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Abstract—Traditional oversampling methods have been proven
to effectively solve imbalance classification. However, how to
approximate the original data distribution as much as possible
after oversampling remains to be solved. In this paper, an
oversampling method optimized by particle swarm optimization
(PSO) is proposed for imbalance classification. As same as the
traditional oversampling method, synthetic samples are first
generated from the minority classes. As a distinctive feature,
the synthetic samples will not directly insert into the minority
classes, but would be further evaluated by decision tree classifier.
Through integration with PSO, the synthetic samples with best
fitness value can then be used to expand the amount of minority
classes. As a result, the imbalance ratio can be significantly
decreased. Simulations and comparisons based on 17 datasets
demonstrate the effectiveness and superiority of the proposed
method.

Index Terms—imbalance classification, oversampling method,
particle swarm optimization

I. INTRODUCTION

Traditional machine learning methods are mostly based on
the assumption that the data distribution is balanced. However,
when facing with imbalanced class distribution, the traditional
machine learning methods cannot often achieve satisfactory
performance. Imbalance learning methods have been pro-
posed and achieve satisfactory performance on imbalanced
data [1]. As one of the hot spots in imbalance learning,
oversampling method has been proven to be effective, but
it often faces the problem of destroying distribution of the
original data. For example, synthetic minority oversampling
technique(SMOTE) [2] generates samples of minority classes
via linear interpolation in the sample space, however, the
sample space of majority class is often invaded by the newly
generated samples. The intrusive sample will also affect the
subsequent data process [3], which will affect the classification
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performance. To address the aforementioned problem, a PSO-
optimized oversampling method is proposed to optimize the
synthetic samples to expand the amount of minority classes
and approximate the original data distribution as much as
possible. Specifically, SMOTE is used to generate the syn-
thetic samples. Then, an evolutionary algorithm, PSO [4],
is integrated into decision tree classifier to select the best
synthetic samples to expand the amount of minority classes. To
investigate the effectiveness of proposed method, mainstream
oversampling methods and hybrid sampling methods are used
as comparison methods. Experiments based on 17 imbalanced
datasets demonstrate the effectiveness of proposed method.

The rest of the paper is organized as follows. The related
work is presented in section 2. Section 3 illustrates the pro-
posed method and its computational complexity. Simulations
will be conducted in section 4. Conclusion will be finally
drawn.

II. RELATED WORKS

This section reviews related works on sampling methods of
imbalance learning and PSO algorithm.

Oversampling methods such as ADASYN [5] generates
different numbers of minority samples according to their
distribution. SMOTE [2] randomly selects a sample from its
nearest neighbor, and interpolates between them to construct
minority samples. Thus, the problem of over-fitting on major-
ity class can be mitigated by improving the imbalance ratio.
SMOTE assigns equal importance to all the samples of the
minority class, however, in the actual modeling process, it is
noticed that samples at the boundary are more likely to be
misclassified. In this setting, Borderline SMOTE [6], which
combines the SMOTE with the information about the boundary
samples is proposed. Experiments showed that using the
information about samples located in the boundary to generate
new samples can improve the model performance. Recent
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works on oversampling such as Rastogi tried to bring S-
MOTE to distributed computing environments under Spark for
large datasets tasks [7].Gosain proposed FSMOTE [8] which
generates samples by Interpolating between minority samples
and its k minority class farthest neighbors.Binghao modified
SMOTE and presented Mean-SMOTE [9] for non p2p traffic
classification.Hamdy utilized SMOTE to predict fine-grained
bug severity levels [10].Wu proposed an efficient imbalance
learning algorithm called Easy-SMT [11], which combines
SMOTE-based oversampling policy with EasyEnsemble to
divide imbalnace problem into balanced learning subproblem.

Undersampling methods [12]–[17] usually eliminate noisy
or redundant samples of majority classes to improve imbalance
ratio. Recent work such as Han applied Gaussian mixture
model to for undersampling [18]. However, the removal of
samples in the majority classes usually results in information
loss. Besides, neighborhood information based algorithms are
sensitive to noisy samples which produce negative effects on
performance.

