
Evolving Neural Networks through a Reverse
Encoding Tree

Haoling Zhang Chao-Han Huck Yang Hector Zenil Narsis A. Kiani
Institute of Biochemistry School of ECE Algorithmic Dynamics Lab & Algorithmic Dynamics Lab

BGI-Shenzhen Georgia Institute of Technology Oxford Immune Algorithmics Karolinska Institute
Shenzhen, Guangdong, China Atlanta, GA, USA U.K. & Sweden Stockholm, Sweden
zhanghaoling@genomics.cn huckiyang@gatech.edu hector.zenil@cs.ox.ac.uk narsis.kiani@ki.se

Yue Shen Jesper N. Tegner*
Institute of Biochemistry Living Systems Lab, BESE, CEMSE

BGI-Shenzhen King Abdullah University of Science and Technology
Shenzhen, Guangdong, China Thuwal 23955, Saudi Arabia

shenyue@genomics.cn jesper.tegner@kaust.edu.sa

Abstract—NeuroEvolution is one of the most competitive evo-
lutionary learning strategies for designing novel neural networks
for use in specific tasks, such as logic circuit design and digital
gaming. However, the application of benchmark methods such as
the NeuroEvolution of Augmenting Topologies (NEAT) remains
a challenge, in terms of their computational cost and search time
inefficiency. This paper advances a method which incorporates a
type of topological edge coding, named Reverse Encoding Tree
(RET), for evolving scalable neural networks efficiently. Using
RET, two types of approaches – NEAT with Binary search
encoding (Bi-NEAT) and NEAT with Golden-Section search
encoding (GS-NEAT) – have been designed to solve problems
in benchmark continuous learning environments such as logic
gates, Cartpole, and Lunar Lander, and tested against classical
NEAT and FS-NEAT as baselines. Additionally, we conduct a
robustness test to evaluate the resilience of the proposed NEAT
approaches. The results show that the two proposed approaches
deliver improved performance, characterized by (1) a higher
accumulated reward within a finite number of time steps; (2)
using fewer episodes to solve problems in targeted environments,
and (3) maintaining adaptive robustness under noisy perturba-
tions, which outperform the baselines in all tested cases. Our
analysis also demonstrates that RET expends potential future
research directions in dynamic environments. Code is available
from https://github.com/HaolingZHANG/ReverseEncodingTree.

Index Terms—NeuroEvolution, Evolutionary Strategy, Contin-
uous Learning, and Edge Encoding

I. INTRODUCTION

NeuroEvolution (NE) is a class of methods for evolving
artificial neural networks through evolutionary strategies [1],
[2]. The main advantage of NE is that it allows learning under
conditions of sparse feedback. In addition, the population-
based process makes for good parallelism [3], without the
computational requirement of back-propagation. The evolu-
tionary process of NE is modifying connection weights in the
fixed network topology (individuals) [4] by calculating their
fitnesses and evaluating the relationship between individuals.

Recent studies [4]–[6] show that the trade-off between
protecting topological innovations and promoting evolutionary
speed is also a challenge. The evolutionary process from the
initial to the final individual is difficult to control accurately.
Genetic Algorithm (GA) using Speciation Strategies [7] allow

a meaningful application of the crossover operation and protect
topological innovations, avoiding premature disappearance.
The distribution estimation algorithms, such as Population-
Based Incremental Learning [8] (PBIL), represents a different
way of describing the distribution information of candidate
topologies of neural networks in the search space, i.e. by estab-
lishing a probability model. The Covariance Matrix Adaptation
Evolution Strategy [9] (CMA-ES) further explains the correla-
tions between the parameters of a targeted fitness function,
correlations which significantly influence the time taken to find
a suitable control strategy [10]. Safe Mutation [6] can scale
the degree of mutation of each weight, and thereby expand the
scope of domains amenable to NE. In this study, a mapping
relationship, based on constraining the topological scale, is
set up between its features and fitness, in order to explore
how the evolutionary strategy influences the population in a
restricted search space. The limitation of this scale serves to
prevent unrestricted expansion of structures of neural network
during evolutionary process. On the restricted topological
scale, all neural networks that can be generated by their
features have achieved fitness through specific tasks. The
location of the specific neural network is the location of its
features on the constrained topological scale. In this situation,
the location of the nearest two neural networks can be regarded
as infinitesimal, and the function made up of all locations is
continuous. We define the location of an individual, which
created by its feature matrix, as the input of the function,
and its fitness as the output. Together, all locations form a
complex and smooth fitness landscape [11].

