
Heuristic Embedded Genetic Algorithm for
Heterogeneous Project Scheduling Problems

Firoz Mahmuda, Forhad Zamanb, Ruhul Sarkerb, Daryl Essamb

School of Engineering and Information Technology
University of New South Wales

Canberra, Australia
firoz.mahmud@student.adfa.edu.aua, {f.zaman, r.sarker, d.essam}@unsw.edu.aub

Abstract—Over the last few decades, many solution approaches
have been developed for solving different variants of resource-
constrained project scheduling problems (RCPSPs). In most of
them, it is assumed that a project consists of some homogeneous
activities that require all types of resources over the entire project
horizon. On the contrary, many real-world projects consist of
heterogeneous activities that use different types of resources
at different time instants during the project execution. The
application of existing approaches, developed for RCPSPs with
homogeneous activities, in solving RCPSPs with heterogeneous
activities is computationally expensive. In this paper, we propose
a heuristic embedded genetic algorithm to address RCPSPs with
heterogeneous activities. Two heuristics are proposed to obtain
high-quality feasible solutions. The first heuristic is based on
priority rules while the second one based on a new neighbourhood
swapping matrix. To evaluate the performance of the proposed
algorithm, we solve a number of real-world and modified test
problems, and the obtained results are compared with an existing
algorithm. It is found that the proposed approach obtains high-
quality solutions with a significantly lower computational time
compared to other algorithms.

Index Terms—heterogeneous project scheduling problems, evo-
lutionary algorithms, multi-operator algorithms

I. INTRODUCTION

During the last few decades, project scheduling problems
have been widely studied due to their importance in the various
real-world situations, such as aircraft scheduling, job shop,
manufacturing, and constructions projects [1]. The primary
objective in such scheduling problem is to complete the tasks
with minimum possible time and resources. Every project
consists of a number of activities, with each activity must be
completed during the project implementation while satisfying
their temporal relationship, which means an activity cannot
start until its all predecessor are finished. Besides, each activity
requires one or more resources for a certain duration, while the
maximum availability of each resource is limited and given.
Therefore, the resources must be optimally allocated so that
the best outcome can be obtained. This variant of the project
scheduling problem is known as the Resource-Constrained
Project Scheduling Problem (RCPSP), in which the objective
is to minimise its makespan by determining the best schedule
and satisfying all precedence and resource constraints.

As RCPSP is an NP-hard optimisation problem [2], a
large number of solution approaches have been introduced for
solving different variants of RCPSP. The solution approach can

be broadly categorised into four types: i) exact algorithms,
ii) heuristic algorithms, iii) meta-heuristic algorithms, and
(iv) hybrid meta-heuristic based algorithms. For the exact
approaches, integer programming [3], mixed-integer linear
programming (MILP) [4], constraint programming [5], branch-
and-bound (BB) [6] are the popular approaches. However,
for the large scale problems, these approaches are not only
computationally expensive but also unable to achieve optimal
or near-optimal solutions [7], [8].

For solving large-scale problems, heuristic and meta-
heuristic algorithms, such as simulated annealing (SA) [9],
[10], tabu search [11], [12], genetic algorithm (GA) [13], [14],
differential evolution (DE) [15], scatter search (SS) [16], [17],
artificial immune system (AIS) [18], [19], ant colony optimiza-
tion (ACO) [20], [21], and particle swarm optimization (PSO)
[22], have gained popularity over the last few years. However,
many heuristic-based solutions approaches often trap in a local
optima. To avoid that, some meta-heuristic approaches use
an iterative technique, namely a random perturbation. Alcaraz
et al. [13] proposed a robust GA based on the activity list,
where two serial generation schemes (SGSs) are used, namely
forward and backward SGSs. They used an additional gene
to decide whether a forward or backward SGS is applied in
generating a schedule from the activity list. They have also
included a local search approach with GA. The quality of their
solutions for large-scale problems are not superior.

As no single algorithm shows better performance for a
wide-rage of RCPSPs, some researchers used multiple meta-
heuristic approaches which is called hybrid meta-heuristic. It
is often defined as hybrid meta-heuristic as a skilled combina-
tion of a meta-heuristic with another optimisation technique.
Elsayed et al. [1] developed a new hybrid meta-heuristic algo-
rithm named as consolidated optimisation algorithm (COA) for
solving single-mode RCPSP, while Zaman et al. [23] extended
that COA to solve multi-mode RCPSP. Multi-mode RCPSP
(MM-RCPSP) is an extension of RCPSPs, where each activity
can execute under several available modes, each mode has
a different duration and resource requirement to execute an
activity. Both papers used two different multi-operator evolu-
tionary algorithms, namely, multi-operator genetic algorithm
(MOGA) and multi-operator differential evolution (MODE), in
which each uses their own sub-population and evolve own in-
dividuals to generate new offspring. In both approaches, a local

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

search approach is used to convert new infeasible offspring to
feasible ones. The performances of both approaches have been
demonstrated by solving different standard and real-world test
problems. Bettemir et al. [24] proposed a hybrid meta-heuristic
optimisation framework using two algorithms, namely GA and
SA. They integrated GA for parallel search capability with
the fine-tuning ability of SA to achieve a better algorithm
for the RCPSP. They tested their proposed method using
benchmark test problems and claimed the best solution. Fang
et al. [25] proposed a new meta-heuristic framework, based on
two different algorithms (i.e., memetic GA and PSO) for large-
scale RCPSPs. In that framework, the virtual frog is encoded
using an extended activity list (EAL) with a feasible solution
and decoded it by the shuffled frog-leaping algorithm (SFLA)
serial schedule generation scheme (SSGS). The algorithm was
tested against the PSPLIB test problems and obtained better
results for j60 and j120 benchmark sets. Tseng et al. [26]
also proposed a hybrid meta-heuristic approach, where three
different algorithms are considered, such as ACO, GA, and
local search strategy. ACO algorithm searches the solution
space and produces an activity list. Then, the list is used as the
initial population for GA, with the GA continues to execute
until the best solution is found. In addition, in that approach,
a local search is used to improve the solution obtained from
ACO and GA. They solved a wide range of RCPSPs standard
benchmark sets, where the proposed one obtained satisfactory
results compared to many other algorithms.