To solve the limitation of oversampling and undersampling,
in [3], the combination of Tomek Links [19] and ENN [20]
with SMOTE are proposed. More specifically, Tomek Links
cleans expanded dataset by deleting the sample whose nearest
neighbor is different from its own category. In Smote +
ENN, ENN is used to predict each sample’s label in the
expanded dataset. When the prediction is inconsistent with
its actual label, the sample will be removed. However, we
notice that the sample invasion, which will destroy local
structure information of majority class samples and effect the
undersampling process, still exist in hybrid sampling methods.
So there needs an optimization for the generated samples after
oversampling to refine the data distribution.

The PSO algorithm [4] is inspired from the behavioral
characteristics of biological populations and is used to solve
optimization problems. In the PSO algorithm, the potential
solution of each optimization problem can be regarded as a
particle in the search space. All particles have a fitness value
determined by the objective function, and each particle also
has a speed that determines the direction and distance of their
movement. The particles follow the current optimal particles
to get better fitness value in the solution space. There is
already relevant work on the application of PSO algorithm
to imbalance learning, In [21] and [22], PSO is used for
sample subset selection and feature selection. Recently, Hu
used PSO to find optimal weight of Weighted Extreme Learn-
ing Machine(WELM) parameters [23], experiment showed
PSO strategy can improve generalization and performance of
WELM on imbalanced datasets.

In our method, we use PSO algorithm to optimize the sam-
ple distribution after SMOTE, aiming to introduce minority
class samples to improve imbalance ratio while protecting the
original distribution of the data.

Fig. 1. The overview framework of PSO-optimized oversampling method.

III. PSO-OPTIMIZED OVERSAMPLING METHOD

A. Problem Formulation

There is a binary classification task whose dataset X follows
an imbalanced distribution, where X = {x1, x2, . . . , xn} ∈
Rd×n, and d and n denote the numbers of features and
samples. Xmin and Xmaj denote the sets of samples from the
minority and the majority classes, respectively. Our goal is to
use PSO to perform selection on samples Xsmote generated
by SMOTE to get optimal samples X

′

smote. The advantage of
using PSO is that PSO can regard Xsmote as a particle and use
evolutionary process to optimize the particle globally, which
is different from neighborhood information based sample
selection methods.

B. Proposed Approach

The framework of proposed method is represented in Fig.1,
in which SMOTE min represents minority samples generated
by SMOTE, Train min represents minority class samples of
training dataset, Train maj represents majority class samples
of training dataset, Train new represents the combination of
Train maj and SMOTE min, Selected min represents minori-
ty samples in SMOTE min selected by PSO, Train final repre-
sents the combination of Train and Selected min. The pseudo
code of PSMOTE is presented in Algorithm 1. Firstly, we
adopt SMOTE to conduct oversampling. Given an imbalanced
dataset T , for each minority class sample xi in T ,we calculate
the Euclidean distance between xi and other minority samples
and obtain the k-nearest neighbors of xi(in our method, k is 5).
Then, we set the sampling rate r based on the imbalance ratio
of dataset. Next, for each minority sample xi of T , a number
of samples are randomly selected from k-nearest neighbors of
xi according to r. For each neighbor xn of xi, we construct
synthetic minority class sample xnew as follow:

xnew = xi + rand(0, 1) ∗ |xi − xn|, (1)

where rand(0, 1) is a function for producing a random number
falling into the interval between 0 and 1. Finally, we get a
synthetic minority sample set Tmin smote.



In PSMOTE, PSO is used to optimize the generated minor-
ity class samples. Considering some of the datasets with high
dimension and large instance number, we choose PSO with
global best topology for its advantage of convergence[29].
Specifically, a particle set pset ∈ Rpnum×fsize is initialized
randomly, where pnum is the number of particles and fsize
is the number of minority samples generated by SMOTE. For
(x, y) of pset, a random variable r is generated to determine
the value of (x, y) as follow:

pset(x, y) =

{
1, if r > 0.3

0, else
. (2)

pset(x, y) = 1 indicates that the yth sample of the xth particle
is selected.

we initialize the velocity set v ∈ Rpnum×fsize , the local
best record lbest ∈ Rpnum×fsize and the global best record
gbest ∈ Rpnum×fsize by setting them to 0. Then in the iteration
process, we firstly select generated minority class samples
according to each particle, and decision tree classifiers will be
trained on the dataset formed by selected samples and majority
samples from original dataset, auc [25] on original dataset is
stored as particles’ socre. Then, we update the local best record
lbest and global best record gbest as follow:

libest =

{
pi, if score(libest) < score(pi)

libest, otherwise
(3)

gbest =

{
pi, if score(gbest) < score(pi)

gbest, otherwise
(4)

