
Genetic Programming Hyper-Heuristics with
Probabilistic Prototype Tree Knowledge Transfer for

Uncertain Capacitated Arc Routing Problems
Mazhar Ansari Ardeh∗, Yi Mei† and Mengjie Zhang‡

School of Engineering and Computer Science, Victoria University of Wellington
PO Box 600, Wellington, New zealand

Email: ∗mazhar.ansariardeh@ecs.vuw.ac.nz, †yi.mei@ecs.vuw.ac.nz, ‡mengjie.zhang@ecs.vuw.ac.nz

Abstract—The Uncertain Capacitated Arc Routing Problem
(UCARP) is an important combinatorial optimisation problem
with extensive real-world applications. Genetic Programming
(GP) has shown effectiveness in automatically evolving routing
policies to handle the uncertain environment in UCARP. However,
whenever a UCARP scenario changes, e.g. when a new vehicle
is bought, the previously trained routing policy may no longer
work effectively, and one has to retrain a new policy. Retraining a
new policy from scratch can be time-consuming but the transfer
of knowledge gained from solving the previous similar scenarios
may help improve the efficiency of the retraining process. In
this paper, we propose a novel transfer learning method by
learning the probability distribution of good solutions from
source domains and modelling it as a probabilistic prototype
tree. We demonstrate that this approach is capable of capturing
more information about the source domain compared to transfer
learning based on (sub-)tree transfers and even create good
trees that are not seen in source domains. Our experimental
results showed that our method made the retraining process more
efficient and one can obtain an initial state for solving difficult
problems that is significantly better than existing methods. The
final performance of all algorithms, were comparable, implying
that there was no negative transfer.

Index Terms—Genetic Programming, Uncertain Capacitated
Arc Routing Problems, Transfer Learning

I. INTRODUCTION

Capacitated Arc Routing Problem (CARP) is a well-known
combinatorial optimisation problem. CARP is based on a
connected and undirected graph G(V,E), where each node
v ∈ V is an intersection, and each edge e ∈ E is a street
segment. Each edge has a non-negative demand to be served
by a set of vehicles with limited capacity. The vehicles are
located at the depot (a special node in the graph). Serving and
traversing through an edge incurs a serving or deadheading
cost. The goal of CARP is to find a set of minimum-cost
routes for each vehicle to serve the demand of edges subject
to a set of predefined constraints [24]. Street watering, removal
of snow [5] and waste collection [1] are real-world applications
of CARP.

The Uncertain Capacited Arc Routing Problem (UCARP) is
a realistic extension of CARP that addresses the shortcoming
of CARP related to its static nature[15]. UCARP is hard
to solve with the traditional methods that solve CARP, and
Genetic Programming Hyper-Heuristic (GPHH) has achieved
considerable success in real-time adjustment of the routes

in uncertain environments [13], [15]. However, the existing
GPHH approaches evolve routing policies for different scenar-
ios separately without considering the relation and similarity
between them. In the real world, different problem scenarios
may be correlated with each other. For example, when a
company buys a new vehicle, or an existing vehicle breaks
down, the problem scenario will be slightly changed (i.e.
the number of vehicles increases or decreases by 1). In this
case, the current routing policy may no longer work well
and a new routing policy will be needed. However, retraining
a new routing policy can be very time consuming. On the
other hand, due to the similarity between the scenarios, it is
reasonable to expect that the knowledge gained from evolving
the current routing policy can help improve the efficiency
and effectiveness of the retraining process. Therefore, in this
paper, we will investigate GPHH with knowledge transfer for
evolving routing policies of UCARP more efficiently.

In the context of knowledge transfer in GPHH, a typical
strategy is to transfer trees and subtrees evolved in a source
domain. While the methods that are based on this strategy
have shown good performance in some domains, this general
approach has a fundamental shortcoming. Subtrees that are
extracted from a source domain might not have the compre-
hensive information about the problem search space of the
source domain problem but just capture partial manifestation
of that information. Despite the fact that full trees have more
genetic materials than subtrees, it can still be argued that
good full trees are just good points in the problem search
space of the source domain and therefore, direct transfer of
them might not transfer enough helpful knowledge to target
domains. Ansari Ardeh et al. [4] recently started addressing
this issue by defining GP feature importance as the transferable
knowledge but their method was not as effective as subtree-
based transfer learning.