Most of the above-mentioned algorithms are designed for
the standard RCPSPs benchmark problems where all activities
are of homogeneous type that requires all types of resources.
That means, there is a strict assumption that each and every
activity requires all of the resources. However, in real-world
problems, most activities are of heterogeneous type in which
one activity may require one type of resource while another ac-
tivity may require a different type of resource. For example, in
a building construction project, foundation of the building will
require a certain type of resources and electrical appliances
require a different type of resources. Existing algorithms can
be applied to solve such heterogeneous problems but they will
be computationally expensive due to dealing with redundant
resource constraints. To the best of authors’ knowledge, no
research is done to solve such RCPSPs of consist of hetero-
geneous activities.

In this paper, we consider such variant of real-world RCP-
SPs and propose an efficient solution approach to solve them.
In the solution process, firstly, an initial schedule is randomly
generated. Then a heuristic based on the earliest start time
(EST) is used to obtain a feasible schedule if any infeasible
solution exists. Secondly, the quality of a feasible schedule is
improved by using a new neighbourhood swapping technique.
Finally, a MOGA is applied to evolve the individuals. The
proposed algorithm is verified by solving a set of real-world
and modified test problems. For the comparison purpose, we
also solve the problems using a well-known COA [1]. The
obtained results are compared with those from our proposed
approach, in which the proposed one outperforms COA.

0

0

0,0

1

3

3,0

2

5

0,3

3

6

4,0

4

2

3,0

5

3

0,4

6

3

0,4

7

4

0,2

8

5

3,0

9

4

3,0
10

2

0,5 11

3

4,0
12

0

0,0

j

dj

rj,1,rj,2

Fig. 1: An example network for the RCPSP.

The rest of this research paper is organised as follows: Sec-
tion II describes the problem description, Section III represents
mathematical model, Section IV discusses propose approach,
Section V shows the experimental setup and result analysis,
and Section VI represent conclusion and further research
direction.

II. PROBLEM DESCRIPTION

The RCPSP can be formulated as follows: a project S
consists of M + 1 activities, where all activities have to
execute in order to complete the project. The project is
defined as, S = 0, 1, ...,M + 1, and resource set R with
K renewable resource as R = 1, 2, ...,K. Each activity M
has a duration represented as dj , where j = 0, 1, ...,M + 1.
Two dummy activities: project start and project finish are
represented as 0 and M + 1, respectively. Each activity is
scheduled subject to satisfying two constraints. Firstly, prece-
dence constraint, which ensures that an activity cannot be
started before finishing its predecessors. The second one is
for the resource constraint, which means at a particular time
period, total resource usages by the activities must not exceed
their maximum availability. An example of a RCPSP, with
modified resource requirement, is shown in Fig. 1, where node
1 and node 13 are dummy activity. rj,1 and rj,2 represent first
and second resource demands of jth activity, respectively, with
their maximum resource availability is 5 for both resources.
A feasible schedule, with makespan Cmax = 29, is shown
in Fig. 2. However, the schedule is shown in Fig. 2 can be
improved, with rescheduling the activities which is shown in
Fig. 3, where the makespan is Cmax = 23.

III. MATHEMATICAL MODEL

In this section, the optimisation problem with the objective
is to minimise project makespan is discussed. In this model,
we consider the following assumptions: 1) all activities of a
project must be executed; 2) the activity duration is given
in advance; 3) preemption is not allowed, which means an

0

2

4

6

8

10

12

T
o

ta
l
U

s
e

d
 R

e
s
o

u
rc

e
s
 [

U
n

it
s
]

Gantt chart for J11
1,1

 [Resources]/Duration(Mode)

[4,0]/3

[0,5]/2

[3,0]/4

[3,0]/5

[0,2]/4

[0,4]/3

[0,4]/3

[3,0]/2

[4,0]/6

[0,3]/5

[3,0]/3

0 5 10 15 20 25 30 35 40

Time [days]

1

2

3

4

5

6

7

8

9

10

11

A
c
ti
v
it
y

Res-1[Total:5]

Res-2[Total:5]

Fig. 2: A feasible schedule of Fig. 1 example network

0

2

4

6

8

10

12
T

o
ta

l
U

s
e

d
 R

e
s
o

u
rc

e
s
 [

U
n

it
s
]

Gantt chart for J11
1,1

 [Resources]/Duration(Mode)

[4,0]/3

[0,5]/2

[3,0]/4

[3,0]/5

[0,2]/4

[0,4]/3

[0,4]/3

[3,0]/2

[4,0]/6

[0,3]/5

[3,0]/3

0 5 10 15 20 25 30 35

Time [days]

1

2

3

4

5

6

7

8

9

10

11

A
c
ti
v
it
y

Res-1[Total:5]

Res-2[Total:5]

