =

4.1 dBi in the frequency bandwidth. Although it is not yet the

final Pareto optimal design, sufficient information is available



Fig. 7. Pareto front of the multi-objective optimization (Stage 1) for example
2.

for the second stage. The approximated PF after 300 iterations

(30000 low-fidelity simulations, 240 hours) is also shown in

Fig. 7. It can be seen that although more improvements can

be made, it is not necessary for this design case.

Using the reference values from the first stage, the second

stage is a single-objective optimization addressed by using

the SMAS method with the fine or high-fidelity model of the

hybrid DRA. The aim is to find an optimal design solution,

which provides the maximum possible in-band min(GR)
subject to an in-band max(S11) of not more than -20 dB

(inferred from the approximated PF) as stated in (7). A

penalty coefficient of 50 is used to ensure that the optimization

focuses on meeting the max(S11) specification first and upon

satisfying the constraint on max(S11). The stopping criterion

is min(GR) ≥ 4.0 dBi in consonance with the intended

application.

maximize min(GR) 5.28GHz − 5.72GHz
s.t.

max(S11) ≤ −20 dB 5.28GHz − 5.72GHz
(7)

After 390 high-fidelity simulations in a total of 18 hours,

the SMAS method obtains a design solution with the follow-

ing performance specifications: max(S11) = -20.3 dB and

min(GR) = 4.7 dBi. The final hydrid DRA design has the

following geometry: ax = 6.62mm, ay = 14.88mm, az =
9.98mm, ac = 3.57mm, us = 0.71mm, ws = 8.76mm
and ys = 2.95mm. The total design time is 39 hours.

A comparison is not made for the case of using MOEA/D-

DE with the high-fidelity model of the hybrid DRA. This is

because the computational cost (which is estimated to more

than 3 months and about 10 times slower) is not affordable.

V. NEW RESEARCH TOPICS INSPIRED FROM TSMO

The above section shows that the two-stage structure of

TSMO is suitable for efficient real-world engineering design

optimization. Stage 1 carries out a multiobjective optimization

employing relatively cheap low-fidelity models to investigate

the feasibility and trade-off among the intended design speci-

fications. Informed by the first stage, the second stage carries

out surrogate model-assisted single-objective optimization em-

ploying an accurate expensive high-fidelity model.

Novel MOEAs and SAEAs for engineering design can be

investigated either for Stage 1 or Stage 2 bridging the two

domains, some of which are listed as follows:

• In Stage 1, although the low-fidelity model is employed

making a conventional MOEA finish in a practical time-

frame, the PF generated by conventional MOEAs is

still redundant. This is because only a small part of

the PF near the intended design specifications is useful.

Therefore, novel MOEAs which quickly concentrates on

the interested small part is of particular importance.

• For some design cases, the low-fidelity model is not

computationally cheap. This inspires the research of intro-

ducing surrogate models to the last item. Note that this is

different from existing surrogate model-assisted MOEAs,

because only a small part of PF near the specifications is

the focus.

• Conventional MOEAs often need a sufficient population

size to obtain a good-quality PF, but the many points

in the PF are not essential or even necessary from

the engineering design point of view. When even the

low-fidelity model is computationally expensive, MOEAs

which use a small population size to obtain a high-quality

PF are of particular interest.

• For some design cases, the specifications that are being

traded-off could be up to 10. Many-objective MOEAs

considering the above three items become an interesting

research topic.

• Besides supporting the determination of appropriate de-

sign specifications for the second stage, the low-fidelity

simulations provide information about the design land-

scape characteristics for the design problem. SAEAs

which make use of the information from low-fidelity

simulations to support Stage 2 is useful when the high-

fidelity model is computationally very expensive.

VI. CONCLUSIONS

In this paper, solutions for computationally expensive en-

gineering design optimization problems without exact design

specifications are investigated. The characteristics of the tar-

geted problem are firstly summarized; the gap between off-

the-shelf MOAEs and SAEAs and the practical need is then

analyzed. A simple yet effective framework, called TSMO, is

proposed to improve efficiency and its suitability is demon-

strated by two real-world design cases. The research topics

inspired by the TSMO framework are presented aiming to

generate new MOAEs and SAEAs particularly for engineering

design optimization.
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