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Abstract—The paper investigates the suitability of a Learning
Classifier System (LCS) implementation for mimicking human
decision making in agent based social simulations incorporating
network effects. Model behavior is studied for three distinct
scenario settings. We provide proof of concept for the adequacy
of LCS to tackle the task at hand. Specifically, it is found
that the LCS provides the agents within the simulation model
with the ability to learn and to react to environmental changes
while accounting for bounded rational decision making and the
presence of imperfect information, as well as network effects.
Moreover, it can be shown that the LCS-agents exhibit a habit
like behavioural pattern.

Index Terms—Agent Based Social Simulation, Learning Clas-
sifier Systems

I. INTRODUCTION

Currently, General Equilibrium Models [1] represent the
most popular paradigm for macroeconomic simulation and
thereby the most popular measure for political decision sup-
port. However, those models are based on strong neo-classical
assumptions like rational decision making, perfect market
behavior and perfect information for all actors. These assump-
tions do obviously not hold in the real world and lead to
a stereotype average consumer, that is the rational individ-
ual or Homo Oeoconomicus. Critics on Homo Oeconomicus
became louder during the last decade due to the unrealistic
assumptions of the underlying model and the recent failure
of rational individual based models [2]. These assumptions
also suppose that our highly heterogeneous societies can be
understood by investigating the behavior of rational average
individuals and their communication and group behavior. We
argue against that irrationality does not exist, or at least
not affect crowd behavior [3]. In order to better understand
and predict human behavior, the concept of Agent Based
Modeling came up as an alternative for economists. Agent
Based Models (ABM) use autonomous acting, communicating
computer programs, the so called agents that are able to decide
in a bounded rational way [4]. Agents within these models
may resemble individual, consumers or juristic persons like
companies. ABM thereby are enabled, to better model human
heterogeneity and thus create a more sophisticated image of

reality. Complementary, the research area of Social Network
Science and Complex Networks suggests that human decisions
are not entirely autonomous, but influenced by peers, siblings
or parents [5]. This influence may occur through spread of
information or contagion of behavior via social networks. The
former foils the assumption of perfect information, the latter
challenges fully rational decisions. This motivates the attempt
to join findings from Social Network Science and Agent Based
Modeling in order to create models that better represent reality,
facilitating simulation of societies and prediction of policy
effects. In order to set-up a simulation model that addresses
the stated shortcomings of state of the art General Equilibrium
Models and copes with opinion dynamics in social networks,
the agents within the models need to be equipped with an
adequate decision making mechanism. Such a mechanism
may approximate human decision making in the situation
under investigation, enhancing the credibility and accuracy
of the model. Moreover, the mechanism must be capable of
coping with a dynamic environment. The research at hand
proposes such a decision mechanism for ABM, incorporating
network diffusion processes. In an early work, Holland pro-
poses Learning Classifier Systems (LCS) as a good option
to mimic human decision making in ABM. Principally he
argues in favor of LCS because they enable the agent to
allocate environmental situations to broad categories which
are progressively refined by the experience made. This in turn
enables the agent to build internal models of the world, while
none of the models is immutable, but always provisional and
subject to change [6]. Further, Classifier Systems have been
shown to be able to learn to play nash-markov equilibria
both with and without the presence of imitation [7] [8]. LCS
also tend to the formation of niches within the environment,
i.e.different rules within the population can match different
parts of the search space. This is not only advantageous for
the purpose of searching but also represents a certain level of
abstraction typical for the human mind. Therefore, a niche-
and strength based LCS is implemented in order to make
allowance for the often posited characterization of the human
mind as a system to classify things and situations. This work
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shall serve as a proof of concept for the utilization of LCS
as an agent learning representation in ABM. The presented
paper is part of a broader study, dealing with the simulation
of schooling decisions of children. Therefore the decision
weather to dedicate or not at school serves as a use case for
this work. An important determinant of schooling success is
the dedication of children to their studies. As a motivation
for this dedication serves the question if education pays off
or not (expected utility). As schooling success depends on
a large number of influence factors, such as socio-economic
status, peer influence and current economic activity, we assume
that children cannot assess that expected utility but rather base
their decision on experience and peer information. Moreover,
subjective perception, limited processing capacities and incom-
plete information may influence expected utility calculation
of individuals. Due to the need of the considered individuals
to map their own utility function and particularly assess the
magnitude of payoff that an action provides, the applied LCS
is strength-based and not accuracy-based as other recent LCS
implementations.