Next, we utilize lbest and gbest to update the velocity of
particles:

vi = wvi + c1r1(l
i
best − pi) + c2r2(gbest − pi), (5)

where w is the inertial factor. c1 and c2 are the acceleration
constants. r1 and r2 are random variables varying between 0
and 1. libest and gbest are the local best position of particle i
and the global best position of all particles, respectively.

vij =


vmax, if vij > vmax

vmin, if vij < vmin

vij , otherwise
(6)

where vij is the jth direction of vi.
After getting vi, we update the position of each particle

pi using discrete PSO position update formula(7) from [29],
in which t is a random number in (0,1). Mathematically, vij
determines a threshold of the probability that pij = 1, which
means the j-th sample in particle pi should be kept in the
distribution.

pij =

{
0, if t >= 1

1+e−vij

1, otherwise
(7)

The evolutionary process mentioned above will repeat until
reaching given iterations. Considering the method is a single

classification framework, and higher auc means better perfor-
mance on the original dataset, so we select samples according
to the global best particle to construct dataset with better
imbalance ratio. Finally, we construct classifier and test.

Algorithm 1 PSMOTE
Require:

The training dataset T , sampling ratio r, the number pnum
of particles, the iteration number itnum

Ensure:
initialize Tsmote min to empty set. initialize particles and
parameters in PSO.
for each minority class sample xi in T do

get xi’s k-nearest neighbors K using Euclidean distance
choose samples in K according to sampling ratio r to
form S
for each sample xn in in S, generate sample xsmote using
equation(1), add xsmote to Tsmote min

end for
split T to get major class samples Tmaj and minority class
samples Tmin

combine Tsmote min with Tmaj to get Tnew
for i = 1 to itnum do

for j = 1 to pnum do
project Tnew according to particle pj in pset to get
Tnew selected

train decision tree classifier using Tnew selected and do
validation on T , store the auc score as particles fitness
score
update local best record ljbest of particle pj and global
best record gbest

end for
adjust particles’ velocity and position

end for
select generated minority class sample according to global
best particle to form selected min
use T and selected min to form Tfinal and train classifier,
then predict test data label

C. Complexity Analysis

We perform a theoretical analysis of PSMOTE concerning
the computational cost. The time complexity can be computed
by:

Tpsmote = Tsmote + Tpso, (8)

Tsmote is affected by the number tm of minority class
samples in training dataset, and the number k of neighbours
used to generate new samples, which is defined as follows:

Tsmote = O(t2m + tm ∗ k). (9)

Tpso is affected by the generated minority class sample
number tg , the iteration number i, the particle set size s, the
computation cost for generating a classifier Tc,and the cost Tl
for particle learning process, which is defined as follows:

Tpso = O(i ∗ (s ∗ Tc + Tl)), (10)



TABLE I
THE DESCRIPTIONS ABOUT THE IMBALANCED DATASETS

Dataset Repository Target Ratio S F
spectrometer UCI ≥ 44 11:1 531 93
car eval 34 UCI good, v good 12:1 1728 21

us crime UCI ≥ 0.65 12:1 1994 100
yeast ml8 LIBSVM 8 13:1 2417 103

libras move UCI 1 14:1 360 90
solar flare m0 UCI M->0 19:1 1389 32

ozone level UCI ozone, data 34:1 2536 72
oil UCI minority 22:1 937 49

ecoil UCI imU 8.6:1 336 7
yeast me2 UCI ME2 28:1 1484 8
arrhythmia UCI 06 17:1 452 278

abalone UCI 7 9.7:1 4177 10
sick euthyroid UCI sick euthyroid 9.8:1 3163 42
thyroid sick UCI sick 15:1 3772 52
wine quality UCI ≤ 4 26:1 4898 11

ablone 19 UCI 19 130:1 4177 10
optical digits UCI 8 9.1:1 5620 64

TABLE II
THE PARAMETER OF PARTICLE SWARM OPTIMIZATION (PSO)

Parameter Default Value
particle number 50
iteration number 1000

w 0.7
c1 1.5
c2 1.5

vMax 0.98
vMin 0.02

where Tc = O(t ∗ d), d is the depth of decision tree and t
is the sample number used for training. Tl = O(s ∗ tm). The
computational cost of PSMOTE is approximately O(t2)

IV. EXPERIMENTS

In this section, we conduct experiments to evaluate the ef-
fectiveness of PSMOTE on 17 real-world imbalanced datasets.
Table I shows the statistical information about these datasets
[24]. S and F denote the numbers of data samples and
attributes. The imbalance ratio denoted by “Ratio” is also
contained.