In this paper, we intend to capture the underlying distribu-
tion of good individuals of the source domain as transferable
knowledge in a way that individuals that are sampled from
it inherit their good properties. Furthermore, by sampling
new individuals from the learned distribution, we aim to
create new individuals that are not seen in source domains
but are able to perform well in target domains. Ultimately,
we aim to enhance GP to solve new but related problems
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more efficiently. Consequently, this paper fulfils the following
research objectives:
• Develop a method to understand the hidden knowledge

in the population of an existing knowledge source that
reaches beyond the simple transfer of (sub-)trees and
utilise it for the task of transfer learning.

• For the knowledge transfer method, design proper mecha-
nisms regarding (1) knowledge representation; (2) knowl-
edge extraction; and (3) knowledge usage in the target
domain.

• Examine the effectiveness of the proposed knowledge
transfer method and analyse their behaviour.

This paper is organised as follows. A detailed review of the
concepts discussed in this paper is given in Section II. Our
transfer learning method based on probabilistic prototype tree
is presented in Section III. Section IV presents the experiments
we conducted and the results we obtained are discussed in
Section V. We conclude the paper in Section VI.

II. BACKGROUND

A. UCARP

A UCARP is defined as a graph G(V,E) in which the set
of nodes is V and E designates the set of edges. Vehicles
in UCARP have a capacity Q and are located at the depot
v0 ∈ V . Each edge e ∈ E has two cost values. The first one is
the deadheading cost dc(e) which is the cost of traversing the
edge without serving it which is a positive random variable.
The second is the serving cost sc(e) which is positive and
deterministic. Demand of an edge, d(e), is a non-negative
random variable that quantifies the amount of work that needs
to be done for the task. An edge e with d(e) > 0 is called a
task and needs to be served. Finding a solution for UCARP
is the act of finding vehicle routes so that the total cost (the
sum of all the serving and deadheading costs) is minimised.
Feasible UCARP solutions need to comply with the following
constraints:
• Each vehicle departs from the depot and returns to the

depot after completing its services. The vehicles can go
back to the depot to refill their capacity in the middle of
a service, and then continue the interrupted service.

• The total demand served by a vehicle between two refills
does not exceed its capacity.

• Each task is served exactly once.
In general, proactive and reactive methods are the two main

categories of approaches for solving UCARP. In the proactive
approach, a robust solution is considered and optimised for
UCARP. The reactive method makes use of Genetic Program-
ming Hyper Heuristics (GPHH) to search for routing policies
that can generate solutions. The works described in [15],
[21], [22] are good examples of techniques in the category
of proactive methods.

A shortcoming of the proactive methods is that they do
not possess the flexibility that is required for real-world and
real-time applications [13]. Liu et. al [15] overcame this issue
with a GPHH approach to evolve routing policies to model

the decision making procedure of a vehicle when selecting
the next task to serve and applied it to a set of benchmark
UCARP instances. Liu et. al [16] extended that work for the
case of multiple vehicles. Recently, Wang et al. proposed a
GPHH approach to training an ensemble of routing policies
for UCARP [23].

B. GPHH for UCARP

Popularised by Koza [12], GP is an extension of Genetic
Algorithm (GA) that applies genetic operators to evolve
computer programs and has found extensive applications in
different research areas [2]. A Genetic Programming Hyper-
Heuristic method searches the space of heuristic functions with
a standard GP.

Considering the fact that a routing policy is just a priority
function, it is natural to conclude that routing policies can be
evolved with GPHH. GPHH for evolving routing policies has
the following four principal states:

1) Initialise a population of GP trees representing routing
policies.

2) Evaluate the fitness of each GP tree over a set of training
instances.

3) Select a set of individuals for evolution.
4) Apply the genetic operators of evaluation, evolu-

tion(crossover, mutation) and reproduction to evolve a
new population from the current one.

5) Until a stopping criteria is met, repeat the steps in 2
through 4.