Fig. 3: Best schedule of Fig. 1 example network

activity cannot be interrupted during execution; 4) an activ-
ity cannot start until all predecessors have completely been
finished; 5) at a certain time, an activity can use only one
resource; and 6) the objective of this work is to minimise
the makespan or total project duration. The objective of this
optimisation problem can be expressed as:

Min: FTM+1 (1)

Subject to:

FTk ≤ FTj − dj ,∀(j, k) ∈ {0, 1, ...,M + 1} (2)∑
j∈At

rkj ≤ Rk, ∀k = 1, 2, ...,K (3)

FTj ≥ 0, ∀j = 0, 1, ...,M + 1 (4)

where FTM+1 is the finish time (FT) of the last dummy
activity, rkj is used to represent the required kth type of
resource of the jth activity, which must be less than or equal to
the maximum available kth type of resource, K is the number
of resource types, and At is a set of activities scheduled at

time, t ≤ FTM+1. Eqn. (1) represents the objective function,
and the goal is to minimise FT of the last dummy activity.
Eqn. (2) is for precedence relationship between the activities,
that is, an activity cannot start before its predecessors. Eqn.
(3) represents the resources constraint, and Eqn. (4) represents
the finish time of any activity must be greater than or equal
to zero.

IV. PROPOSED APPROACH

In this research, we propose an evolutionary framework
based on a MOGA and two heuristics, to solve a new variant of
RCPSP, where the activities are heterogeneous type. It means,
all activities of a project do not require all types of available
resources, while each activity uses one type of resource. We
name the proposed framework as ‘H-MOGA’, with its steps
are described in Algorithm 1.

H-MOGA starts with randomly generated initial population
of size NP , where each population represents a random
schedule of activities, as shown in subsection IV-A. The
random schedule may be infeasible in terms of precedence
and resources constraints. Any infeasible schedule is rectified
to a feasible one using a heuristic, discussed in Algorithm 2.
It is developed based on earliest start time (EST) and critical
path method, in which an activity is scheduled as earliest
as possible, subject to precedence and resource constraints.
The obtained feasible schedule is further improved using the
second heuristic, which is developed based on a swap eligible
matrix, as discussed in Algorithm 3. Once both heuristics are
applied, the makespan of each solution is evaluated, using Eqn.
(1). If the best makespan is not a known optimal solution, a
new set of schedules is generated based on MOGA operators,
as discussed in IV-D. The newly generated schedules can be
infeasible, and convert them into feasible by using Algorithm
2 and Algorithm 3, as discussed above. The process continues
until the best solution is improved. The pseudo-code of H-
MOGA is given in Algorithm 1, and its components are
described in following subsections.

A. Representation and Initial Generation

In this research, we represent the decision variable,
−→
X i, is

the sequence of the activities, with the size of
−→
X i is M + 1.

The initial population is randomly generated as follow:
−→
X i = {X0, Xj , ..., XM+1}, i = 0, 1, ..., NP − 1 (5)

where Xj is the jth non-dummy activity, while X0 and XM+1

are two dummy activities.
−→
X i is the ith schedule, which are

the random combinations of non-dummy activities.

B. Heuristic 1: EST based Scheduling

Once a
−→
X i is randomly generated that can be infeasible

in terms of precedence and resources constraints. To convert
any infeasible

−→
X i to a feasible

−→
X i, heuristic-1 is used. In

it, firstly, ESTj and FTj (finish time of the jth activity)
of the jth activity are calculated using Eqns. (6) and (7),
respectively, without considering any resource constraints.
Then, the activities which use same type of resource, are

Algorithm 1 Pseudo-code of H-MOGA

Require: Number of runs (maxRuns), current fitness function
(cfe), maximum fitness evaluation (cfemax), NP .

1: Compute swap eligible matrix, as discussed in Algorithm
3

2: for q=1 : maxRuns do
3: cfe = 1
4: Randomly generate initial schedule,

−→
X i, i =

0, 1, ..., NP − 1, as discussed in subsection IV-A.
5: If any

−→
X i, i ∈ NP is infeasible, obtain feasible using

Algorithm 2. Update, cfe←− cfe+NP .
6: Evaluate makespan of each

−→
X i using Eqn. (1) .

7: Improve
−→
X i, i ∈ NP using Algorithm 3. Update,

cfe←− cfe+NP .
8: if cfe < cfemax then
9: Generate new NP offspring using the MOGA oper-

ators as discussed in subsection IV-D.
10: Evaluate makespan of the offspring based on steps 5

and 6.
11: end if
12: Determine the best schedule based on the minimum

makespan.
13: end for

verified with the resource availability. If any activity violates
resource constraints, it reschedules at the next earliest possible
time period. The details steps of this heuristic is shown in
Algorithm 2.

ESTj =

{
0, if j has no predecessor
max

(
FTn|n ∈ P (j)

)
, 0 < j ≤M + 1

(6)

FTj = ESTj + dj (7)

where j is the jth activity, FTn is the finish time of nth

predecessor from a set of predecessor of jth activity, and M+1
represents total number of activity. Eqn. (7) is used to find out
the finish time of each activity, where dj represents duration
of the jth activity.

C. Heuristic 2: Neighbourhood Swapping based Scheduling

In this subsection, the proposed neighbourhood swapping
based heuristic is discussed, which is used to improve the
quality of a feasible

−→
Xi that obtained from the heuristic-1 as

discussed in subsection IV-B. In it, an improved
−→
Xi is obtained

by swapping some eligible activities. To do, firstly, we create
a swap matrix (SM) based on Eqn. (8), which is used to
represent eligibility for swapping between two activities. When
the value of a cell is ‘1’, it means the pair activities are eligible
to swap, otherwise they are ineligible. SM is created based
on the type of resource demand and precedence relationships

Algorithm 2 Pseudo-code of EST based Scheduling

Require: An infeasible
−→
X i, i ∈ NP , M + 1, NP .