II. BACKGROUND

This Section gives a general overview on recent advances in
the fields important to the presented research, namely Agent
Based Computational Economics and Learning Classifier Sys-
tems.

A. Agent Based Models (ABM) - Agent Based Economics

According to Holland [9], ABM describes the study of
systems consisting of autonomous computational agents. The
agents may be designed heterogeneously and are able to inter-
act, which enables the ABMs to reproduce macro phenomena
that emerge from micro level behavior. Examples for the use of
ABM are models of racial segregation [10], political opinion
building [11] or consumer behavior [12]. Agent Based Social
Simulation (ABSS)a [13] [14] and Agent Based Computa-
tional Economics (ABC) [15] are among the sub-fields of this
area, where applications reach from demography [16] to tax
compliance [17] or school effectiveness [18]. Using ABM to
simulate social or economic contexts forces the researcher to
debug and understand macro phenomena better, while large
experimental studies may be conducted without numerical or
ethical concerns arising in real world experimental setups.
Contrary to traditional economic models, ABM enables the
researcher to incorporate the imperfection of human rationality
as well as limited information availability to the model. In
addition, the iterative interaction of agents triggers insights that
may be overseen in general equilibrium approaches. Literature
on ABC suggest very distinct approaches to model agent
decision making.

B. Learning Classifier Systems (LCS)

LCS are rule based programs. They usually contain a
Genetic Algorithm to manipulate the set of rules they operate
on and a Reinforcement Learning part that aims at choosing
the best performing rules [19]. Holland proposed LCS first

as a model of the emergence of cognition [20]. Classifier
Systems are regarded as an approximation to human decision
making, given a perceived situation [21] although they are not
belief based, which means that agents are not conscious about
the existence of other agents within their environment [22].
According to Brenner [21], Classifier Systems consist of a set
of condition-action rules, where the conditions c describing
the perceived state and the actions a, representing the re-
spective action to be taken are stored as feature strings of
the form {c1, c2, ..., cn} or respectively {a1, a2, ..., an}. The
set of condition - action rules Rii = 1, 2, ..., n combines then
respectively condition strings with action strings. Whereas cij
or aij may be represented as a wild-card # indicating that the
respective feature applies independently from the given situa-
tion. For each iteration, the current signal E = {s1, s2, ..., sn}
is compared to the condition strings of the available condi-
tion - action rules. The most adequate of those rules with
corresponding condition strings is being chosen for execution.
Literature discriminates between Strength-based and accuracy-
based LCS [23]. In Strength-based LCS, for the purpose of
choice, each rule is being assigned a Specificity value and a
Strength value. The Specificity is determined by the number of
wild-cards within the rule, while the Strength is defined by the
pay-off, the rule generated in preceding iterations. The value
B(Ri) is calculated according to Equation 1, where α, β and
γ are parameters. Accordingly, the corresponding rule with the
maximum value of B(Ri) is regarded the most adequate rule.

B(Ri) = α(β + γ · Specificity(Ri)) ∗ Strength(t, Ri) (1)

The Strength of each Rule Ri at time t is hereby calculated
according to Equation 2.

Strength(t+1, Ri) = Strength(t, Ri)+Payoff(t)−B(Ri)
(2)

Subsequently, the Classifier System employs a genetic operator
that allows for creating new rules from the existing best
performing rules and forgetting rules that did not perform well
in the past. Here the system may either employ panmictic- or
niche-based Rule Discovery [23].

III. PROBLEM

The agents within the presented simulation model are em-
bedded in an environment consisting of their peers1 and an
individual socio-economic environment represented by indi-
vidual variables. We aim at modeling the behavior ”dedication
at school” which cannot be observed easily. Hence we employ
the mark in mathematics of the respective pupil as a proxy
for the engagement at school. The agents within the model
iteratively decide what mark to achieve in the next iteration.
It is assumed that agents benefit from aligning their behav-
ior with peer behavior. Thus, an agent’s utility is affected
by the behavior her peers exhibit. Both, individual socio-
economic status and peer social-economic status hereby affect
the utility. Moreover, the agents are unaware of their own

1for the use case of this work, peers are thought of as friends within the
friendship network of pupils



utility function and hence have to learn which action pleases
them most.Perceptions(or Signals) are represented as condition
strings E of the form {s, p1, p2, ...pn}, where s stands for the
mark of the current individual and pi stands for the mark
of peer i. Subsequently, we explain, how those perceived
condition strings are processed in the decision module set up
as a Classifier System. In every case, the agent decides on a
set of actions, that may include all possible marks within the
range [0, 100].