Each GP tree is a routing policy that prioritises the tasks
that a vehicle can serve. After a vehicle finishes serving a task,
it considers all unserved tasks and a few filtering methods are
applied to them to remove tasks that the vehicle cannot serve.
Based on the state of the problem, the routing policy assigns
a priority to each task and the vehicle serves the task with
the best priority. Because of the dynamic nature of UCARP,
two failures may occur when a vehicle serves a task. Since
task demands are stochastic, actual demand of a task, may be
greater than the capacity of the vehicle which leads to route
failure. Furthermore, it is possible that vehicles arrive at a task
e that is inaccessible because dc(e) = ∞ which leads to an
edge failure. This is why traditional optimisation methods, that
try to discover exact solutions, fail in case of UCARP. When
a route failure happens, the vehicle must go back to the depot
and replenish its capacity and then serve the failed task. Edge
failures can be overcome with a detour around the failed task.
The fitness of a policy is the average of total cost of the routes
that it generates on predefined training instances.

The GPHH approach to solving UCARP does not need
any preplanned solutions or extensive domain expertise and
to the best of our knowledge, it outperforms other methods
for solving UCARP [13], [16]. GPHH requires model training
which is not trivial. On the other hand, there exists the
case in which problem state changes over time in real world
applications. As an example, transportation systems frequently
change their fleet size with recruiting new vehicles into their
system or retiring old ones. When problem state changes,



existing routing policies are applicable but it was shown that
their performance degrades greatly [16] and as a result, new
policies will be required. A simple remedy is to train new
routing policies but, as was pointed out earlier, the application
of GPHH for solving UCARP is typically time-consuming and
it is better to have methods that can use the previous solutions
and speed up the training phase of new routing policies. This
is the exact case in which transfer learning is most applicable
[14], [19].

C. GP Transfer Learning

Transfer learning can be described as “the ability of a
system to recognise and apply knowledge and skills learned
in previous tasks to novel tasks” [18] to improve the learning
process for the new tasks. When the primary learning method
is GP, transfer learning can be used to (1) create better initial
population, (2) improve its convergence speed and (3) help it
achieve better final solutions [18]. Transfer learning is a rather
new concept, especially when compared with the main body
of machine learning literature but nevertheless, a plethora of
research has been conducted on it [14], [19]. Because the main
learning method in this work is GP, we consider the transfer
learning methods that were designed exclusively for GP.

The work of Kocer et. al [11] is one of the earliest transfer
learning solutions for an evolutionary algorithm. In their paper,
to transfer knowledge, the individuals with the best and median
fitness values are selected in each generation of GA when
solving source domains problem and saved into an “individual
pool”. On target domains, 30% of the initial population are
selected randomly from the pool [11]. Building on work of
Kocer, Dinh et. al [6] also proposed three transfer learning
methods based on (sub)tree transfer for GP. In the BestGen
method, which bears some similarities to the work of Kocer
[11], k best individuals of each generation of GP on a source
domain are saved into a pool and on target domain, they
are used as initial population. In the second algorithm, called
FullTree , k% of the best individuals in the final population
of source domain are selected to initialise the GP population
on target domain. In their third method, SubTree, one of root
sub-trees of each individual in the final population of GP on
source domain is selected into a pool to create the initial GP
population on target domain. Haslam et al [9] improved the
work of Dinh et al further with considering performance of
transferred items on target domain too.

The idea of knowledge transfer through sub-tree transfer
was further investigated by Iqbal et. al [10]. In their work,
the authors dubbed the root sub-trees of GP individuals as
code fragments and extracted them from good individuals of
the final population of GP on a source domain and stored
them to be used again on a target domain. In a target domain,
during the initialisation phase and with a probability of 50%,
root children are selected from the stored code fragments or
generated from terminals and functions. This sub-tree creation
procedure is utilised during the GP run’s mutation too.

Rather than transferring exact (sub-)trees, O’Neill et. al [18]
took a more interesting approach. In the Common SubTree

in Related Problems method, subtrees that are commonly
repeated in the population of source domain are identified.
These subtrees are converted to functions and added to the
function set of GP on target domain. Ansari Ardeh et al.
[3] relaxed some of the conditions of this work and only
considered the frequent exact subtrees and used them to
initialise GP on target domain. In a more recent work, the same
authors proposed selection of subtrees based on cumulative
contributions that they make to their individuals which also
favours more frequent subtrees implicitly [2].

