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Abstract—The Local Optima Networks represent combinato-
rial landscapes as graphs, where nodes are local optima and
edges are transitions between optima. It brings a new set of
metrics to characterize them. Here we investigate the behavior
of random walks on such oriented and weighted networks using
NK landscapes and QAP instances as examples. We show that
random walks are useful to characterize the structure of the
corresponding LONs and give interesting information about the
relationships between search difficulty and LON structure.

I. INTRODUCTION

Metaheuristic search methods (e.g, see [1]) make use of the
concept of a fitness landscape [2] to find the global, or at least
a good enough optimum, of difficult problems. The search
takes place by going from a configuration to another or from
a group of configurations to another through the use of suitable
move operators. The full problem instance configuration space
contains all the admissible solutions of a given problem.
One can abstract from this space just the locally optimal
configurations and the transitions between them. This view
leads to the idea of Local Optima Networks (LONs) [3], [4]
in which the nodes are the local optima of the underlying
optimization problem and the edges account for the transitions
among them using a neighborhood operator. The construction
of the complete LONs requires the full enumeration of the
optima of a given problem instance thus apparently limiting
the approach to relatively small problem instances. However,
sampling methods have been proposed that extend the method
to larger spaces without loosing too much information [5].
LONs can also deal with neutrality in a search space, an
important feature common to many combinatorial optimiza-
tion problems [6], [7]. Modeling combinatorial landscapes
as LONs brings a whole new set of useful metrics coming
from complex network science [8] to capture the topology and
structure of combinatorial search spaces and provides tools for
estimating search difficulty.

In this contribution we present an application of random
walks to LONs in order to characterize their structure. The
chosen test combinatorial problems are NK landscapes and
the Quadratic Assignment Problem (QAP). Random walks
have been indirectly used in the study of LONs in [9] through
the PageRank algorithm in the context of problem difficulty
in NK landscapes. Random can be very useful to sample
and explore properties of networks and in many other fields.
Indeed, they have been used early to study population features
starting from a single member and iteratively tracking a

random neighbor at each time step [10]. Random walks are
also at the basis of some network centrality measures such as
random walk betweenness and PageRank [8], [11] and have
been used in community detection too [12]. In the realm of
fitness landscapes, fitness autocorrelation measures are based
on random walks [13] and they are also used in large LONs
sampling [5]. In this work, the application of random walks to
LONs serves to characterize a number of hardness-dependent
features of the corresponding problems, notably the frequency
and mean waiting times with which high-fitness solutions are
found in a way that has not appeared before.

The article is structured as follows. The next section briefly
overviews the idea of local optima networks. Next, Sect. III
reviews some fundamental notions on random walks that will
be used in the sequel. Section IV describes the combinatorial
landscapes considered for the study. Section V presents the
results of our investigation and, finally, Section VI summarizes
our findings and suggest directions for future work.

II. THE LOCAL OPTIMA NETWORK MODEL

The local optima network model for combinatorial land-
scapes was first proposed in [3]. For the sake of self-
consistency, we give a summary of fitness landscapes and of
local optima networks notions. A fitness landscape [14] is a
triplet (S,N , f) where S is a set of potential solutions i.e. a
search space; N : S −→ 2S , a neighborhood structure, is a
function that assigns to every x ∈ S a set of neighbors N (x),
and f : S −→ R is a fitness, also called objective, function that
provides the objective value of the corresponding solutions.

For a given problem instance, the corresponding LON is
obtained by extracting all the local optima in the instance’s
fitness landscape. These nodes form the set V of the vertices
of the LON. The edges E then correspond to transitions
between two given optima, weighted by their frequency. In
more detail, the vertices V are exhaustively extracted using a
best-improvement hill-climber (hc), as given in Algorithm 1 in
the case of objective function maximization. Thus, a solution
x ∈ S is a local optimum iff ∀x′ ∈ N (x) : f(x′) 6 f(x). For
a minimization problem, the inequality is reversed. For some
problems with large amounts of neutrality it may happen that
some optima are actually plateaus, i.e., more than one solution
has the same locally optimal objective function value. LONs
generalize to this case [6] but we will not need this extension
here as all the optima are unique configurations in our case.
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Algorithm 1 Best-improvement hill-climbing (maximization)
1: procedure HILLCLIMBING
2: x← random initial solution
3: while x 6= Local Optimum do
4: set x′ ∈ N (x), s.t. f(x′) = maxy∈N (x)f(y)
5: if f(x) < f(x′) then
6: x← x′