A. Evaluation Criterion

The purpose of this paper is to optimize the oversampling
method, which is mainly considering the impact of the sample
level. For fair comparison, we use Decision Tree classifier for
all sampling methods. The evaluation criterion is AUC-ROC
(we call it AUC brifely). AUC is a commonly used metric
in imbalance learning because it’s not affected by imbalance
ratio. Usually, higher AUC means better distinguishing ability
of algorithm for different class, more details of AUC can refer
to [25]. 5 cross-validation is taken to get average AUC of all
methods.

B. Experiment Analysis

1) Experiment of hyper parameters: We perform hyper
parameters experiment on the combination of sampling ratio
and particle number of PSO. The ratio gradually increased
from 0.2 to 1 at a growth rate of 0.1, and the particle number

increased from 50 to 250. The hyper parameters combinations
corresponding to the best results of each dataset were given
in tableIII (for example, 0.4/0.7408 represents we get 0.7408
auc with 0.4 sampling ratio). It can be seen that as the particle
number increases, the performance of the classifier increases
firstly, and then gradually decreases. The reason behind this
may be that as the number of particles in the PSO algorithm
increases, the population has a greater probability to converge
to a better solution. However, the number of particles must be
consistent with the complexity to be optimized, and excessive
number of particles will affect the optimization of the problem.

2) SMOTE vs PSMOTE: We compare our method with
SMOTE to prove the effectiveness of PSO strategy. TableIV
shows our method has achieved better performance than
SMOTE method on 15 out of the 17 dataset. We can see
most of the better performance are gained by first setting the
PSMOTE with a sampling ratio that is equal to or greater
than SMOTE best sampling ratio, and then using PSO to
select samples. This shows that compared with directly setting
SMOTE sampling ratio, the proposed method can adaptively
obtain fewer samples that are beneficial for classification
performance, effectively increasing the upper limit of SMOTE.
We also give data distribution visualization in Fig.2(we use
PCA to reduce attributes to two dimensions). Respectively,
figures from left to right are original data distribution, after
SMOTE processing, after PSMOTE processing. we can see
that our methods can improve the classification results with
fewer generated samples, and our method can get closer
distribution to original data distribution than SMOTE.

3) PSMOTE vs other oversampling methods: For the main-
stream oversampling methods such as Rand Oversampling
[26], ADASYN [5], BorderLine SMOTE [6], SVM SMOTE
[27], we adjust their sampling ratio from 0.2 to 1 at a
growth rate of 0.1 and obtain their best AUC. As is shown
in tableIV(we list the methods in their abbreviations, / means
without sampling strategy), it can be seen that our proposed
method performs better than the mainstream oversampling
method, which shows that it’s necessary to conduct further
optimization after oversampling process.

4) PSMOTE +ENN vs SMOTE + ENN: As for the hybird
sampling methods, tableV shows that PSMOTE + ENN is
better than SMOTE + ENN. The reason may be that PSO
can delete intrusive samples and optimize data distribution
after oversampling, which helps using the local structure
information of samples to improve classification performance.

C. Statistical Tests

1) Average Ranking: We conduct the average ranking of
PSMOTE based on the experiment result of tableIV. The
values in tableVI denote the performance ranks on 17 datasets.
We can see that our methods achieve better average rank than
other mainstream oversampling methods.

2) Non-Parametric Test: Wilcoxon signed-rank test [28] is
adopted to determine the significance of our method. TableVII
shows the test result. We can see that with the threshold α =
0.05, the p values give the conclusion that PSMOTE rejects the