As it can be observed from this review, a number of
existing GP transfer learning methods pursued the first goal
of transfer learning, i.e. creating a better initial population,
that was mentioned early in this section. In this work, we
also focus on this goal but intend to take a step further
and learn the probability distribution of GP trees that have
shown good performance in the source domain and create
a probabilistic prototype tree based on it to be used as the
transferable knowledge. As it was pointed out earlier, each
GP tree represents a single point in the search space of a
source problem and hence, it can contain limited knowledge
about that search space and GP subtrees are even more limited
in this regard. This issue can be alleviated to some degree by
transferring more trees but this is also limited to GP population
size. However, by learning the probability distribution of good
trees, new individuals can be created that have acquired the
properties of good individuals of the source domain.

III. GPHH WITH PROBABILISTIC PROTOTYPE TREE
TRANSFER

In the context of GPHH, we make a basic assumption that
abundant knowledge about a source domain is contained in the
individuals evaluated during the GPHH process in the source
domain. Therefore, a generic GPHH with knowledge transfer
contains the following steps:
• Select a knowledge representation for transferable knowl-

edge.
• Extract knowledge from the individuals evaluated for the

source domain.
• Modify the GPHH in the target domain to use the

extracted knowledge.
• Run GPHH to evolve individuals for the target domain.
This GPHH with knowledge transfer process consists of

three key design decisions: (1) knowledge representation;
(2) knowledge extraction; and (3) knowledge usage in the
target domain. In this paper, we consider a novel GPHH
with knowledge transfer based on the concept of probabilistic
prototype tree (PPT) [20] for knowledge representation and
its detailed description, including knowledge representation,
extraction and usage are given in this section. The high-
level pseudocode of modified GPHH, referred to as GPHH-
PPT throughout this paper, is given in Algorithm 1. In our
approach, first a source domain is solved as usual with GPHH
and when a problem change is detected, GPHH-PPT learns
the probability distribution of good individuals of the final
population from source domain into a PPT as the means



Algorithm 1: Pseudocode for GPHH-PPT
Input : Training instances ℘, Final population of

source domain =, Percent of initial
population created from transferred
knowledge k (∈ [0, 1])

Output: The best evolved function ind∗

1: set ind∗ ← null, gen← 0

// Knowledge Extraction
2: Use a tournament of size t to select a subset of = to

learn from
3: Extract knowledge as PPT from the selected

individuals by calculating the probability of each node
// Knowledge Usage

4: while Nind < k×Popsize do
5: Initialisation: Sample new individuals from the

PPT by sampling GP functions/terminals based
on the learned probability distribution nodes

6: end
// GPHH

7: while Nind < (1− k)×Popsize do
8: Initialisation: Randomly initialise an individual
9: end

10: while gen < maxGen do
11: Evaluate each individual on ℘ and update ind∗

12: Apply selection
13: Apply evolution
14: gen← gen+ 1
15: end
16: return ind∗

for knowledge representation and then, on target domain, the
learned PPT is used to create a good initial GP population,
after which standard GP operators are applied to the population
iteratively until a stopping criteria is met.

A. GPHH with Probabilistic Prototype Tree Transfer

1) Knowledge Representation: The core idea of this paper
is that, having a source domain, if we can learn the probability
distribution of good individuals of the source domain, we
can use this probability distribution to sample individuals that
can have the properties of good individuals of the source
domain. In our definition, the probability distribution of the
good individuals should be able to know the probability that
a GP terminal or function may occur at a given node of GP
programs.

Therefore, if we define an arbitrary indexing I on the nodes
of GP trees, we can define the random variable Xi to be
the value that node i ∈ I can have from the combined set
T ∪ F , where F and T are the GP function and terminal
sets respectively. We denote the probability of Xi having the
value r ∈ F ∪ T as P (Xi = r) = pi,r. It is interesting to
note that this definition of the random variable Xi has the
categorical probability distribution, considering the fact that it
can have ρ = |T ∪ F | exclusive outcomes and the probability

Fig. 1 An example of a PPT

of each outcome does not change over time in a standard GP
[17]. Furthermore, the random variable Yi,r, defined to be the
number of times that an r ∈ T ∪ F has appeared in node
i ∈ I in a population of GP individuals, has the multinomial
probability distribution [8].