7: end if
8: end while
9: end procedure

The edges E of the network, called escape edges [15], are
defined according to a distance function dist and a positive
integer D > 0. The distance function represents the minimal
number of moves between two solutions by a given search
(mutation) operator. There is an edge eij between optima vi
and vj if a solution x exists such that dist(x, vi) 6 D and
hc(x) = vj . In other words, if vj can be reached after mutating
vi and running hill-climbing from the mutated solution. The
weight w̃ij of this edge is w̃ij = |{x ∈ S | dist(x, vi) 6
D and hc(x) = vj}|. That is, the number of vi mutations that
reach vj after hill-climbing. This weight can be normalized
by the total number of solutions, |{x ∈ S | dist(x, vi) 6 D}|,
within reach at distance D: wij = w̃ij/

∑
j w̃ij .

LONs can be built exhaustively as above only for relatively
small problem instances. As the number of optima and their
connections grow quickly with problem size, the complete
enumeration of optima becomes impractical, or even infea-
sible, for large enough instances. In this case, sampling must
be used. In the present work we shall deal with problem sizes
that allow full enumeration.

Summarizing, the weighted local optima network Gw =
(V,E) corresponding to a given problem instance landscape
is the graph where the nodes vi ∈ V are the local optima, and
there is an edge eij ∈ E, with weight wij , between two nodes
vi and vj if wij > 0. The weight wij may be different than
wji and Gw is a weighted and directed graph.

III. RANDOM WALKS ON WEIGHTED DIRECTED GRAPHS

LONs are weighted and directed networks and thus we must
use the appropriate methodology to model random walks on
them. Here we only provide enough information so as to make
the presentation self-contained; an extensive recent treatment
of random walks on networks is found in [16]. In ordinary
random walks on graphs the walker repeatedly moves from a
given vertex to a neighboring vertex with a given probability.
Consider the simplest case: an undirected and simple graph
G(V,E), i.e. without self-loops and multiple edges. In this
case, when the walker is on a given node k ∈ V and the
set of neighbors of k is Nk, the probability pkj that the next
visited node is j ∈ Nk is given by

pkj = 1/|Nk|

where |Nk| = dk is the degree of vertex k. Clearly,∑
j∈Nk

pkj = 1.

The matrix T whose row elements pkj are the above
probabilities for each vertex k of the graph G is called the
transition, or stochastic, matrix for the random walk process.
An important question about these random walks is: starting
with a given probability distribution p0 = (p1, . . . , pN )0 on
the set V of N graph vertices, what will be the probability
distribution pn after n steps, or when n→∞? By definition,
after one step the probability distribution will be p1 = p0 T
and from step j to j + 1 it changes as

pj+1 = pj T (1)

Therefore, by iterating the previous equation from j = 0 to
j = n− 1, the probability distribution pn after n steps is:

pn = p0 Tn

that is, it is given by the initial probability distribution vector
times the n-th power of the transition matrix T. In the long
time limit, if some conditions are satisfied, the probability
distribution may reach an invariant value given by p∗ =
(p∗1, . . . , p

∗
N )∞ with p∗i = limn→∞pi(n). Substituting in eq. 1

gives
p∗ = p∗T (2)