(a) oil-original (b) oil-smote (c) oil-psmote

(d) ecoil-original (e) ecoli-smote (f) ecoli-psmote

(g) libras move-original (h) libras move-smote (i) libras move-psmote

Fig. 2. data distribution visualization

TABLE III
HYPER PARAMETERS EXPERIMENT

RESULTS REPRESENT SAMPLING RATIO/AUC

Datasets Particle numbers in PSO
50 100 150 200 250

oil 0.4/0.7408 0.4/0.7563 0.5/0.7452 0.4/0.7646 0.6/0.7446
ecoli 0.7/0.79696 0.4/0.8079 0.4/0.7936 0.7/0.7986 0.3/0.7860

car eval 34 0.6/0.9713 0.3/0.9716 0.2/0.9716 0.2/0.9712 0.3/0.9754
us crime 0.4/0.7086 0.7/0.7310 0.5/0.7212 0.9/0.7115 0.3/0.7014

solar flare m0 0.2/0.6449 0.2/0.6517 0.2/0.6253 0.2/0.6443 0.2/0.6480
yeast me2 0.9/0.7105 0.9/0.7408 0.9/0.7498 0.8/0.7249 0.9/0.7222

spectrometer 0.6/0.8696 0.7/0.8866 0.9/0.8825 0.7/0.8685 0.7/0.8877
libras move 0.7/0.8690 0.3/0.8815 0.3/0.8845 0.3/0.8595 0.3/0.8815
arrhythmia 0.6/0.8506 0.8/0.8636 0.8/0.8671 0.6/0.8506 0.8/0.8636

abalone 1.0/0.6159 0.5/0.6460 1.0/0.6262 1.0/0.6250 0.5/0.6317
sick euthyroid 0.3/0.9153 0.9/0.9216 0.9/0.9170 0.4/0.9176 0.5/0.9157

yeast ml8 0.4/0.5216 0.9/0.5350 0.7/0.5330 0.2/0.5292 0.6/0.5198
thyroid sick 0.4/0.9472 0.5/0.9461 0.9/0.9538 0.9/0.9445 0.5/0.9459
wine quality 0.7/0.7223 0.9/0.7251 0.8/0.7199 1.0/0.7201 0.8/0.7107
ozone level 0.5/0.6675 0.4/0.6735 0.9/0.6738 0.5/0.6542 0.9/0.6591
abalone 19 1.0/ 0.6101 1.0/0.5825 0.9/0.6093 0.9/ 0.5777 1.0/0.6114

optical digits 0.9/ 0.9028 1.0/0.9060 0.7/0.9121 0.6/0.9077 1.0/0.9104



TABLE IV
THE COMPARISON OF PSMOTE WITH OTHER OVERSAMPLING METHODS

RESULTS REPRESENT (SAMPLING RATIO)/(PARTICLE NUMBER)/AUC

Datasets sampling ratio/AUC
/ rand o adasyn borderline s svm s smote psmote

oil 0.6869 0.5/0.6980 0.2/0.7516 0.2/0.7633 0.7/0.7338 0.3/0.7358 0.4/200/0.7646
ecoli 0.7189 0.4/0.7691 0.4/0.8171 0.2/0.8255 0.8/0.7448 1.0/0.8205 0.4/100/0.8079

car eval 34 0.9561 0.3/0.9754 0.3/0.9718 0.2/0.9674 0.2/0.9799 1.0/0.9720 0.3/250/0.9754
us crime 0.6687 0.2/0.6943 0.4/0.7162 0.9/0.7112 0.2/0.7125 0.7/0.7333 0.7/100/0.7310

solar flare m0 0.6021 0.6/0.6416 0.5/0.6420 0.5/0.6482 0.2/0.6368 0.6/0.6321 0.2/100/0.6517
yeast me2 0.6407 0.9/0.6660 0.9/0.7474 0.6/0.7377 0.8/0.7068 0.7/0.7177 0.9/150/0.7498

spectrometer 0.8231 0.2/0.8342 0.4/0.8714 0.3/0.8918 0.8/0.8714 0.5/0.8836 0.7/250/0.8877
libras move 0.8160 0.3/0.8485 0.3/0.8756 0.4/0.8470 0.2/0.8756 0.8/0.8676 0.3/150/0.8845
arrhythmia 0.7860 0.2/0.8118 0.6/0.9083 0.9/0.9071 0.6/0.8495 0.8/0.8506 0.8/150/0.8671

abalone 0.5887 0.2/0.6087 0.7/0.6310 0.2/0.6312 0.3/0.6393 0.7/0.6433 0.5/100/0.6460
sick euthyroid 0.8947 0.6/0.9069 0.6/0.9182 1.0/0.9134 0.9/0.9220 0.3/0.9176 0.9/100/0.9216