1:
−→
Y i ←− [], where

−→
Y i is the feasible schedule of

−→
X i in

terms of precedence constraints.
2: for j =

−→
X i do

3: if Pj ∈
−→
Y i, where Pj is the precedence of the jth

activity. then
4: break.
5: end if
6: Calculate ESTj and FTj using Eqn. (6) and (7).
7:

−→
Y i ←− j and remove j from

−→
Xi

8: Repeat steps 2 to 7 until all activities of
−→
Xi is scheduled.

9: end for
10:
−→
Z i ←− [], where

−→
Z i is the feasible schedule of

−→
Y i in

terms of resource constraints, and t ←− 0, where t is the
project start time

11: for j = 1 : noAct-1 do
12: if rkj < Rt then
13:

−→
Z i ←− j, update, Rt ←− Rt − rkj and FTj .

14: else
15: Update t←− t+1 until jth is successfully scheduled

based on step 13.
16: break.
17: end if
18: end for
19: Evaluate makespan as finish time of the last dummy

activity.

of the activities, with following four rules:

SEMk,j =


0, if k == j and Rk 6= Rj

0, if k > j, j ∈ Pk and Rk 6= Rj

0, if j > k, k ∈ Pj and Rk 6= Rj

1, otherwise

(8)

where Rj and Rk are the resource demands of the jth and
kth activity, respectively, and Pj represents the predecessors
of the jth activity.

An example of a SM is shown in Eqn. (8) for the j11 test
problem, as shown in Fig. 1. The value of all cells of the first
row and first column are always ‘0’, as first dummy activity,
i.e. node 1 is the common predecessor for all other activities.
Similarly, all cells of the last row and column are also ‘0’,
as node 13 is the last dummy activity. The value of a cell
of the matrix is ‘1’, where both activities have no direct or
indirect precedence relationships and their resource demands
are the same type. For example, SM(2,9) or SM(9,2) are ‘1’,
due to the activity 2 is not the direct or indirect predecessor
of activity 9. Also, both activities 2 and 9 use same type of
resource, which is the resource-1. On the other hand, SM(2,5)
or SM(2,10) are ‘0’, as activity 2 is the immediate predecessor
of activity 5, and indirect predecessor of activity 10, though
their resource demands are same type.

Once the SM is created of a project, the heuristic-2 is
applied to improve the quality of a schedule. In it, a feasible−→
X i is modified by swapping two eligible activities in sequen-
tial order. Once a swap is performed, the new makespan is
calculated. If the new makespan is better than the original
one, the original schedule is replaced to the modified

−→
X i.

Otherwise, the alternative
−→
X i is discarded, and the original

one is kept. The key steps of the heuristic-2 are shown in
Algorithm 3.

SM =



0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 1 0 0
0 1 0 1 1 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0



(9)

Algorithm 3 Neighbourhood Swapping based Scheduling

Require: A feasible
−→
X i, and its makespan, Number of Trails

(numTrail).
1: Determine SM using Eqn. (8).
2: for s=1 : numTrail do
3: if numTrail>1 then
4: Generate new

−→
X i, by swapping between two activi-

ties where value of a cell of SM is ‘1’.
5: Determine makespannew of the new

−→
X i, using

Algorithm 2.
6: end if
7: if makespannew < makespan then
8: Update

−→
X i.

9: end if
10: end for
11: Determine the best makespan

D. MOGA Operators

In this subsection, we discuss the operators of MOGA, that
are used to generate offspring of

−→
Xi, i ∈ NP . We use two

crossovers, namely uniform and two-point crossovers, and one
left shift mutation operator. To create new offspring, firstly one
of two crossover operator is selected based on the probabilities
which are initially set to 0.5, with their probabilities are self-
adaptively updated based on their performances to generate
better individuals than their parents. Alternatively, the operator
which performs better, its probability is increased, so a higher
number of individuals are generated using that operator. In the
two-point crossover, two-point is randomly selected for two

random parents and then exchanged between their first and
third portions with each other to produce two unique offspring.
In the uniform crossover, a random number between 0 and 1,
is generated, then the first offspring is generated from the first
parent if the number is less than 0.5, while another offspring is
generated from the other parent. For producing a more diverse
population, a left shift mutation operator is used, in which a
random activity is shifted to its left side. The details of all
operators of MOGA can be found in [1].

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the performance evaluation of our proposed
algorithm has been carried out for solving a wide range
of standard and real-world test problems. The standard test
problems are considered up to 100 activities, and real-world
[27] problems up to 22 activities. For the comparison purpose,
all test problems are also solved using the three variants of
the proposed H-MOGA, and a state-of-the-art algorithm (i.e.,
COA), as:
• var1: In this variant, a schedule is randomly generated,

and then obtained feasible ones based on EST while
satisfying the precedence and resource constraints. For
var1, we use steps 2 to 5 in Algorithm 1.

• var2: In this variant, the quality of the solution is
improved using the SM as discussed in Algorithm 3. For
var2, we use steps 1 to 6 in Algorithm 1.

• var3: In this variant, the quality of the solution is further
improved using the MOGA, as described in subsection
IV-D. For var3, we use all steps in Algorithm 1.