From this eigenvalue equation the equilibrium, or stationary,
probability distribution is the left eigenvector of T with
eigenvalue 1 [16]. On a connected unweighted and undirected
network it turns out that the probability pk that a random walk
will be found at node k at equilibrium is proportional to the
degree dk of node k, i.e., pk = dk/2m, where m is the number
of edges. This results simply say that nodes of high degree are
more likely to be visited in a random walk.
The application of random walks to LONs, where a node
(optimum) may have self-loops as well as directed incoming
and outgoing edges, requires some modifications. Since edges
{kj} are weighted (we assume wkj > 0) and have a direction,
transition probabilities pkj are computed as follows:

pkj =
wkj∑
i∈Nk

wki

in which the sum at the denominator is taken over all the
outgoing links from k to its neighbors, a quantity that is
called the outgoing strength of node k; k itself is included
in the computation since in LONs each vertex may have a
self-loop. It is easy to see that, for each node k, the rows of
the matrix T defined above sum to 1, and thus T is a stochastic
matrix. The simple weighted directed graph of Fig. 1 and the
corresponding transition matrix T are meant to illustrate the
ideas.

T =


a b c

a 0.5 0.2 0.3
b 0.4 0.2 0.4
c 0.3 0.5 0.2


The stationary distribution of an aperiodic and irreducible

Markov chain as the random walks defined above can be found
by solving equation 2 with an appropriate linear algebra algo-
rithm. However, for large matrices there might be numerical
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Fig. 1. A simple directed and weighted network.

difficulties that require specialized knowledge. Instead, here
we shall follow a Monte Carlo simulation approach which,
while it is much slower, is very simple and gives the same
results in the long time limit. It consists in performing a large
number of random walk steps starting from each network
node and recording each time a given node is encountered.
If the number of random walk steps is large enough, the final
frequency with which each node has been hit will provide
a very good approximation to the equilibrium occupancy
probabilities.

Another quantity that can be computed from the random
walks and that we will find useful is the first hitting time. For
a given node v, the first hitting time tv is the time step number
n at which v has been first encountered in a random walk.
Let us call (v1, v2, . . . , vn, . . .) the sequence of LON vertices
encountered during a random walk. Then tv = min{n ≥ 0 :
vn = v}. The mean first hitting time is simply the above
quantity averaged over all the random walks performed. The
quantities described above depend on the LON structure and
are expected to provide useful information about the problem
and instance difficulty independent of any particular solution
method.

IV. PROBLEM DESCRIPTION

In order to demonstrate the methodologies proposed in
this study, we consider two well known families of combi-
natorial landscapes: the NK model [17] and the Quadratic
Assignment Problem (QAP) [18]. We consider two standard
solution representations: binary strings for NK landscapes and
permutations for QAP. The single bit-flip operation changes a
single bit in a given binary string in the NK case, whereas the
pairwise exchange operation exchanges any two positions in
a permutation, thus transforming it into another permutation
for QAP. While NK landscapes are useful as a benchmark
because they can be easily tuned from easy to hard, QAP is
more representative of actual difficult combinatorial problems,
even though artificial problems are used here as is the case in
much of the literature.

A. The NK model

In a NK landscape [17] the model is a real random function
Φ defined on binary strings x ∈ {0, 1}N of length N , Φ :
{0, 1}N → R+. The value of K determines how many other

variables in the string influence a given xi, i = 1, . . . , N . The
value of Φ is the average of the contributions φi of all the
variable positions that are involved in the interaction :

Φ(x) =
1

N

N∑
i=1

φi(xi, xi1 , . . . , xiK ),

and we search for the maximun value of Φ.
By increasing the value of K from 0 to N − 1, NK

landscapes can be tuned from smooth to rugged. For K = 0 all
contributions can be optimized independently which makes Φ
a simple additive function with a single maximum. At the other
extreme, when K = N−1, the landscape becomes completely
random. In this case, the probability of any given configuration
being locally optimal is 1/(N + 1), and the expected number
of local optima is 2N/(N + 1). Intermediate values of K
interpolate between these two extremes and have a varying
degree of variable interaction [17].

The K variables that form the context of the fitness con-
tribution of gene xi are usually chosen according to the
random neighborhood model, where the K variables are
chosen uniformly at random among the N − 1 variables other
than xi. In the following, instances of size N = 14 will be
used because of the computational burden involved.