In this fitness landscape, all evolutionary processes of the
topology of the neural network can be regarded as processes
of tree-based searching, like random forest [12]. The initial
population can be regarded as the root nodes, and the popula-
tion of each generation can be regarded as the branch nodes of
each layer. Based on the current population or other population
information (such as the probability matrix), more represen-
tative or better nodes will be identified in the next layer and
used as individuals in the next generation. Interestingly, certain
classical search methods have attracted our attention. Some
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global search methods, like Binary Search [13] and Golden-
Section Search [14], are not merely of use in finding extreme
values in uni-modal functions, but have also shown promise
when used in other fields [15], [16]. The search processes
of the above global search method are similar to the reverse
process of tree-based searching [17]. The final (root) node is
dependent on the elite leaf or branch nodes in each layer, as
the topology of the final neural network is influenced by the
features of the elite topology of each generation.

Based on the reverse process of tree-based searching (as
the evolutionary strategy), we design two specific strategies
in the fitness landscape, named NEAT with a reverse bi-
nary encoding tree (Bi-NEAT) and NEAT with a reverse
golden-section [18] encoding tree (GS-NEAT). In addition,
the correlation coefficient [19] is used to analyze the degree
of exploration of multiple sub-clusters [20] in the fitness
landscape formed by each generation of individuals. It effec-
tively prevents the population from falling into the optimal
local solution due to over-rapid evolution. The evolution speed
of NEAT and FS-NEAT (as the baselines) and our proposed
strategies are discussed in the logic operations and continuous
control gaming benchmark in the OpenAI-gym [21]. These
strategies have also passed different levels and types of noise
tests to establish their robustness. We reach the following
conclusions: (1) Bi-NEAT, and GS-NEAT can improve the
evolutionary efficiency of the population in NE; (2) Bi-NEAT
and GS-NEAT show a high degree of robustness when subject
to noise; (3) Bi-NEAT and GS-NEAT usually yield simpler
topologies than the baselines.

II. RELATED WORK

In this study, we introduce a search method into Neu-
roEvolution, and extract features in the neural network for the
purpose of encoding the feature matrix. Therefore we devote
this section to brief descriptions of the following three topics:
(1) Evolutionary Strategies in NeuroEvolution; (2) Search
Methods; and (3) Network Coding Methods.

A. Evolutionary Strategies in NeuroEvolution

NeuroEvolution (NE) is a combination of Artificial Neural
Network and Evolutionary Strategy. Preventing crossovering
the topologies efficiently, protecting new topological innova-
tion, and keeping topological structure simple are three core
problems faced in dealing with the Topology and WEight of
Artificial Neural Network (TWEANN) system [22]. In recent
years, many effective ideas have been introduced into NE.
An important breakthrough came in the form of NEAT [4],
[5], which protects innovation by using a distance metric
to separate networks in a population into species, while
controlling crossover with innovation numbers. However, the
evolutionary efficiency of the population in each generation
cannot be guaranteed. In order to guarantee the evolutionary
efficiency of NE, three research paths have been devised: (1)
the replacement of the original speciation strategy with a new
speciation strategy [7]; (2) the introduction of more effective

evolutionary strategies [6], [8], [10]; (3) the use of novel
topological structures [23].

Certainly, modifying the structure and/or weight involves
much more than the feature information of ANN itself. The
above improvements make it challenging to prevent the mod-
ification of all features. Furthermore, the complexity of the
topology required for obtaining the required ANN is unlimited,
which means that the topological structure of ANN will not
be necessarily simple.

B. Search Methods

In the field of Computer Science, search trees, such as the
Binary Search tree [24], are based on the idea of divide and
conquer method. They are often used to solve extrema in uni-
modal arrays or find specific values in sorted arrays.