• COA: In this approach, a newly developed COA is
employed to solve the new variant of RCPSPs. It is
also worth to mention that COA outperformed for many
existing algorithms for solving the well-known PSPLIB
benchmark sets for RCPSPs. The details of COA and its
parameters can be found in [1].

For a fair comparison, we run 31 times of each algorithm
for all test problems, and their statistical results are reported.
The population size and the maximum number of generations
of all cases are set to 10 and 500 respectively, along with
other parameters based on COA [1]. All algorithms have
been implemented in Matlab2018b environment on a computer
with a Core(TM)i7-8700 CPU@3.20GHz, 16GM RAM, with
Windows 10 operating system.

A. Test Problems

In this subsection, we solve different standard test problems,
which is originally taken from [3], [27]. As in a standard
test problem, each activity requires all types of resources; we
modify the original test problems to satisfy the requirements
so that each activity requires one resource rather than all of
them. The resource availability of all types of resources is set
to 5 for all test problems. The new resource requirement of
the considered test problems can be found in Appendix A.

Each test problem is solved using the above four algorithms
31 times, and their minimum (Min), Median, Mean, maximum
(Max), standard deviation (STD), average standard deviation

TABLE I: Comparison of the performances of different algo-
rithms for j11 test problem

Algorithm Min Median Mean Max STD %AvTD Time (sec)
COA 23.00 23.00 23.00 23.00 0.00 27.78 125.11
Var1 23.00 26.00 26.32 31.00 2.56 27.78 0.01
Var2 23.00 25.00 24.93 29.00 2.31 27.78 0.03
Var3 23.00 23.00 23.00 23.00 0.00 27.78 25.73

TABLE II: Comparison of the performances of different algo-
rithms for j20 test problem

Algorithm Min Median Mean Max STD %AvTD Time (sec)
COA 39.00 39.00 39.00 39.00 0.00 39.28 268.18
Var1 39.00 40.00 41.42 46.00 2.16 39.28 0.02
Var2 39.00 40.00 40.74 45.00 1.48 39.28 0.08
Var3 39.00 39.00 39.00 39.00 0.00 39.28 33.31

(%AvTD) of the makespan, and the computational time is
reported in Tables I, II, III, IV, V, and VI for j11, j20, j30, j50,
j75, and j100, respectively. The % AvTD is obtained using the
following equation:

%AvTD = 100× MinMakespan −OPTLB

OPTLB
(10)

where MinMakespan is the minimum makespan of a particular
schedule and OPTLB is the critical path optimum value.

From Tables I to VI, it is seen that mean values of var1
and var2, are higher than that of var3 and COA for all cases,
with var3 and COA are almost similar. However, regarding
the computational time, it is seen that COA is the most
expensive approach, with H-MOGA (var3) obtains similar
quality solution with a significantly less computational time.
If a system is very sensitive about the computational time,
var1 is the best approach as it obtains feasible solutions with
the least computational time. However, it quality cannot be
guaranteed. Var2 is a modest approach as it takes more time
than that of var1, which obtains better average results than
that of var1. On the other hand, var3, which is our proposed
approach that provides the best results for all cases, with a
reasonable computational time. It is worth to mention that,

TABLE III: Comparison of the performances of different
algorithms for j30 test problem

Algorithm Min Median Mean Max STD %AvTD Time (sec)
COA 56.00 56.00 56.00 56.00 0.00 180.00 727.54
Var1 57.00 65.00 65.64 76.00 3.90 185.00 0.06
Var2 56.00 62.00 63.35 72.00 3.66 180.00 0.45
Var3 56.00 56.00 56.25 58.00 0.51 180.00 177.78

TABLE IV: Comparison of the performances of different
algorithms for j50 test problem

Algorithm Min Median Mean Max STD %AvTD Time (sec)
COA 108.00 108.00 108.00 108.00 0.00 145.45 1041.40
Var1 108.00 129.00 129.00 150.00 9.16 145.45 0.14
Var2 108.00 119.00 121.13 137.00 7.55 145.45 0.74
Var3 108.00 108.00 108.00 110.00 0.40 145.45 193.82

TABLE V: Comparison of the performances of different
algorithms for j75 test problem

Algorithm Min Median Mean Max STD %AvTD Time (sec)
COA 150.00 150.00 150.00 150.00 0.00 341.18 2520.70
Var1 151.00 163.00 166.00 186.00 8.61 344.12 0.23
Var2 151.00 161.00 162.67 176.00 6.36 344.12 0.29
Var3 150.00 153.00 151.55 153.00 1.52 341.18 545.94

TABLE VI: Comparison of the performances of different
algorithms for j100 test problem

Algorithm Min Median Mean Max STD %AvTD Time (sec)
COA 192.00 192.00 192.00 192.00 0.00 380.00 4103.20
Var1 192.00 207.00 206.55 226.00 7.94 380.00 0.40
Var2 192.00 203.00 203.32 218.00 6.18 380.00 0.59
Var3 192.00 192.00 192.00 192.00 0.00 380.00 829.35

var3 obtains the same quality solution as COA obtains, while
var3 is up to eight times faster than COA.

B. Real-World Test Problems

To show the suitability of the proposed algorithm, in this
subsection, we consider two real-world RCPSPs; namely, i)
family day test problem with 22 activities and ii) railway
station Sint-Joost with 18 activities. The data of both problems
can be found in [27]. Both problems are solved using the
four algorithms for 31 times, and their results are reported
in Tables VII and VIII. Although both COA and var3 obtain
the same results for j22, var3 outperforms than COA in terms
of computational time. For j18 problem, var3 obtains better
results than that of other variants and COA. The average
standard deviation shows the superiority of our proposed
variant, i.e., var3. Moreover, H-MOGA (var3) is significantly
faster than that of COA, with at least three and a half times
faster than COA.