B. The Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) is a combinato-
rial problem in which a set of facilities with given flows has
to be assigned to a set of locations with given distances in
such a way that the sum of the product of flows and distances
is minimized. A solution to the QAP is generally written as
a permutation π of the set {1, 2, ..., n}. The cost associated
with a permutation π is given by:

C(π) =

n∑
i=1

n∑
j=1

aijbπiπj

where n denotes the number of facilities/locations and A =
{aij} and B = {bij} are referred to as the distance and
flow matrices, respectively. The structure of these two matrices
characterizes the class of instances of the QAP problem.

The results presented in this article are based on two
instance generators proposed in [19] which are in turn inspired
by [20]. The instance size of all instances used is 11, a rela-
tively small value but one for which LONs can be computed
exhaustively.
• Uniform generator: produces uniformly random instances

where all flows and distances are integers sampled from
uniform distributions. The distances are random integer
numbers between 0 and 99. The flow matrix is symmetric
with random integer entries between 1 and 99. This leads
to the kind of problem known in literature as Tainna, nn
being the problem dimension [20]

• Real-like generator: makes instances where the distance
and flow matrices have structured entries. To generate the
symmetric distance matrix, N points (integer coordinates)



are randomly distributed in a circle of radius 100, and the
entries are given by the distances between these N points.
The flow matrix is also symmetric with entries following
the law d10re where r is a uniform random integer from
[L,U ]. This procedure generates non-uniformly random
instances of type Tainnb which have the so called “real-
like” structure since they resemble the structure of QAP
problems found in practical applications.

V. RANDOM WALKS ON LONS

In this section we present the results of running random
walks on the LONs of instances of the two problems studied,
i.e., the NK landscapes and the QAP.

A. Random walks on NK landscapes

Fig. 2 shows the equilibrium frequency p∗ (see Sect. III) for
each optimum in the LON of an NK instance with N = 14
and K = 12. The optima are ordered with fitness increasing to
the right on the x-axis. The values are computed as the average
occupation frequency after having executed |V | random walks
starting from each of the nodes of the LON each of length
1000 steps for a total of 103 × |V | random walk steps, where
|V | is the number of nodes of the LON .

Fig. 2. Asymptotic frequency of visit of the LON nodes of an NK instance
with N = 14 and K = 12 during a random walk. Node fitness increases
from left to right on the x-axis.

It is clear that better optima on the right part of the image
get visited much more frequently than less good ones on the
left. Actually, the best solutions should be more difficult to
find with a search heuristic in such a highly multimodal fitness
landscape but it has been found in previous work that there
is a positive correlation between fitness of a local optimum
and the size of its attraction basin [4], [6] for all N and
K values, two examples of which are given in Fig. 3 for an
NK instance with N = 18 and K = 4, 8. This means that
better solutions have larger basins which, translated into LON
representation, implies that better optima have more incoming
links from neighboring optima and this gives the random walk
more chances to pass through the given maximum. Obviously,
random walks are not recommended as a search technique
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Fig. 3. Scatterplots of the fitness of local optima (x-axis) and their basin sizes
(y-axis) for a representative instance with N = 18 and K = 4 (top image)
and N = 18 and K = 8 (bottom image), with regression lines [4].

since the work to be done to populate all the optima increases
exponentially with the problem size N and, for a given N ,
with increasing K, making it hopelessly slow for large N .
However, the numerical computations leading to Fig. 2 show
that for a quasi random landscape, i.e., with K = N − 2, the
probability of finding an optimum by chance during a random
walk is much higher for good optima than for bad ones. This
should not be confused with the probability of finding the
global optimum by random choice in the LON which is 1/|V |.

Now, comparing the results for a few different values of K,
going from K low to high (see Fig. 4) we see that the number
of optima increases at a fast rate with increasing K, a well
known fact [17]. The frequency of visit to the global optimum
(i.e., the last point on the right of the x-axis) is higher for low
values of K where there are fewer optima and the walk often
falls into the node having the best fitness or a close one. For
instance, the image for K = 2 in Fig. 4 shows that the global
optimum gets more than 70% of the occupation probability at
equilibrium. For K = 6 the probability of being at the global
optimum is already down to 0.10. We know (see [4] and Fig. 5)
that the size of the basins shrinks with increasing K while their
number increases quickly and, although the high-fitness basins
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Fig. 4. Frequency of optima at equilibrium in the random walk for four instances with N = 14 and increasing K. Optima are ordered by increasing fitness.

are larger than the low fitness ones and the corresponding
vertices in the LON have thus high in-degree, many high-
fitness local maxima are frequently visited besides the best
one, as we see in the lower images of Fig. 4.