Recently, some improved search trees have also been used to
solve extrema in multi-modal or other optimization fields [15],
[16], [25], [26]. These search trees, such as Binary Search [13],
Golden-Section Search [14], and Golden-Section SINE Search
[26] complete complex tasks by combining with population
[27] or other strategies [15]. They make the whole population
develop more accurately with geometric searching. In the
field of multi-modal searching [28], they increase global
optimization ability by estimating and abandoning small peaks.
Therefore using tree-based search has the potential to improve
evolutionary efficiency. In addition, tree-based searches have a
strong resistance to environmental noise [29], where position
of optimum point would be generated by a sampling-based
distribution to enhance interference on noisy observation.

Given the crossover operation of topologies, some search
methods have spurred an interest in enhancing the precision
of such crossover operations, thus opening up an interesting
avenue for the introduction of search trees into NE.

C. Network Coding Methods

At the stage of direct coding, the encoding rule of ANN is to
convert it into a genotype [4]. In order to generate large-scale,
functional, and complex ANN, some indirect coding [30],
[31] techniques have been proposed. However, they are not
efficient enough for the evolution of local networks, because
decreasing the granularity of coordinates leads to a decrease
in resolution [32]. The above encoding is a kind of cellular en-
coding [33], which uses chromosomes or genotypes consisting
of trees of node operators to evolve a graph.

Edge encoding [34], which is different from cellular encod-
ing, grows a graph by modifying its edges, and thus has a
different encoding bias than the genetic search process. When
naturally evolving network topologies, edge encoding is often
better than cellular encoding [34]. Edge encoding can use ad-
jacency matrices as representational tools [35]. An adjacency
matrix represents a graph with a type of square matrix where
each element represents an edge. The corresponding nodes
connected by weight are indicated by the row and column of
the edge in the matrix.



III. NEUROEVOLUTION OF REVERSE ENCODING TREE

We propose an advanced search method, named Reverse
Encoding Tree (RET), to leverage the existing speciation
strategy [4] in NEAT. The edge encoding [34] with the
adjacency matrix is the representation of RET for network
coding. RET uses unsupervised clusters [36] to dynamically
describe speciation and speciation relationships. To reduce the
complexity of the terminated network [22], RET limits the
maximum number of nodes in all generated neural networks.

An illustration of this strategy (using binary search, namely
Bi-NEAT), is provided in Fig. 1. Different from the speciation
strategies in NEAT, RET crosses topologies by search method
and evaluates the relationships within and between species by
best fitness and correlation coefficient in each cluster, which
estimates the small peaks in the fitness landscape. Through
abandoning these small peaks, RET speeds up the evolutionary
process of NE.
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Fig. 1. Flowchart of Bi-NEAT, a specific strategy in RET. The detailed de-
scription two internal processes are as follow: (1.1) create the first generation
globally in the fitness landscape; (1.2 and 2.2) calculate fitness of neural
network; (2.1) build second generation by RET and calculate the fitnesses;
(2.3) divide the current generation to the (population-size)-clusters; (2.4)
calculate the correlation coefficient of each cluster; (2.5) save the best genome
each cluster as the next generation; (2.6) create the novel genomes based on
RET as the next generation.

A. Network Encoding

The evolution of the neural network can be achieved by
changing network structure, connection weight, and node
bias. Changing the topology of neural networks is a coarse-
grained evolutionary behavior [37]. Therefore, to search for
the solution space more smoothly, we first limit the maximum
number of nodes (m) in the neural network. The explorable
range of the population is therefore fixed and limited to
avoid unrestricted expansion of the topology of the neural
network during the evolutionary process. The limitation of
nodes generated would give the weight and bias information
in the specific network a greater chance of being optimized.

We first introduce a fitness landscape (Θ) as a combination
of generated neural networks with a fitness evaluation to

perform a task in a targeted environment (e.g., XOR Gate or
Cartpole [21]). Θ includes all networks in the solution space.