With these considerations, we define the probabilistic pro-
totype tree to be a complete binary (or q-ary with q being the
maximum arity of GP functions) tree in which each node i ∈ I
holds the probability vector Pi = (pi,r)r∈T∪F , that is, Pi is
probability vector in which each of its components denotes
the probability of selecting an item r from either the terminal
or the function set and represents the underlying categorical
distribution of the item r appearing at i. Figure 1 shows a
simple PPT of depth 2 for T = {x, y} and F = {+,−} as an
example.

2) Knowledge Extraction: With the definition of PPT given
earlier, it is fairly straightforward to learn the PPT as the prob-
ability distribution of good GP individuals from an existing
population. As it was mentioned earlier, the random variable
Yi,r which is the number of times that the item r has appeared
in location i has the multinomial distribution. Considering the
relationship between Xi and Yi, we can find the approximation
of the parameter pi,r by performing maximum likelihood
estimation over the existing population [7]. Consequently it is
fairly easy to prove that pi,r ≈ pi,r where pi,r is the average
number of times that the item r has appeared in location i in
the population.

It is possible to consider the whole population set for
learning the PPT but it has been shown that code bloat and
the presence of duplicates is an important factor that can deter
effective transfer learning [2], [3]. In order to address this,
we propose a tournament selection to be performed on the
population so that the algorithm can have a control on the
quality of the individuals that are selected for learning the
PPT. In this regard, the selection mechanism samples s number
of individuals from the population by performing tournament
selection with a tournament of size t.

It should be noted that the structure of the prototype tree has
some similarities with the PIPE tree that is presented in [20].



TABLE I: The source and target domains in the experiments.
Small Dataset gdb1 gdb1 gdb2 gdb2 gdb21 gdb21
#Tasks 22 22 26 26 33 33
Source 5 5 6 6 6 6
Target 4 6 5 7 5 7
Medium Dataset gdb8 gdb8 gdb9 gdb9 gdb23 gdb23
#Tasks 46 46 51 51 55 55
Source #Vehicles 10 10 10 10 10 10
Target #Vehicles 9 11 9 11 9 11
Large Dataset val9C val9C val9D val9D val10C val10C val10D val10D
#Tasks 92 92 92 92 97 97 97 97
Source #Vehicles 5 5 10 10 5 5 10 10
Target #Vehicles 4 6 9 11 4 6 9 11

However, our work does not consider the constants Rd,w in
the PPT that this work uses and also defines a more rigorous
modelling of the underlying probability distribution of the GP
individuals that is absent in that work. Furthermore, that paper
takes a completely different learning approach from the one
that we propose. Finally, that work is not in the context of GP
transfer learning.

3) Knowledge Usage: When a PPT is learned from the
source domain, it can be used to sample new GP individuals
to help GP on the target domain. To create a new individual
from a transferred PPT, a GP item r ∈ T ∪ F is selected for
node i ∈ I with the probability pi,r. In this paper, a roulette
wheel mechanism is used to make the selection. For example,
consider the PPT in Figure 1 for creating new individuals.
Instead of randomly selecting a GP function/terminal for
node 1 (root), +, −, x or y will be selected with respective
probabilities of 0.2, 0.6, 0.1, 0.1 and nodes number 2 and
3 will be created similarly. The nodes are created in a prefix
order, starting from the root node. If the selected item is of type
ephemeral random constant (ERC), then a value in the range
[0, 1] is generated randomly and assigned to it. In this paper,
the PPT is used to create k percent of the initial population
of GP on the target domain to give it an initial performance
boost.

IV. EXPERIMENT DESIGN

To investigate the effectiveness of the proposed GPHH
with knowledge transfer for UCARP, we design a number
of source and target domain settings. Specifically, we define
the source and target domains based on the same UCARP
instance with the same graph topology and distribution of the
random variables but they differ from each other in terms
of the number of vehicles, reflecting the situations where a
new vehicle is bought or an existing vehicle breaks down. For
the UCARP instances, we select several small-sized, medium-
sized and large-sized instances (Table I). This way, we can
have a comprehensive study on the performance of knowledge
transfer under different scenarios.