IV. THE LCS DECISION MECHANISM

The classifier is based on a set of condition-action-rules R
of the form c −→ a, where each c represents a condition
string c1, c2, ...cn. Respectively, a represents the action to be
taken if the rule is selected. In the given scenario c contains
the mark in mathematics of the respective agent as well as the
current mark of her peer. Accordingly, the action a may be
any mark between 0 and 100 that the agent will achieve in the
subsequent iteration. The length n of c is given by the formula
n = d+1, where d denotes the degree of the respective agent.
ci stands for the interval [xi, yi] with xi, yi ∈ [0, 100], yi ≥ xi
but can adopt the # symbol also, indicating that this digit
of the condition string matches all possible values of s or
pi respectively. The first digit of c narrows the mark of the
respective agent, while the remaining digits narrow the mark
of her peers. For example, one c may be [0, 10], [80, 100]. this
condition would for instance match a situation where agent
1 achieves the mark 7 and agent 2 achieves the mark 90.
with a = 56, agent1 would change her mark for the next
iteration to 56. At each time step, the algorithm creates the list
of matching condition-action-strings Mi. Mi contains those
strings for which the condition ∀x ∈ E, xi ∈ ci holds. To
setup the system, a number of condition-action-rules is created
randomly. Here for each rule to be created, a random interval is
set for each digit of the condition-string. The respective action
of the condition-action-string is then drawn from a normal
distribution with variance V AR(x)1, while the mean is set to
the initial mark of the respective agent. As posited before, we
implement a Strength-based system. Calculation of Strength
and B(Ri) occurs according to Equation 2 and Equation 1
respectively for all Ri ∈ Mi. Subsequently, a roulette wheel
mechanism ensures that the action of that Ri with the highest
Strength is most likely to be taken, while the likelihood for
the selection of Ri ∈M decreases with decreasing Strength.
If R does not contain any rule that is compatible to the current
perception string - meaning that Mi = ∅ -, that rule in R
that is most similar to the current perception E mutates so
that it matches E. Hereby the action of the mutated string
is also drawn from a normal distribution where the mean is
the currently performed mark of the agent and variance is
V AR(x)3. Furthermore,for the purpose of Rule Development
an evolutionary process is implemented, aiming at continuous
improvement of the solutions found. In order to avoid the
generation of inadequate rules by the combination of rules
from very different areas of the search space, we employ a
niche-based approach. Hereby a fraction of the weakest rules

death − rate in Mi is being deleted from R and new rules
are created, recombining the n strongest rules in M via a
cross-over operator until the original number of rules in R is
reached. In order to ensure diversity, an additional mutation
operator is introduced: A random mutation process starts with
a probability of mutation− rate, altering random characters
of the condition string of a randomly chosen rule Ri ∈ Mi

that is not the currently best performing rule. The character
that indicates the action of the condition-action-string to be
mutated is drawn from a normal distribution with variance
V AR(x)2 while the mean is set to the currently adopted
mark of the respective agent. Figure 1 illustrates this Classifier
System for the simple case of an agent with degree 2.

A. Evaluate Action

The evaluation of the fitness or utility, an action taken by
the agent causes, is being measured by a utility function. The
utility function proposed in [24] is implemented as presented
in Equation 3. In this case θi(y) is a component that introduces
exogenous heterogeneity to the model and δ is the imitation-
factor of the model, controlling the peer influence. Moreover,
xi represents the mark achieved by the respective agent i
and gi stands for the binary peer matrix of the agent. In that
way we generate highly irregular utility functions, each agent
incorporates a unique utility function defined by her individual
network gi and her individual variables ya.

Ui(xi, gi) = [µgi + θi(yi)]xi −
1

2
x2i + δ

n∑
j=1

gijxixj (3)

The exogenous heterogeneity component θi(ya) is computed
according to Equation 4. ya is a vector of variables that
resemble observable differences between individuals, such as
race, age, and other socio-economic variables. σ and φ are
parameter vectors. In that way we generate highly irregular
utility functions, each agent incorporates a unique utility func-
tion defined by her individual network gi and her individual
variables ya.