We define a individual seeding (I) from the initial pop-
ulation in the range of Θ with a specified number (p), as
P =

〈
I(0), I(1), . . . , I(p)

〉
. There is an initial distance (di)

between each of the two individuals, to ensure that the initial
population can attain as much diversity as possible in Θ.
In addition, the related hyper-parameter dm describes the
minimum distance between two individuals. From previous
studies [38], it is known that dm reduces the efforts of the
population to over-explore the local landscape. The dynamics
of individual would increase when the distance between a
novel individual and other, existing individuals is less than
dm. The distance check equation is shown as:

check(d, I,P ) (1)

The distance between two individuals is encoded as the
Euclidean distance [39] of the corresponding feature matrix:

d(fi,fj) =

√ ∑
v∈det(fi−fj)

v2 (2)

where f is the feature matrix, in the range of Θ. In the feature
matrix, the first column is the bias of each node, and the other
columns are the connection weights between nodes in the neu-
ral network generated by the individual. An illustration of the
feature matrix is provided in Fig. 2. The feature information
includes input, output, and hidden nodes. Therefore, the size
of the feature matrix is m × (m + 1). Because the feature
matrix includes all features of the individual, any individual
can be created from its feature matrix by I = create(f).
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Fig. 2. Feature matrix of the individual.

B. Evolutionary Process

The population in the current generation is composed of the
individuals saved (elite) from the population in the previous
generation and the novel individuals generated by RET based
on the landscape of the population in the previous generation.

RET is different from original evolutionary strategies, as is
shown in Fig. 3. The novel adjacent individuals created by the
elite individuals in the original tree search. In RET, except for
the above search, novel individuals also inserted as the root
nodes of a tree by edge encoding from elite individuals (as
the leaf nodes) for preserving all features between every two
elite individuals and evaluating the global fitness landscape.
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Fig. 3. Illustration of two types of proposed tree-based network encoding.
In addition to original generated way of novel individuals, RET provides
discovered opportunities for potential elite individuals on the global range,
using edge encoding from every two elite individuals.

The search process of RET is divided into two parts: (1)
the creation of a nearby individual from the specified parent
individual by the original frame of NEAT:

I
(i)
N = neat(I(i)) (3)

(2) the creation of a global individual from the two specified
parent individuals or feature matrices:

I
(i,j)
G =

{
I
(i,j)
Bi

I
(i,j)
GS

(4)

And this work includes binary search (Eq. 5) and golden
section search (Eq. 6).

I
(i,j)
Bi = create(

f (i) + f (j)

2
) (5)

I
(i,j)
GS = create(

(
√

5− 1)× f (i) + (3−
√

5)× f (j)

2
) (6)

C. Analysis of Evolvability

We further propose an efficient, unsupervised learning
method for analyzing the network seeds generated. The moti-
vation for clustering the population [36] based on the similarity
of individuals is to explore the evolvability of each type
of individual set after protecting topology innovations. The
current population is divided into p clusters for understanding
the local situation of the landscape generated by the current
population. Many clustering methods can be used in this strat-
egy. We compared K-means++ [40], Spectral Clustering [41],
and Birch Clustering [42], and selected the most advanced,
K-means++, thus:

S = cluster(P )

= arg min

p∑
i=1

∑
I∈S(i)

d(I.f , c(i))
(7)

where S is the set of p clusters, S(i) is the ith cluster, and c(i)

is the center of the ith cluster. The optimal individual I(i.m)

in the ith cluster can be obtained by comparing the fitness
of each individual:

I(i.m) = arg max
I∈S(i)

I.r (8)

where r is the fitness of the individual. The set of saved
individuals collects the optimal individual in every cluster:

Psaved = 〈I(i.m), i ∈ N+ ∩ i ≤ p〉 (9)

The correlation coefficient (ρ) of distance from the optimal
position of the individual and fitness for all the individuals
in each cluster is calculated, to describe the situation of each
cluster:

ρ(i) = corr(I(i.m),S(i))

= corr(d(I(i.m).f , I.f)⇐⇒ I.r, I ∈ S(i))
(10)

For the local fitness landscape of a single maximum
value, the distance and fitness show a negative correlation
(positive ρ), ρ will reach −1. If the landscape is complex
(negative ρ), the relationship between distance and fitness is
not significant. Two types of ρ are shown in Fig. 4.

positive 𝜌 (-0.78) negative 𝜌 (-0.28)