In both source and target domains, 500 unseen test samples
are randomly generated. For GP training, 5 training samples
are used for fitness evaluation, which are rotated at each
generation to reduce overfitting. Specifically, we design three
stages for experiments: source domain is considered as n
vehicles in a UCARP instance and GP is utilised to train
routing policies for solving the problem and is evaluated on
test dataset. We consider a target domain by changing number

of vehicles to n−1 or n+1. The final stage of our experiment
is to extract knowledge from the source domain and try to
alleviate the training of routing policies for target domain.

We examine the Fulltree, Subtree and FreqSub-root config-
urations. These methods are used to select 50% of the final
population of source domain to be transferred to initialise
50% of the population on the target domain. The reason that
FullTree and FreqSub are selected for comparison is that they
both transfer whole GP trees to target domain. Since our novel
method also creates whole trees on the target domain, we
would like to compare their performance with the performance
of the trees that are created from the learned PPT. SubTree
method is also selected because this algorithm transfers a
subtree of a GP tree and therefore, it transfer less amount
of genetic material and we would like to see how our method
can perform against this limited form of transfer learning.

For GPHH-PPT, we experiment on learning the PPT from
the final population of the source domain with different
configurations and report the best configuration. To have the
same learning pool as existing methods, we also experimented
with disabling tournament selection of our algorithm. To keep
it consistent with the existing transfer learning literature, k =
50% of the population of target domains are initialised with
the algorithm. Table II presents the GP settings and terminals
used in experiments which is based on the work in [16]. GP
function set is {+,− × /,min,max} in which the division
operator / is protected and returns 1 when divided by 0. A
summary of these methods is given in Table III. All algorithms
are run 30 times independently. To evaluate different aspects of
our algorithm, we conduct a set of experiments with different
settings and present the settings that produce the best results.

TABLE II: GP settings.

GP Terminal Description
CFH Cost From Here
CFR1 Cost From the closest alternative Route
CR Cost to Refill
CTD Cost To Depot
CTT1 Cost To the closest Task
DEM DEMand
DEM1 DEMand of the closest unserved task
FRT Fraction of Remaining Tasks
FUT Fraction of Unassigned Tasks
FULL FULLness (vehicle load over capacity)
RQ Remaining Capacity
RQ1 Remaining Capacity of closest alternative route
SC Serving Cost
ERC Ephemeral Random Constant number
DC Deadheading Cost
GP Setting Value
Population 1024
Crossover rate 0.8
Mutation rate 0.15
Reproduction rate 0.05
Number of generations 50
Elitism 10
Max depth 8

V. RESULTS AND DISCUSSIONS

For our experiment settings, we report that in terms of
the final performance after 50 generations, there was no



TABLE III: The examined algorithms

Algorithm Subtree selection mechanism

FreqSub-Root Select most frequent subtrees in the final
population [3]

Fulltree-k Select k of best of individuals of the
final population [6]

Subtree-k Select a random subtree of each individual
of final population [6]

GPHH-PPT-
(s, t)

Learns the underlying distribution of the
population with a sample size s and
tournament size t, from the final
population (k = 50% in all experiments)

significant difference between all the algorithms and the case
of GPHH without transfer learning, verified by the Wilcoxon
test of 30 independent runs. There are some cases where
some knowledge transfer methods are significantly better.
However, we cannot find a general pattern where a GPHH
with knowledge transfer consistently outperformed the one
without transfer. Due to space limit, we choose not to give the
results on the final performance here, but focus more on the
initial performance on the target domain. Because the focus of
all algorithms, including ours, was on improving the quality
of the initial state, it can be inferred that any improvement
to the initial population of GPHH did not persist until the
final stage of the algorithm. We attribute this outcome to the
dynamic nature of UCARP for which good individuals for
one state of environment could perform poorly for some other
state. Nevertheless, this result has an important implication in
the context of transfer learning which is the indication that
the changes did not incur any negative transfer which is an
important concern of transfer learning algorithms.