θi(y) =

M∑
m=1

σmy
m
i +

1

gi

M∑
m=1

n∑
j=1

φmgijy
m
j (4)

This fitness function not only introduces wide individual het-
erogeneity, but also accounts for a strategic complementarity
in efforts [24]. this means that if the peer of agent i, agent
j increases her behavior level, then agent i will receive
increasing marginal utility, if she also increases her behavior
level. Table I summarizes the model parameters and contains
a brief explanation for each parameter.

V. EXPERIMENTS

Seeking to verify, if the implemented decision making
algorithm is capable of mimicking human decision making
in the situation of interest, we choose the most simple model
set-up, containing two interconnected agents. The parameter
vectors σ and φ of the utility function Ui(xi, gi) are chosen so
that clear strategies emerge for each agent. For the purpose of



Fig. 1: LCS - Decision

TABLE I: model parameters

Model modules Parameters Explanation

Strength Calculation
α controls the importance of past performance for the selection of a Rule Ri ∈Mi

β controls the importance of past performance for the selection of a Rule Ri ∈Mi

γ controls the importance of specificity of rules in the LCS

Genetic Operators
mutation− rate controls how frequently rules within the LCS are replaced by randomly created rules

death− rate controls which share of the population of rules within the LCS
is replaced by newly created rules (cross-over recombination)

evolution− time controls how often an evolutionary process is triggered for all agents

LCS nr − action− rules controls how many condition-action-rules an agent possesses

V AR(x)1, V AR(x)2, V AR(x)3

Variance of the normal distributions in the generation of action rules and mutation.
Control the maximum step-size for the increasing or respectively decreasing of marks
at each iteration.

Utility Function
δ Imitation Factor, controls the weight of peer behavior within the utility function
σ Parameter Vector, assigns weights to the individual variables of each agent
φ Parameter Vector, assigns weights to the individual variables of peers

experimentation, we define the three distinct strategy settings
listed below. (i) ”Good mark”: both agents may always prefer
to achieve the better mark, this is achieved by setting σ and
δ so that du

dx > 0 . (ii) ”Bad mark”: both agents may always
prefer to achieve the worse mark, this is achieved by setting σ
and δ so that du

dx < 0. (iii) ”Good mark imitation”: achieving
a good mark is a dominant strategy for both agents. However,
peer behavior heavily influences the utility outcome. The
parameter vectors are set as in (i) and the imitation factor γ is
set to 20. For each scenario, the vector of variables resembling
observable differences between individuals, ya is set randomly
in order to create two random agents. Figure 2 illustrates the
respective utility for agent 1 as a function of her achieved
mark mark1 and the achieved mark of her peer mark2. We
set the model parameters as presented in Table II. The model
parameters have been chosen manually, analyzing the model
behavior. As this paper shall serve as a proof of concept,
it is not the purpose to find the best performing parameter
setting, but merely one that performs sufficiently well. If
more elaborated methods for parameter search where applied,

measures should be taken to make sure the parameters are not
over fitted. In order to assess, if the model behaviour fulfills

TABLE II: model parameters for experiments

Model modules Parameters Values

Strength Calculation
g1 0.74
g2 0.83
g3 0.42

Genetic Operators
mutation− rate 0.3
death− rate 0.75

evolution− time 5

LCS

nr − action− rules 200
V AR(x)1 4
V AR(x)2) 40
V AR(x)3) 10

Utility Function
δ (i)(ii) : 0.5; (iii) : 20
σ *
φ *

∗set to create the respective strategy (i), (ii) or (iii).

our expectations, we measure, if the algorithm is capable of
finding good solutions for each scenario. As we seek to mimic
human behaviour, we do explicitly not expect fully accurate



(a) Utility Function for Dominant Strategy agent 1: Good mark (i)

(b) Utility Function for Dominant Strategy agent 1: Bad mark (ii

(c) Utility Function for Dominant Strategy agent 1: Good mark & factor
imitation = 20 (iii)

Fig. 2: Utility functions for the three strategy settings (i) ”Good
mark”, (ii) ”Bad mark” and (iii) ”Good mark imitation”

and rational decision making. The agents are expected to
demonstrate a tendency towards the optimal solution while
sporadic not optimal solutions are tolerated. Moreover, a
learning process should be observable throughout run-time.
Ultimately a human-like agent is expected to react on changes
in her environment, namely the change of behavior of her
peers and the alteration of her own situation. We measure
this examining the probability for an agent to change the
current action subject to recent alterations of the environmental
variables, peer behavior and self-behavior. Although utility
functions are heterogeneous, we selected scenarios where both
agents under observation are expected to react in a similar way.
Therefore and for the sake of illustration, we only present the
results for the search of agent 1 within this paper. The global
conclusions of this work remain unchanged when observing
the utility of agent 2. The models are run 500 times with a
run-time of 500 iterations.