Fig. 4. Two types of ρ in a cluster

RET’s operation occurs between each of the two clusters:

Pnovel = 〈
p−1∑
i=1

p∑
j=i+1

retij〉

= 〈
p−1∑
i=1

p∑
j=i+1

ret([S(i), ρ(i)], [S(j), ρ(j)])〉

(11)

The operation selection is dependent on the optimal indi-
viduals and the correlation coefficients of the two specified
clusters. Therefore, the number of novel individuals is less
than or equal to p2 − p. We assume that if ρ(i) ≤ −0.5, ith

cluster has been explored fully, or its local fitness landscape
is simple. When I(i.m) > I(j.m), the operation selection in
each comparison is:

retij =


I
(i.m)
N , c

(i,j)
G ρ(i) ≤ − 1

2 ∩ ρ
(j) ≤ − 1

2

I
(i.m)
N , I

(i.m)
N ρ(i) > − 1

2 ∩ ρ
(j) ≤ − 1

2

I
(i.m)
N , I

(j.m)
N ρ(i) ≤ − 1

2 ∩ ρ
(j) > − 1

2

I
(i.m)
N , I

(j.m)
N ρ(i) > − 1

2 ∩ ρ
(j) > − 1

2

(12)



where c
(i,j)
G is the novel individual created by two centers of

the specified cluster.
In summary, our proposed evolutionary strategy uses RET

based on the local fitness landscape to evolve the feature
matrix of individuals in the population. The pseudo-code of
this evolutionary process is shown in Alg. 1.

Algorithm 1 Evolution process of NEAT with RET
Input: di, dm, p, m
Output: I

1: P ← ∅
2: while len(P ) < p do
3: I ← create(f) where f ∈ Θ
4: if check(di, I,P ) then
5: P ← P + I
6: end if
7: end while
8: while True do
9: calculate r in each I where I ∈ P

10: if one of I.r meet fitness threshold then
11: return I where I.r meet fitness threshold
12: end if
13: S ← cluster(P ), Psaved ← ∅, Pnovel ← ∅
14: for i = 1→ p do
15: ρ(i) ← corr(I(i.m),S(i))
16: end for
17: for i = 1→ p do
18: if check(dm, I

(i.m),Psaved) then
19: Psaved ← Psaved + I(i.m)

20: end if
21: end for
22: for i = 1→ (p− 1) do
23: for j = i+ 1→ p do
24: I(1), I(2) ← ret([S(i), ρ(i)], [S(j), ρ(j)])
25: if check(dm, I

(1),Psaved + Pnovel) then
26: Pnovel ← Pnovel + I(1)

27: end if
28: if check(dm, I

(2),Psaved + Pnovel) then
29: Pnovel ← Pnovel + I(2)

30: end if
31: end for
32: end for
33: P ← Psaved + Pnovel

34: end while

IV. EXPERIMENTS

In order to verify whether NE based on tree search can im-
prove evolutionary efficiency and fight against environmental
noise effectively, we designed a two-part experiment: (1) We
explore the effect of our proposed strategies and the baseline
strategies in classical tasks, such as the logic gate; (2) We
explore the effect of our proposed strategies and the baseline
strategies in one of the classical tasks (Cartpole-v0) under
different noise conditions as a robustness test for continuous
learning [43].

A. Logic Gate Representative

The two-input symbolic logic gate, XOR, is one of the
benchmark environments in the NEAT setting. The task is to
evolve a network that distinguishes a correct Boolean output
from {True(1), False(0)}. The initial reward is 4.0, and
the reward will decrease by the Euclidean distance between
ideal outputs and actual outputs. We select a higher targeted
reward of 3.999 to tackle this environment. In addition, we
add three kinds of additional logic gate, IMPLY, NAND, and
NOR, to explore algorithm performance with different task
complexities. The complete hyper-parameter setting in the
logical experiments is as shown in Tab. I. To enhance the
reproducibility of our work, select the XOR environment from
the most popular neat-python 1 package and open-source our
implementation in the supplementary material.