C. Statistical Test

In this subsection, we use two popular statistical tests:
Wilcoxon and Friedman sign tests, to validate the performance
of the proposed algorithm. Firstly, Wilcoxon test is carried
out based on the average values of the makespan for all
test problems, with the result is shown in Table IX. In it, p

TABLE VII: Comparison of the performances of different
algorithms for j22 test problem [Real-World Data]

Algorithm Min Median Mean Max STD %AvTD Time (sec)
COA 191.00 191.00 191.00 191.00 0.00 148.05 999.70
Var1 191.00 191.00 191.29 192.00 0.46 148.05 0.07
Var2 191.00 192.00 191.51 192.00 0.51 148.05 0.48
Var3 191.00 191.00 191.00 191.00 0.00 148.05 219.93

TABLE VIII: Comparison of the performances of different
algorithms for j18 test problem [Real-World Data]

Algorithm Min Median Mean Max STD %AvTD Time (sec)
COA 133.00 133.00 133.00 133.00 0.00 6.40 291.73
Var1 133.00 141.00 142.13 163.00 6.92 8.00 0.02
Var2 127.00 135.00 135.13 143.00 4.14 1.60 0.08
Var3 127.00 127.00 127.39 132.00 1.23 1.60 80.55

j11 j20 j30 j50 j75 j100 j18 j22
Benchamrk Sets

0

25

50

75

100

125

150

175

200

M
ak

e-
Sp

an

COA
var1
var2
var3

Fig. 4: Makespan comparison between different algorithms

TABLE IX: Wilcoxon sign test results for different algorithms

Algorithms Criterion p Decision
Var3 vs Var1 Mean Makespan 0.012 +
Var3 vs Var2 Mean Makespan 0.012 +
Var3 vs COA Mean Makespan 0.317 -

value is used to represent the significance of two data sets,
with p < 0.05 (5% significance) indicates that there is a
significant difference between two data sets. We conclude a
decision from p value by using three signs: ‘+’, ‘-’, and ‘≈’,
where ‘+’ sign represents that the performance of the first
algorithm is significantly better than the second algorithm, ‘-’
sign represents worse, and ‘≈’ sign represents no significant
difference. According to Table IX, var3 is better than that of
var1 and var2, though very competitive with COA. However,
in term of time taken to solve a problem, var3 is much better
than that of COA.

In addition, we use the non-parametric Friedman test to rank
different algorithms based on the best values of the makespan
for all test problems. The mean ranks are shown in Table
X, with a higher value, means the algorithm is better than
others. From Table X, var3 has the highest rank’s value, which
represents the superiority of our proposed algorithm.

VI. CONCLUSION AND FUTURE DIRECTION

In this research, we proposed H-MOGA based on a MOGA
and two heuristics, for solving practical RCPSPs that consists
of heterogeneous activities. In tradition, RCPSP consists of
many homogenous activities, which require similar types of
resources over the project horizon. In our case, all activities
must not use all types of available resources of a project.
Instead, one activity requires one type of resource, while others
use different types of resources. In the solution approach, we
propose two different heuristics to obtain high-quality solution
quickly. The first heuristic based on EST and critical path
method are used to rectify an infeasible schedule. The second
heuristic based on a swapping matrix is used to improve the
quality of the feasible schedules. In addition, a MOGA is used
to obtain the best solutions by avoiding local optima.

TABLE X: Friedman test ranks for different algorithms

Criteria Var1 Var2 Var3 COA
Mean Makespan 2.31 2.31 2.81 2.56

For the experimental study, we consider both real-world and
modified test problems, in which each activity requires a single
type of resource rather than all. Also, for the comparison
purpose, we solve all test problems using the three variants
of H-MOGA and a state-of-the-art algorithm. It is found that
the proposed approach obtains high-quality solutions within a
reasonable computational time. It is worth to mention that H-
MOGA obtains the best quality solution for a real-world (i.e.,
j18) problem, with spending three times less computational
time that of the standard COA algorithm. The makespan com-
parison of our proposed variants with an existing algorithm is
shown in Fig. 4.

In future, this research can be extended by considering
uncertainty in the test problems.

VII. ACKNOWLEDGEMENT

The research is partly supported by a Australian Research
Council project ARC DP190102637.

REFERENCES

[1] S. Elsayed, R. Sarker, T. Ray, and C. C. Coello, “Consolidated optimiza-
tion algorithm for resource-constrained project scheduling problems,”
Information Sciences, vol. 418, pp. 346–362, 2017.

[2] M. R. Garey and D. S. Johnson, Computers and intractability, vol. 29.
wh freeman New York, 2002.

[3] R. Kolisch and A. Sprecher, “Psplib-a project scheduling problem
library: Or software-orsep operations research software exchange pro-
gram,” European journal of operational research, vol. 96, no. 1, pp. 205–
216, 1997.

[4] O. Koné, C. Artigues, P. Lopez, and M. Mongeau, “Comparison of mixed
integer linear programming models for the resource-constrained project
scheduling problem with consumption and production of resources,”
Flexible Services and Manufacturing Journal, vol. 25, no. 1-2, pp. 25–
47, 2013.

[5] P. Laborie, “Algorithms for propagating resource constraints in ai
planning and scheduling: Existing approaches and new results,” Artificial
Intelligence, vol. 143, no. 2, pp. 151–188, 2003.