We experimented with different values for the s and t
parameters of GPHH-PPT. Also, we experimented on the case
for which the tournament selection part of the algorithm was
disabled so that GPHH-PPT had the exact same learning
pool of the methods FullTree-50 and SubTree-50. In our
experiments, the best initial performance was obtained for
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Fig. 2 Convergence curves of the compared algorithms on
small-sized dataset gdb1 from 5 to 4 vehicles (8 generations
out of 50 shown).
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Fig. 3 Convergence curves of the compared algorithms on
the mediums-sized dataset gdb23 from 10 to (a) 9 and (b) 11
vehicles (8 generations out of 50 shown).

s = 100, t = 20. It should be noted this setting gives
the algorithm a smaller learning pool than FullTree-50 and
SubTree-50 but to be thorough, we also tested FullTree-10 and
SubTree-10 with the same pool and observed the performance
of these algorithms was significantly worse that FullTree-
50 and SubTree-50. Therefore, we omitted FullTree-10 and
SubTree-10 from our discussions due to space limit.

In terms of the quality of the initial performance, the results
are more interesting. Figures 2 and 3 present early perfor-
mance of the compared algorithms on 2 different datasets
as the representative of all the experiments performed. The
examination of the convergence curve of the algorithms sug-
gested that in almost all experiments, GPHH-PPT was able
to create initial populations that were better than vanilla
GPHH. Furthermore, the curves suggest that GPHH-PPT has
been able to surpass the SubTree method too in almost all
experiments. Overall, we can see that GPHH-PPT is able to
create initial populations than that are either better the FullTree
and FrequentSub methods or are as good as the ones created
by them.

To confirm these hypotheses, we conducted the Wilcoxon
test of the 30 runs to compare the quality of individuals in
first generation of each algorithm. For the sake of convenience
and brevity, the summary of these tests are presented in Table
IV by summing up the number of times GPHH-PPT was
significantly better than (“wins”), same as (“draws”) and worse



TABLE IV: Summary of the quality of initial GP population
of 30 runs, grouped by dataset sizes (small, medium, large).
The number of “wins”, draws” and “losses” of GPHH-PPT
against the compared algorithms.

Baseline No Transfer SubTree-50 FullTree-50 FrequentSub
Small 6-0-0 6-0-0 0-6-0 0-6-0
Medium 6-0-0 6-0-0 4-2-0 4-2-0
Large 8-0-0 8-0-0 8-0-0 8-0-0

than (“losses”) the baseline algorithm.
Inspecting Table IV, our first conjecture is confirmed that

GPHH-PPT is always better than vanilla GP, i.e., it is better
than the random creation of initial populations. This fact is
the first achievement of our method. The table also confirms
our second hypothesis that GPHH-PPT can outperform the
SubTree method. This result was highly expected. The SubTree
method just transfers a random part of GP trees and therefore,
it just transfers random and partial manifestations of the
knowledge from source domains and cannot be expected to
have a complete view of the knowledge. This indicates that
GPHH-PPT has achieved more comprehensive understanding
of the hidden knowledge.

Comparison between GPHH-PPT and FullTree reveals
even more interesting insights. For small and medium-sized
datasets, the performance of GPHH-PPT is comparable to or
better than the performance of FullTree. However, the most
intriguing result comes for the large tasks for which GPP-
PPT is the clear and unanimous winner over all algorithms,
including FullTree. This is an important observation that,
we believe, stems from the fundamental difference between
GPHH-PPT and FullTree (or any method based on transfer
of genetic materials). Earlier in this paper, we hypothesised
that we intend to learn the underlying knowledge hidden in
a GP population in contrast to simple transfer of genetic
materials with the hope of capturing some of the knowledge.
The superior performance of GPHH-PPT on large and difficult
datasets indicates that when the problem becomes difficult,
having a deeper knowledge is more effective and confirms the
benefit of this approach. Knowing that FullTree transfers the
best individuals, the result that the performance of GPHH-PPT
is comparable to that of FullTree for small and medium-sized
tasks implies that GPHH-PPT has achieved the level of under-
standing of the underlying knowledge about the source domain
that it can mimic the performance of the best individuals.