TABLE I
HYPER-PARAMETERS IN THE LOGICAL EXPERIMENTS.

hyper-parameter value
iteration 1000

fitness threshold 3.999
evolution size 132

activation sigmoid

Iteration represents the repeated number on one experiment, the metrics is
coherent with previous works [7], [23]. “evolution size” describes the
number of individuals need to be evolved structure and calculated fitness
in each generation, which is different from population size [4].

B. Continuous Control Environment

(a) (b)

Fig. 5. Illustration of a continuous control environment utilized as our task:
(1) Cartpole-v1 [21] and (2) Cartpole subject to a background perturbation of
Gaussian noise.

Our testing platforms were based on OpenAI Gym [21],
well adapted for building a baseline for continuous control.
Cartpole: As a classical continuous control environment [44],
the Cartpole-v0 [21] environment is controlled by bringing
to bear a force of +1 or −1 to the cart. A pendulum starts
upright, and the goal is to prevent it from toppling over. An
accumulated reward of +1 would be given before a terminated
environment (e.g., falling 15 degrees from vertical, or a cart
shifting more than 2.4 units from the center). As experimental
settings, we select 1000 iteration, and use relu activation
for neural network output to select an adaptive action in
Tab. II. To solve the problem, we conduct and fine-tune both

1https://neat-python.readthedocs.io/en/latest/xor example.html

https://neat-python.readthedocs.io/en/latest/xor_example.html


NEAT and FS-NEAT as baseline results for accessing targeted
accumulated rewards of 195.0 in 200 episode steps [21].

Here, we have improved the requirements of the fitness
threshold (499.5 rewards in 500 episode steps) and normalized
the fitness threshold as rewards

episode steps . See Tab. II.

TABLE II
HYPER-PARAMETERS IN THE CARTPOLE V0.

hyper-parameter value
iteration 1000

fitness threshold 0.999
evolution size 6

activation relu
episode steps 500

episode generation 20

C. Gaming Environment

(a) (b)

Fig. 6. Illustration of a 2D gaming environment utilized as our task: (1) Lunar
Lander-v2 from the OpenAI Gym [21] and (2) Lunar Lander-v2 subject to a
background perturbation of Gaussian noise.

Lunar Lander: We utilize a box-2d gaming environment,
lunar lander-v2 as shown in Fig. 6, from OpenAI Gym [21].
The objective of the game is to navigate the lunar lander
spaceship to a targeted landing site on the ground without
collision, using two lateral thrusters and a rocket engine. Each
episode lasts at most 1000 steps and runs at 50 frames per
second. An episode ends when the lander flies out of borders,
remains stationary on the ground, or when time is expired.
A collection of six discrete actions that correspond to the
{left, right} off steering commands and {on, off} main
engine settings. The state, s ∈ R8, is an eight-dimensional
vector that continuously records and encodes the lander’s
position, velocity, angle, angular velocity, and indicators for
the contact between the legs of the vehicle and the ground.
For the experiment, we run 1000 iterations for the Cartpole-
v0 setting with details in Tab. III.

TABLE III
HYPER-PARAMETERS IN THE LUNARLANDER V2.

hyper-parameter value
iteration 1000

fitness threshold -0.2
evolution size 20

activation relu
episode steps 100

episode generation 2

D. Robustness

One of the remain challenges for continuous learning is
noisy observation [45] in the real-world. We further evaluate
the Cartpole-v0 [21] with a shared noisy benchmark from the
bsuite [45]. The hyper-parameter setting is shown in Tab. IV.

Gaussian Noise Gaussian noise or white noise is a com-
mon interference in sensory data. The interfered observation
becomes St = st + nt with a Gaussian noise nt. We set up
the Gaussian noise by computing the variance of all recorded
states with a mean of zero.

Reverse Noise Reverse noise maps the original observation
data reversely. Reverse noise is a noise evaluation for sensi-
tivity tests with a higher L2-norm similarity but should affect
the learning behavior on the physical observation. Reverse ob-
servation has been used in the continuous learning framework
for communication system [46] to test its robustness against
jamming attacks. Since 100% of the noise environment is
consistent with a noise-free environment, we dilute the noise
level to the original 50% (as dilution coefficient in Reverse).