[6] N. Christofides, R. Alvarez-Valdés, and J. M. Tamarit, “Project schedul-
ing with resource constraints: A branch and bound approach,” European
Journal of Operational Research, vol. 29, no. 3, pp. 262–273, 1987.

[7] L. Özdamar and G. Ulusoy, “A survey on the resource-constrained
project scheduling problem,” IIE transactions, vol. 27, no. 5, pp. 574–
586, 1995.

[8] W. Herroelen and R. Leus, “Project scheduling under uncertainty: Survey
and research potentials,” European journal of operational research,
vol. 165, no. 2, pp. 289–306, 2005.

[9] F. F. Boctor, “Resource-constrained project scheduling by simulated
annealing,” International Journal of Production Research, vol. 34, no. 8,
pp. 2335–2351, 1996.

[10] K. Bouleimen and H. Lecocq, “A new efficient simulated annealing
algorithm for the resource-constrained project scheduling problem and
its multiple mode version,” European Journal of Operational Research,
vol. 149, no. 2, pp. 268–281, 2003.

[11] M. Verhoeven, “Tabu search for resource-constrained scheduling,” Euro-
pean Journal of Operational Research, vol. 106, no. 2-3, pp. 266–276,
1998.

[12] L. Bukata, P. Šcha, and Z. Hanzálek, “Solving the resource constrained
project scheduling problem using the parallel tabu search designed for
the cuda platform,” Journal of Parallel and Distributed Computing,
vol. 77, pp. 58–68, 2015.

[13] J. Alcaraz and C. Maroto, “A robust genetic algorithm for resource allo-
cation in project scheduling,” Annals of operations Research, vol. 102,
no. 1-4, pp. 83–109, 2001.

[14] M. Sebt, M. Afshar, and Y. Alipouri, “Hybridization of genetic algorithm
and fully informed particle swarm for solving the multi-mode resource-
constrained project scheduling problem,” Engineering Optimization,
vol. 49, no. 3, pp. 513–530, 2017.

[15] M.-Y. Cheng, D.-H. Tran, and Y.-W. Wu, “Using a fuzzy clustering
chaotic-based differential evolution with serial method to solve resource-
constrained project scheduling problems,” Automation in Construction,
vol. 37, pp. 88–97, 2014.

[16] F. Glover, “Heuristics for integer programming using surrogate con-
straints,” Decision sciences, vol. 8, no. 1, pp. 156–166, 1977.

[17] H. Meng, B. Wang, Y. Nie, X. Xia, and X. Zhang, “A scatter search
hybrid algorithm for resource availability cost problem,” in Harmony
Search Algorithm, pp. 39–51, Springer, 2016.

[18] V. Van Peteghem and M. Vanhoucke, “An artificial immune system
algorithm for the resource availability cost problem,” Flexible services
and manufacturing journal, vol. 25, no. 1-2, pp. 122–144, 2013.

[19] P. Jedrzejowicz and E. Ratajczak-Ropel, “Experimental evaluation of a-
teams solving resource availability cost problem,” in Intelligent Decision
Technologies 2019, pp. 213–223, Springer, 2020.

[20] R. Saremi, Y. Yang, and A. Khanfor, “Ant colony optimization to
reduce schedule acceleration in crowdsourcing software development,”
in International Conference on Human-Computer Interaction, pp. 286–
300, Springer, 2019.

[21] M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-
heuristic,” in Proceedings of the 1999 congress on evolutionary
computation-CEC99 (Cat. No. 99TH8406), vol. 2, pp. 1470–1477, IEEE,
1999.

[22] H. Zhang, H. Li, and C. Tam, “Particle swarm optimization for resource-
constrained project scheduling,” International Journal of Project Man-
agement, vol. 24, no. 1, pp. 83–92, 2006.

[23] F. Zaman, S. Elsayed, R. Sarker, and D. Essam, “Scenario-based solution
approach for uncertain resource constrained scheduling problems,” in
2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8,
IEEE, 2018.

[24] Ö. H. Bettemir and R. Sonmez, “Hybrid genetic algorithm with simu-
lated annealing for resource-constrained project scheduling,” Journal of
Management in Engineering, vol. 31, no. 5, p. 04014082, 2014.

[25] C. Fang and L. Wang, “An effective shuffled frog-leaping algorithm
for resource-constrained project scheduling problem,” Computers &
Operations Research, vol. 39, no. 5, pp. 890–901, 2012.

[26] L.-Y. Tseng and S.-C. Chen, “A hybrid metaheuristic for the resource-
constrained project scheduling problem,” European Journal of Opera-
tional Research, vol. 175, no. 2, pp. 707–721, 2006.

[27] J. Batselier and M. Vanhoucke, “Construction and evaluation framework
for a real-life project database,” International Journal of Project Man-
agement, vol. 33, no. 3, pp. 697–710, 2015.

APPENDIX A. MODIFIED TEST PROBLEM DATA

The data of the original test problem are taken from PSPLIB
[3], and modified in terms of resource requirements of each
activity. The modified resource requirements are shown in the
Tables XI, XII, XIII, XIV, XV, and XVI for j11, j20, j30,
j50, j75, and j100, respectively, where j represents the non-
dummy activity number and rj,k, k = 1, 2, ..,K (e.g., K = 2)
represents kth type resource demands of jth activity.