As it was mentioned in Section II-C, the first goal of transfer
learning is to create a better initial state than randomness
so that the better initial state can reduce the training effort.
Consequently, we calculated the reduction in training time
of algorithms in the target domain by finding the first gen-
eration in which the test performance of the algorithms is
statistically similar to the last generation of vanilla GP for
at least 3 consecutive generations and averaged it over all
experiments. The improvements are presented in Table V and
as is evident, GPHH-PPT can reduce the training effort of GP
in target domains significantly and it is even better than other

TABLE V: Improvements in GP training time averaged over
all experiment

Algorithm SubTree-50 FullTree-50 FrequentSub GPHH-PPT
Improvement 50.22% 53.33% 50.23% 59.44%

algorithms. It should be noted that the improvement are seen
in all experiments regardless of their size.

1) PPT Analysis: The main idea in PPT-based transfer
learning is to learn the probability distribution of GP func-
tions and features in a source domain to be used in target
domain. Figure 4 presents a PPT that is learned from a
source domain (gdb1, 5 vehicles) in the smaller frame and the
magnified view of its top 2 level of nodes. The numbers inside
nodes indicate the probability of selecting corresponding GP
function/terminal at that location and the labels beside each
node show the indexing order defined over this PPT. The
probability of missing items is zero In this work we define
the underlying knowledge in the source domain as being the
probability distribution of good GP individuals, granulated
at the node level and Figure 4 basically depicts this. For
example, the figure shows that in the source domain, the
node at i = 3 has a categorical distribution with parameters
p3,max = 0.06, p3,∗ = 0.54, p3,− = 0.36, p3,min = 0.04.

It is interesting to note that PPTs can capture the relation
between GP items with respect to their position in trees. For
example, based on Figure 4, we can see that {max, ∗} are
important at node 2 and {max, ∗,−min} are important at
node 4 and therefore, any combination of these sets can be
considered important, specifically between {max}, from node
2 and {∗,−} from node 4. It is possible to capture this type
of relation with methods like FullTree but when tree size
and the number of such relations is large, the number of
possible combinations of GP items increase exponentially and
the number of needed transferable trees to capture all these
relations become intractably large. Consequently, our approach
allows for the creation of trees that may not have been seen
before. For example, the tree ((((((0.87 max CFH) max (SC
- CTD)) max (FUT * 0.13)) min (((SC - CTD) min (FUT *
(FUT * SC))) - CTD)) max ((((0.66 max CFH) max (SC -
CTD)) max (((RQ - CTD) max CR) min (SC * SC))) * (((SC
- CTD) min (FUT * (FUT * SC))) max CFH))) max ((CFD
max (((SC + CFH) - (SC - CTD)) max ((SC min (FRT * DC))
max (CTT1 * CTD)))) * (RQ - DC))) is one of the trees that
is sampled from this PPT. With a fitness value of 372.74, this
was the best individual in the first population in target domain
(gdb1, 6 vehicles). This tree, or similar trees, was not present in
the source domain and therefore, methods like FullTree could
not transfer it. Interestingly, the best individual that FullTree
transferred in this experiment had a fitness value of 380.94.
Another interesting feature to notice is that the PPT can prune
a lot of possible values as many nodes contain a single value.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel GPHH approach with
knowledge transfer to improve the efficiency of the retraining



Fig. 4 A learned PPT

process for routing policies of UCARP. We proposed a novel
transfer learning algorithm based on modelling the transferable
knowledge as a probabilistic prototype tree and tested our
knowledge transfer algorithm on a range of UCARP source
and target domains with differences in the number of vehicles.
The experimental results showed that the knowledge transfer
can greatly improve the quality of initial states in the target
domain, especially for large and difficult problems, and hence,
improve the efficiency of GPHH retraining on the target
domains by reducing the training time significantly. Also,
the experiments showed that the proposed method was better
than vanilla GP as well as existing methods. Since the final
performance is statistically comparable with vanilla GPHH and
other transfer learning methods, we conclude that no negative
transfer occurred which demonstrates the potential of learning
the probability distribution of good individuals of the source
domain and transferring it as probabilistic prototype trees.

In the future, we will explore more effective knowledge
transfer methods which will include better knowledge extrac-
tion and knowledge usage. For example, we will consider
simplifying and transforming the trees in the source domain,
to improve the compactness of the transferred probabilistic
prototype trees and reduce the noise in them. We will also
develop other learning methods to estimate the probability tree
and see if they can perform more accurately. Furthermore, we
will consider the possibility of using the transferred method
during GPHH run to achieve better final performance too.
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