A. Overall Performance - Learning Process

The finally achieved mark of the agents after each run
may be revised in Figure 3 for each scenario. Here each
cross indicates the final mark of agent1 and agent2 and
the respective utility derived by agent1 after 500 iterations.
One may observe that for scenarios (i) and (iii) both agents
achieved final marks close to the function optimum. Also,
for the majority of simulations, marks for both agents can
be found in the upper half of the scale. The best possible
solution in scenario (ii) would be a mark of 0 for both agents.
however, as Figure 3c reveals, the agents did not achieve this
optimal solution frequently. Nevertheless, a tendency towards
lower marks is observable.

B. Run-time Performance

In order to investigate the model behaviour for each it-
eration, we analyzed the marks achieved by both agents,
as well as the utility for agent1. Figure 4 illustrates the
average outcome for each iteration in 500 simulations. The
solid green line indicates the averagely achieved utility of
agent 1 for each iteration, while the dashed red line and
the dashed blue line indicate the averagely achieved mark
of agent1 and agent2 respectively. The plot for scenario (i)
reveals that all indicators develop positively until the end
of the run-time. While an average final mark just below 80
is achieved. Plotting the average outcomes for scenario (ii)
indicates a negative development of marks throughout the
run-time and respectively increasing average utility values.
Finally achieved average mark for both agents lies below
60 while the achieved average utility amounts above -8800.
Recall that the best possible decision for this scenario for
both agents would be a final mark of 0 and respectively a
utility of 0. Also, we understand utility as an abstract value for
the comparison of decisions. Hence, a negative Utility values
does not have a special meaning. Scenario (iii) yields average
mark and utility development comparable to scenario (i).
Moreover, the run-time analysis encompasses examination of
agent behavior over time. In order to observe, how repeatedly



(a) Simulation results for 500 simulations after 200 iterations for Dominant
Strategy agent 1: Good mark (i)

(b) Simulation results for 500 simulations after 200 iterations for Dominant
Strategy agent 1: Bad mark (ii

(c) Simulation results for 500 simulations after 200 iterations for Dominant
Strategy agent 1: Good mark & factor imitation = 20 (iii)

Fig. 3: results obtained after 200 iterations

(a) agent 1: Good mark (i)

(b) agent 1: Bad mark (ii)

(c) agent 1: Good mark & factor imitation = 20 (iii))

Fig. 4: Average Results per Iteration for 500 model runs for
three scenarios



chosen actions affect the disposition of agents to try out
different behavioral patterns, the frequency of occurrences
of behavioral change have been related to the number of
iterations with unchanged behavior preceding that alteration.
Figure 5 illustrates the respective outcomes. Here the green
dashed line indicates how often a change of behavior was
observed throughout all experiments after x iterations. The
red dashed line represents the probability density function of
the distribution of x. It becomes clear that the vast majority
of action changes occurs after few repetitions of the same
behavior. very low frequencies are observed for more than
10 iterations. In order to ensure the validity of the calculated
frequencies, x that occurred less than 20 times have not been
considered for this analysis.

Fig. 5: Frequency of action change related to preceding
number of repetitions of the same behavior

C. Reaction to variation of peer behavior

Finally we investigate how the agent responds to changes
in peer behavior and in own behavior. To this purpose we
calculate the variable ∆ according to Equation 5, where ak
indicates the action of agent1 taken in iteration k, xi indicates
the mark of agent1 at iteration i and yi the mark of agent2 at
iteration i.

∆i =

√√√√(

j∑
i=k

(xi−1 − x1i ))2 +

√√√√(

j∑
i=k

(yi−1 − yi))2,(5)

ak 6= ak−1, aj 6= aj+1, aj ≥ ak

In Figure 6 we plot the cumulative frequency of ∆ in the
2.5×105 iterations of the 500 experiments as a red solid line.
The green line however, indicates the cumulative frequency of
∆ in the subset of iterations that actually triggered a change
of action for the observed agent. As the relations presented
in this Figure are very similar for all three scenarios, we
demonstrate the outcomes for scenario (i). For ∆ > 10, the
green line appears to grow much steeper than the red line.
Also, the red plot appears to be much more concave than the
green plot. The more concave shape of the red plot indicates

that ∆ is represented less than proportional within the set
of ∆ that actually triggered an action change for low ∆,
while the opposite holds as ∆ grows. Thus, it appears that
the probability for an agent to change the current behaviour is
substantially higher if the environment, respectively the peer
behavior, changes.