TABLE XI: Modified resource demands for j11 test problem

j 2 3 4 5 6 7 8 9 10 11 12
rj {3,0} {0,3} {4,0} {3,0} {0,4} {0,4} {0,2} {3,0} {3,0} {0,5} {4,0}

TABLE XII: Modified resource demands for j20 test problem

j 2 3 4 5 6 7 8 9 10 11 12
rj {5,0} {2,0} {0,4} {2,0} {4,0} {0,1} {0,3} {4,0} {0,3} {0,4} {1,0}
j 13 14 15 16 17 18 19 20 21
rj {2,0} {0,2} {3,0} {3,0} {2,0} {4,0} {2,0} {0,3} {1,0}

TABLE XIII: Modified resource demands for j30 test problem

j 2 3 4 5 6 7 8 9 10 11 12
rj {1,0} {4,0} {0,3} {0,4} {2,0} {0,1} {0,2} {3,0} {0,4} {0,5} {4,0}
j 13 14 15 16 17 18 19 20 21 22 23
rj {2,0} {0,3} {4,0} {1,0} {3,0} {0,2} {0,3} {4,0} {0,1} {3,0} {4,0}
j 24 25 26 27 28 29 30 31
rj {0,5} {0,3} {5,0} {0,2} {0,2} {3,0} {2,0} {0,4}

TABLE XIV: Modified resource demands for j50 test problem

j 2 3 4 5 6 7 8 9 10 11 12
rj {5,0} {3,0} {0,3} {0,2} {3,0} {0,2} {0,2} {3,0} {0,4} {0,5} {4,0}
j 13 14 15 16 17 18 19 20 21 22 23
rj {2,0} {0,3} {4,0} {1,0} {3,0} {0,2} {0,3} {4,0} {0,1} {3,0} {4,0}
j 24 25 26 27 28 29 30 31 32 33 34
rj {0,5} {0,3} {5,0} {0,2} {0,2} {3,0} {2,0} {0,4} {0,3} {2,0} {4,0}
j 35 36 37 38 39 40 41 42 43 44 45
rj {3,0} {0,1} {0,2} {0,3} {0,4} {3,0} {1,0} {0,2} {5,0} {0,5} {0,1}
j 46 47 48 49 50 51
rj {3,0} {2,0} {0,4} {2.0} {0,1} {4,0}

TABLE XV: Modified resource demands for j75 test problem

j 2 3 4 5 6 7 8 9 10 11 12
rj {1,0} {0,3} {2,0} {4,0} {3,0} {0,4} {0,3} {3,0} {0,4} {0,5} {4,0}
j 13 14 15 16 17 18 19 20 21 22 23
rj {2,0} {0,3} {4,0} {1,0} {3,0} {0,2} {0,3} {4,0} {0,1} {3,0} {4,0}
j 24 25 26 27 28 29 30 31 32 33 34
rj {0,5} {0,3} {5,0} {0,2} {0,2} {3,0} {2,0} {0,4} {0,3} {2,0} {4,0}
j 35 36 37 38 39 40 41 42 43 44 45
rj {3,0} {0,1} {0,2} {0,3} {0,4} {3,0} {1,0} {0,2} {5,0} {0,5} {0,1}
j 46 47 48 49 50 51 52 53 54 55 56
rj {3,0} {2,0} {0,4} {2,0} {0,1} {4,0} {0,3} {0,4} {1,0} {2,0} {0,2}
j 57 58 59 60 61 62 63 64 65 66 67
rj {0,4} {0,3} {1,0} {3,0} {0,4} {1,0} {0,1} {0,4} {2,0} {3,0} {0,1}
j 68 69 70 71 72 73 74 75 76
rj {2,0} {0,3} {4,0} {0,5} {3,0} {0,4} {0,5} {1,0} {4,0}

TABLE XVI: Modified resource demands for j100 test prob-
lem

j 2 3 4 5 6 7 8 9 10 11 12
rj {1,0} {0,3} {2,0} {4,0} {3,0} {0,4} {0,3} {3,0} {0,4} {0,5} {4,0}
j 13 14 15 16 17 18 19 20 21 22 23
rj {2,0} {0,3} {4,0} {1,0} {3,0} {0,2} {0,3} {4,0} {0,1} {3,0} {4,0}
j 24 25 26 27 28 29 30 31 32 33 34
rj {0,5} {0,3} {5,0} {0,2} {0,2} {3,0} {2,0} {0,4} {0,3} {2,0} {4,0}
j 35 36 37 38 39 40 41 42 43 44 45
rj {3,0} {0,1} {0,2} {0,3} {0,4} {3,0} {1,0} {0,2} {5,0} {0,5} {0,1}
j 46 47 48 49 50 51 52 53 54 55 56
rj {3,0} {2,0} {0,4} {2,0} {0,1} {4,0} {0,3} {0,4} {1,0} {2,0} {0,2}
j 57 58 59 60 61 62 63 64 65 66 67
rj {1,0} {0,1} {0,4} {2,0} {3,0} {0,1} {0,4} {0,3} {1,0} {3,0} {0,4}
j 68 69 70 71 72 73 74 75 76 77 78
rj {3,0} {0,1} {2,0} {0,3} {4,0} {0,5} {3,0} {0,4} {0,5} {1,0} {4,0}
j 79 80 81 82 83 84 85 86 87 88 89
rj {0,2} {0,3} {0,4} {0,5} {1,0} {2,0} {3,0} {4,0} {5,0} {0,3} {2,0}
j 90 91 92 93 94 95 96 97 98 99 100
rj {0,4} {5,0} {0,3} {1,0} {4,0} {0,2} {0,4} {1,0} {4,0} {0,3} {3,0}
j 101
rj {1,0}