TABLE IV
HYPER-PARAMETERS IN THE NOISE EXPERIMENTS.

hyper-parameter value
benchmark task CartPole v0

iteration 1000
evolution size 6

activation relu
episode steps 300

episode generation 2
normal maximum 0.10
normal minimum 0.05

dilution coefficient in Reverse 50%
peak in Gaussian 0.20

E. Baselines

Here we take NEAT and FS-NEAT as baselines. The weight
of connection and bias of node are the default settings in the
example of neat-python.

V. RESULTS

After running 1000 iterations for each method in the logical
experiments, continuous control and game experiments, and
noise attack experiments, we obtained the results shown in
Tab. V, Tab. VI, and Fig. 7. The evolutionary process across all
the methods has the same fitness number in each generation.
Therefore the comparison of average end generation is the
same as the comparison of calculation times for the neural
network in the evolutionary process.

After restraining the influence of hyper-parameters, the tasks
from Tab. V describe the influence of task complexity on
evolutionary strategies. The results show that with the increase
in task difficulty, our algorithm can make the population evolve
faster. In the IMPLY task, the difference between the average
end generation is 1 to 2 generations. When the average of
end generations in XOR tasks is counted, the gap between
our proposed strategies and the baselines widens to nearly
20 generations. Additionally, the average node number in the



final neural network and the task complexity seem to have a
potentially positive correlation.

TABLE V
RESULT STATISTICS IN THE EXPERIMENTS OF LOGIC GATES.

task method fall rate Avg.gen StDev.gen

IMPLY

NEAT 0.1% 7.03 1.96
FS-NEAT 0.0% 6.35 2.21
Bi-NEAT 0.0% 5.00 2.50
GS-NEAT 0.0% 5.82 2.88

NAND

NEAT 0.1% 13.02 3.87
FS-NEAT 0.0% 12.50 4.34
Bi-NEAT 0.0% 10.26 5.26
GS-NEAT 0.0% 11.74 5.82

NOR

NEAT 0.1% 13.13 4.18
FS-NEAT 0.0% 12.83 4.58
Bi-NEAT 0.0% 10.60 5.64
GS-NEAT 0.0% 11.86 6.29

XOR

NEAT 0.1% 103.42 56.02
FS-NEAT 0.1% 101.19 50.72
Bi-NEAT 0.0% 84.15 30.58
GS-NEAT 0.0% 88.11 36.13

The tasks in the continuous control and game environments
Bi-NEAT and GS-NEAT still show amazing potential. See
Tab. VI. Unlike in the case of the logical experiments, the
results show that the two proposed strategies are superior both
in terms of evolutionary speed and stability. The enhanced
evolutionary speed is reflected in the fact that the baselines
require two to three times the average end generation as our
strategies for the tested tasks. In addition, the smaller standard
variance of end generation shows the evolutionary stability of
our strategies.

TABLE VI
RESULT STATISTICS IN THE COMPLEX EXPERIMENTS.

task method fall rate Avg.gen StDev.gen

CartPole v0

NEAT 26.5% 147.33 99.16
FS-NEAT 4.8% 72.86 85.08
Bi-NEAT 0.0% 29.35 18.86
GS-NEAT 0.0% 31.95 22.56

LunarLander v2

NEAT 4.9% 144.21 111.87
FS-NEAT 3.3% 152.91 108.61
Bi-NEAT 0.0% 48.66 44.57
GS-NEAT 0.0% 44.57 50.29

As shown in Fig. 7, the evolutionary strategies based on
RET show strong robustness in the face of noise. With the
increase in noise level, the fail rate of all the tested strategies
increases gradually. In most cases, the baselines show a higher
fail rate than our strategies. The robustness under noisy per-
turbation of Bi-NEAT and GS-NEAT are basically the same,
the difference between the two is less than 0.4%. In the task
with the low noise level, our strategies have a fail rate of one,
as compared to dozens for the baselines. However, in a few
cases with high noise levels, all the strategies are unable to
achieve results.