Fig. 6: Frequencies of cumulative environmental change

VI. DISCUSSION

As stated above, this work seeks to present a solution for hu-
man alike agent decision making. Hence the decision making
algorithm may account for bounded rational decisions that may
not be optimal in all cases but demonstrate a tendency towards
good decisions. The results presented in Section V-A indicate
that the proposed LCS is capable of delivering good solutions
for differently shaped utility functions. In the examined simple
settings with only two interacting agents, solutions yielding
high utility were encountered in the majority of simulations.
However, the algorithm also exhibited miss judgment and
biased decisions that may also be expected from human
decision makers. Difficulties were particularly encountered in
situations with negative pay-offs. It may be argued that humans
particularly struggle with situations where the outcome is
always negative. However there may be alternative parameter
settings that help the agents to better perform in negative utility
functions. Moreover, it is not clear yet, if the implemented
LCS also performs well in more complicated settings with
a larger number of heterogeneous peers and high imitation
utility. Furthermore, the realistic agents are expected to ex-
hibit the ability to learn from past experiences. Section V-B
illustrates that on average, the agents decision improves with
increasing run-time specifically for the scenarios (i) and (iii).
The decisions in scenario (iii) also improve, yet on a rather
low pace. This may indicate that the LCS implementation is
more sensible to negative pay-offs. However, the continuously
positive developing average utility is a strong signal that the
agents exhibit learning behavior. Finally, it was posited that
agents may react sensible to changes in peer behavior. In
Section V-C we found that the probability for an agent to



change her current action is significantly lower, when the
cumulative difference of her mark and of the mark of her
peer to the respective marks after the preceding action change
is close to zero. This analysis also revealed that probability of
action change increases with increasing cumulative difference
of the environment. Hence, it can be argued that the agents do
react on change in peer behavior and self behavior. The run-
time analysis further revealed that agents are significantly less
likely to change their course of action, once a certain action
has been executed repeatedly. Most alterations in behavior
have been observed in a short period after experimenting a new
behavior. This may resemble habituation in human beings, a
behavioural feature that frequently occurs in reality.

VII. CONCLUSION

Within this paper we propose the implementation of a
Learning Classifier System as a decision making module
for agent based models that incorporate social influence and
heterogeneous interconnected agents. We aim at developing a
decision mechanism that resembles bounded rational human
decision making (in the sense of H. A. Simon’s approach
to a more realistic theory of human economic decision mak-
ing [25]) well and that incorporates imperfect information as
a feature from real decision making situations. The use case
of the simulation model is the decision about engagement
at school of individuals, measured via the achieved mark of
those individuals. Experiments with two interconnected agents
are conducted in three distinct scenario settings: (i) Firstly,
a scenario is set up, where the dominant strategy for both
agents is to achieve the best possible mark. (ii) Secondly,
the environment is set so that the best possible decision for
both observed agents would be not to engage at school at all
and consequently achieve the worst possible mark. Finally, we
investigate a scenario with high utility derived from imitation
of peer behavior. The simulation study shows that the proposed
LCS performs well in achieving good solutions for both agents
for the respective scenarios. Still, optimization is not accurate
but biased by peer decisions and habit and thus well resembles
human decision making. Moreover, a learning effect could be
identified which is essential when mimicking human decision
making. Finally it could be shown that the agents react to
environmental change while exhibiting a tendency to create
habits which are not changed even if the environment changes.
Summarizing, it could be shown, that the application of LCS
may in fact be an adequate approach to mimic human decision
making in ABM. However, further study is required in order
to verify if the LCS performs well also in more compli-
cated settings, incorporating larger numbers of heterogeneous
interconnected agents and settings incorporating exclusively
negative pay-offs. When applied in a larger context, the
actual performance of the LCS implementation should also
be assessed in comparison with alternative approaches such
as state of the art General Equilibrium Models. A promising
field for the extension of this work is also the more careful
comparison of the observed decision processes with models of
human decision making. To this purpose also a deeper analysis

of the acquired condition-action rules may be helpful.Finally,
within this study, only one well performing calibration of the
simulation model was tested. More detailed analysis of model
behaviour under different parameter settings would most cer-
tainly contribute to further develop the decision module.
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