yeast ml8 0.5112 0.2/0.5256 0.9/0.5266 1.0/0.5271 0.7/0.5212 0.4/0.5290 0.9/100/0.5350
thyroid sick 0.9357 0.5/0.9440 0.7/0.9498 1.0/0.9414 0.7/0.9495 0.6/0.9475 0.9/150/0.9538
wine quality 0.6886 0.3/0.6804 0.5/0.7151 1.0/0.7156 0.5/0.7131 0.7/0.7199 0.9/100/0.7251
ozone level 0.6005 0.7/0.6355 0.2/0.6604 0.8/0.6573 0.3/0.6257 0.6/0.6469 0.9/150/0.6738
abalone 19 0.5123 0.4/0.5454 0.7/0.5757 0.6/0.5946 0.2/0.5845 0.3/0.5688 1.0/250/0.6114

optical digits 0.8858 0.7/0.9178 1.0/9194 0.7/0.9000 0.6/0.8971 0.8/0.9093 0.7/150/0.9121

TABLE VI
AVERAGE RANKING.

Datasets AUC ranking
/ rand o adasyn borderline s svm s smote psmote

oil 7 6 3 2 5 4 1
us crime 7 6 3 5 4 1 2

solar flare m0 7 4 3 2 5 6 1
spectrometer 7 6 5 1 4 3 2

ecoli 7 5 3 1 6 2 4
car eval 34 7 2 5 6 1 4 2
yeast me2 7 6 2 3 5 4 1

libras move 7 5 2 6 2 4 1
arrhythmia 7 6 1 2 5 4 3

abalone 7 6 5 4 3 2 1
sick euthyroid 7 6 3 5 1 4 2

yeast ml8 7 5 4 3 6 2 1
thyroid sick 7 5 2 6 3 4 1
wine quality 6 7 4 3 5 2 1
ozone level 7 5 2 3 6 4 1
abalone 19 7 6 4 2 3 5 1

optical digits 7 2 1 5 6 4 3
avg ranking 6.9 5.2 3.1 3.5 4.1 3.5 1.6

TABLE V
THE EFFECT OF PSMOTE IN HYBRID OVERSAMPLING.

Datasets AUC
smote smote+enn psmote+enn

oil 0.7516 0.7829 0.7826
ecoli 0.8171 0.8780 0.8929

car eval 34 0.9718 0.9880 0.9944
us crime 0.7162 0.7985 0.8017

solar flare m0 0.6420 0.7075 0.7177
yeast me2 0.7474 0.7929 0.8041

spectrometer 0.8714 0.9058 0.8998
libras move 0.8756 0.8785 0.8850
arrhythmia 0.9083 0.8825 0.9020

abalone 0.631 0.7519 0.7605
sick euthyroid 0.9182 0.9494 0.9454

yeast ml8 0.5266 0.5566 0.5721
thyroid sick 0.9498 0.9495 0.9559
wine quality 0.7151 0.7499 0.7629
ozone level 0.6604 0.6973 0.6969
abalone 19 0.5757 0.6454 0.6364

optical digits 0.9196 0.9194 0.9181

TABLE VII
WILCOXON SIGNED-RANK TEST

Hypothesis P value (α = 0.05)
psmote & rand o 0.0005
psmote & adasyn 0.0277

psmote & borderline s 0.0006
psmote & svm s 0.0019
psmote & smote 0.0005

smote+enn & psmote+enn 0.0217

hypothesis of equivalent performance with other oversampling
methods, which proves the significance of our method.

V. CONCLUSION

In this paper, an oversampling method optimized by evo-
lutionary algorithm is proposed for imbalance classification.
Different from traditional oversampling methods, the proposed
method used auc as objective function and expand the minority



class according to synthetic samples’ fitness value on the
original dataset. Through sample distribution visualization and
experiment results on 17 imbalanced dataset, we can see that
our method has better sample distribution than SMOTE in
terms of sample contour and outlier distribution, and has
satisfying performance when compared with mainstream im-
balance methods. We also proved that data distribution opti-
mization can help for hybird oversampling process. Our future
work is to expand the method to multi-label classification with
the combination of ensemble learning.

Our method is a wrapper algorithm, so it can be easily
expanded with other sampling methods, and we think there
are potential research directions such as design appropriate
objective function for different imbalanced tasks or approxi-
mate sample distribution in a better way.
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