VI. DISCUSSION

In general, with the same fitness number of population,
Bi-NEAT and GS-NEAT show better performance by ending
up with fewer generations than NEAT for the symbolic logic,
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Fig. 7. Robust evaluation in CartPole-v0 thorough noisy observations in-
cluded: reverse and Gaussian perturbations in Sec. IV-D.

continuous control, and 2D gaming as the benchmark environ-
ments in this study. Our proposed strategies are also superior
in the tested tasks with incremental noisy observation. We
conclude than they are robust in the face of noise attacks,
able to deal easily with sparse and noisy data.

More interestingly, the performance nuances of Bi-NEAT
and GS-NEAT in different tasks also attracted our attention.
It is clear that Bi-NEAT is better than GS-NEAT in all tasks
without noise. Our preliminary conclusion is that evolutionary
speed is affected by the fitness landscape of different tasks,
because the local peak of the landscape is usually small and
sharp, as implied by the process data. Another interesting point
we observed is that GS-NEAT usually fares better than Bi-
NEAT in the noise test. Further efforts could be performed to
investigate the underneath mechanism and theoretical bounds.

VII. CONCLUSION

This paper introduced two specific evolutionary strategies
based on RET for NE, namely Bi-NEAT and GS-NEAT. The
experiments with logic gates, Cartpole, and Lunar Lander
show that Bi-NEAT and GS-NEAT have faster evolution-
ary speeds and greater stability than NEAT and FS-NEAT
(baselines). The noise test in Cartpole also shows stronger
robustness than the baselines.

The influence of evolutionary speed, stability, and robust-
ness of the whole strategy on the location selection of new
topology nodes [47] is worth further study on biological sys-
tems. An assumption to validate is that this location selection
can be adaptive vis-a-vis the landscape [48] of generation.
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SUPPLEMENTARY MATERIALS

A. Open Source Library

The codes and configurations are available in the Github.
This library has been improved and upgraded on neat-
python [49]. By inheriting the Class.DefaultGenome, the
global individual, Class.GlobalGenome, is realized. The spe-
cific evolutionary strategies, like Bi-NEAT and GS-NEAT,
inherit the Class.DefaultReproduction, named bi and gs in the
evolution/methods folder.

In addition, we have created guidance models for our strate-
gies, named evolutor, in the benchmark folder. Our strategies
can be used as independent algorithms for multi-modal search
and as candidate plug-in units for other algorithms.

B. Additional Results in the Noise Experiment

In the noise experiment, the most important indicator is
fail rate. Some minor results, like the average and standard
deviation of end generation, are also valuable.

As shown in Fig. 8, the average of end generation in each
strategy increases with the increase in noise level. Although
the fail rates of our strategies are still low in the case
of high noise levels, they need more generations to reach
the fitness threshold. The results from standard deviation
describe the evolutionary difference between the baselines and
our strategies. Under noise attacks, the baselines will be unable
to train, and will cause our strategies to delay achieving the
requirements.

C. Visualization of the Evolutionary Process

RET is not only applicable to the field of NeuroEvolution,
but can also be combined with other algorithms for tackling
complex tasks. Here we compare the evolution of RET and
other well-accepted evolutionary strategies, to describe the
evolutionary difference in the maximum or minimum position
finding under the landscape.
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Fig. 8. Avg.gen and StDev.gen in the noise experiments.

The function landscapes, such as Rastrigin [50], have poten-
tial patterns. These potential patterns will determine the effect
of the algorithm to some extent.

However, the landscape of the task built by NE is discrete.
After completing the experiment to find the minimum value of
the Rastrigin function, we use the visualized 3D model [51] of
Mount Everest. The data set is from Geospatial Data Cloud 2,
4×4 DEM around the Mount Everest, with 3600×3600 points.
Here, we compress 3600× 3600 points into 200× 200 points
as the final discrete data, see Fig. 9.

Mount Everest (Target, 8844M)

Base Camp (Origin, 926M)

Fig. 9. Landscape of Mount Everest with 200× 200 points in 4× 4 DEM.

The evolutionary process finding Mount Everest by different
evolutionary strategies is shown in Fig. 10. The Mount Everest
landscape with CSV format, named mount everest.csv, in
benchmark/dataset folder of our library.

2http://www.gscloud.cn/

https://github.com/CodeReclaimers/neat-python
https://github.com/HaolingZHANG/ReverseEncodingTree
http://www.gscloud.cn/
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