This is confirmed by Fig. 6 which reports the frequency
of the runs in which the most visited node is the global
optimum averaged over 20 independent instances. We see that
the frequency is higher for low K values but it decreases
quickly for higher K and becomes zero or close to zero for the
highest Ks. This is due to the combined effects of the rapid
increase of the number of optima and of the stochasticity of
the random walk process. For low K there are few optima
and the basins of the best one is large, i.e., the corresponding
LON node has many incoming edges and is a big attractor.
For high K many good optima have large basins and this
translates into many LON nodes having high in-degree. This
shows that, since the random walk does not take the fitness
of the nodes into account, random factors may decide which
node is visited most. Nevertheless, it remains true in general
that the best optima are visited more frequently than less good
ones.
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Fig. 5. Average over 30 independent landscapes of the normalized size of
the global optimum basin for N = 16 and N = 18 for increasing values of
K.

Fig. 7 illustrates another side of the coin. For the problem
instances shown in Fig. 2 for K = 12 and in Fig. 4 with
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Fig. 6. Empirical probability for the global optimum to have the higher
equilibrium occupancy in the random walk as a function of K for N = 14.
The results are averages over 20 independent instances for each K.

K = 6, it gives the average first hitting time (see Sect. III), in
time steps, for each optimum in the corresponding LON with
the fitness of optima increasing towards the right of the x-
axis. Intuitively one would expect that the best optima, which
get many more visits as we saw above, should also be visited
earlier in the average. This is confirmed by the results shown in
Fig. 7 which have a sort of “reciprocal” shape with respect to
the corresponding frequency plots. Indeed, an argument based
on a mean-field approximation leads to a coarse first hitting
time tij ≈ 1/p∗j for vertex j starting from vertex i, where p∗j
is the equilibrium random walk frequency of vertex j [16].
Although the quantity plotted in Fig. 7 is, for a given target
optimum j, the empirical average 〈tij〉 over all the starting
nodes i 6= j, the inverse behavior is clearly visible.

From Fig. 7 we see that high-fitness optima are hit very
quickly while low-fitness ones are in general hit for the first
time after many random walk steps. Clearly, owing to the
stochasticity of the process, some low-fitness local optima
might get hit for the first time rather quickly but most will
take a large number of time steps before being reached by
the walk. This information is typically something that could
not be inferred by running the PageRank algorithm, which
is extremely efficient but does not directly provide any other
information beyond the ranking of nodes.

B. Random walks on QAP landscapes

By definition, all the optima in an NK landscape have
different real values, except for possible numerical roundoff
errors; therefore they are strict maxima. On the other hand,
combinatorial problems based on a permutation representation
such as QAP and many others, usually contain variable, non-
negligible amounts of neutrality, that is, regions of the fitness
landscapes in which neighboring solutions have the same
fitness. Such “plateaus” or “neutral networks” can sometimes
be locally or globally optimal [7]. This is often also the

case of QAP instances. Random walkers would wander for
long times in such neutral networks. This would not be a
problem in principle but, to avoid such complexities in a first
study, the QAP instances examined here only have strict local
minima. For both real-like and uniform instances we use a size
of eleven, which still allows to compute LONs exhaustively
without having to resort to sampling.

Fig. 8 shows the limiting frequencies of the random walks
on a real-like instance (left image) and an uniform one (right
image) arbitrarily chosen among the many that were examined.
In general, they all show the same general patterns. We
recall that, for the same problem dimension, here 11, uniform
instances produce larger LONS, with many more optima,
as can be observed on the x-axes of the figure, and that
uniform random instances are more difficult to solve to global
optimality than real-like ones of the same size. (see [21], [22]).
As in NK landscapes and in other combinatorial optimization
problems [7], the number of local optima increases quickly
with problem dimension and the size of the corresponding
basins decreases [21].

One sees that, in both cases, a minority of high-fitness
optima are visited much more often that the rest, especially in
the random uniform case. The trend is the same as what was
observed for NK landscapes but it is more biased towards
good optima. In fact, and differently from the NK case,
the most visited optimum has always been the global one
for the uniform instances, followed by the second best, for
all the fifteen instances studied. For real-like instances this
is often, but not always the case and, in fact, we observed
some inversions. Due to the relatively low number of instances
tried, we cannot statistically quantify the phenomenon in a
significant way and so we only give the qualitative trend.

The mean first hit times follow the same approximate
inverse relation with respect to visit frequency (see Fig. 9).
However, in the QAP case the time distribution is more spread
out and less regular than the NK case which, after all, are
contrived random and isotropic functions.

As in NK landscapes and in many other difficult combi-
natorial optimization problems, the number of local optima
increases quickly with problem dimension and the size of the
corresponding basins decreases [7], [21] but, within this trend,
the size of the basins is larger for better optima. In LONs,
as we said in the previous section, this translates into more
incoming links to better optima. The following Fig. 10 which
is a scatterplot of incoming strength, i.e. the total weight of
the incoming arcs to a node, against the frequency of that
node in the random walk, clearly shows that there is a strong
positive correlation. The figure refers to the instance whose
frequency plot is given in the left image of Fig. 8. Logs are
used because frequencies span six orders of magnitude. Thus,
optima to which there is a high total transition probability are
visited quickly and very often. This also means that, since
self-loops have high weights [4], [21], once the walk reaches
a strong optimum, it is likely to stay there for a while. For
a local search algorithm this means that those same optima
would be strong attractors.
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Fig. 7. Distribution of the mean first node hitting times with vertices of the LON ordered according to increasing fitness for two NK instance with N = 14
and K = 6, 12.

Fig. 8. Frequency of optima at equilibrium in the random walk for a QAP instance of the type real-like (left image) and an instance drawn from the set of
uniform instances (right image). Optima are ordered by increasing fitness.

VI. CONCLUSIONS

Random walks have proved to be very useful to investigate
the behavior of stochastic processes in many fields [16]. Here
we applied them to the study of the local optima networks, or
LONs, extracted by some typical combinatorial optimization
problems. As case studies we used the NK landscapes and
QAP instances of two different kinds. NK landscapes, though
artificial, are useful because their difficulty can be controlled
by the number of random site interaction K for a given N .
On the other hand, QAP instances are typical of classical
combinatorial optimization problems. In both cases we have
shown that, in the long run, the best optima are visited more
often thanks to the fact that their basins of attraction are
larger. In the LON model this translates into nodes with a
high number of incoming links which, in turn, is the reason
why the walks reach them more easily. However, due to the
exponential-like increase of the number of optima for growing
K, or going from real-like to uniform random instances for

QAP, the random walk process needs quickly increasing times
to converge. Another aspect of the walks is the mean first
hitting time, which can be computed numerically from our
Monte Carlo simulations. These times should be theoretically
in an approximate inverse relationship with the equilibrium
frequency of visit of each local optimum. Indeed, that the
relationship holds empirically in all cases, although the ran-
domness of the numerical process does not allow to draw more
precise inferences. Finally, random walks are useful but they
are blind at the local optima level and do not resemble local
search techniques in common use. In the future, it would be
interesting to study the behavior of adaptive walks, including
diffusion in the case of neutrality, which take fitness into
account. Some simple local search techniques such as iterated
local search and simulated annealing on LONs would also be
interesting to extract information about typical fitness barriers
or perturbation strengths to be used in those metaheuristics.



Fig. 9. Distribution of the mean first node hitting times with vertices of the LON ordered according to increasing fitness for the two QAP instances of Fig. 8.

Fig. 10. Scatterplot of the incoming strength into a node against the limiting
visit frequency of that node, with nodes ordered according to increasing
fitness. The data refer to the instance whose frequency plot is shown in the
left image of Fig. 8.
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