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Abstract—This paper aims to investigate optimal formation
solutions of multiple biomimetic underwater vehicles (BUVs).
The BUV is propelled by undulatory fins on both sides, and
can perform various locomotion patterns, especially turning in
situ and diving vertically. Firstly, the optimal formation problem
is formulated, followed by theoretical analysis of a special case
of optimal line formation. Then, a solution is proposed from
the perspective of evolutionary computation. In particularly, the
coordinates and the slope of the desired line formation, together
with the pairings between initial positions and target positions,
are obtained based on particle swarm optimization. Furthermore,
we demonstrate the validity of this method by comparing the
simulation results with the results of theoretical analysis. Finally,
simulations results of multiple BUVs verify the feasibility of the
proposed optimal formation methods.

Index Terms—Biomimetic underwater vehicle, undulatory
propulsion, line formation, particle swarm optimization, evolu-
tionary computation.

I. INTRODUCTION

Biomimetic underwater vehicles (BUVs) have the advan-

tages of high efficiency, stability, high maneuverability, adapt-

ability to complex turbulence, and good concealment. They

have broad application prospects in the civil and military fields

[1]. In recent years, with the development and integration

of biological sciences, mechanical sciences, control sciences,

robotics, researchers and engineers developed a variety of
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BUVs [2]–[6]. Although it has good motion performance, a

single BUV has limited capabilities in terms of information

acquisition and processing. When facing some large and

complex marine tasks that need to be efficiently performed

in parallel, multiple BUVs are often required to cooperate in

a formation.

There are a few studies that have focused on coordinated

planning and control of multiple BUVs. Ryuh et al. devel-

oped a multi-agent system composed of multiple autonomous

robotic fish, which were used to monitor and cover a large

scale sea coast cooperatively [7]. Yu et al. designed a coor-

dination control system of multiple biomimetic robotic fish.

Experiments on 2vs2 water polo game are carried out to

verify the feasibility of the proposed control scheme [8].

However, the formation control of BUVs is rarely studied

or implemented, probably due to high complexity of the un-

derwater environment and technical bottlenecks of underwater

communication and positioning. Formation of multiple BUVs

will be a challenging research direction.

Over the past few years, formation problem has been a hot

research area and receives a lot of attention from worldwide

researchers. Hubbard et al. considered an individual based,

discrete and stochastic model for the formation of fish [9].

Dorfler et al. conducted global stability analysis by a dif-

ferential geometric approach considering invariant manifolds

and their local stability properties [10]. Li et al. proposed a

model-based control law to achieve multilayer formation [11].

Ge et al. designed a cluster formation method of multi-agent

systems under aperiodic sampling and communication delays
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[12]. But this method is relatively complicated and not easy

to be implemented.

On the other hand, formation problem can be seen as

a typical optimization problem which may include one or

more objectives, which is difficult to obtain precise analytic

solutions. This paper conducts preliminary research on the

optimal formation of BUVs from the perspective of evolu-

tionary computation. We build the mathematical model of

the optimal formation and analyze a special case of optimal

line formation problem using the partial derivative method.

But in this way, it is hard to obtain the optimal solution

when the formation includes more than three BUVs. Then,

we propose an optimal formation solution based on particle

swarm optimization (PSO), obtaining target positions of the

optimal formation, and solving the pairing problem between

initial positions and target positions. The comparative study

demonstrates the effectiveness of the proposed method.

In the remainder of this paper, the modeling of the formation

problem of BUVs are described in Section II. Some theoretical

results of a special case are also presented in this section.

Section III details the proposed solutions of the optimal

formation problem. Simulations results are provided in Section

IV. Finally, the conclusion and future work are summarized in

Section V.

II. FORMATION PROBLEM

In this section, we briefly introduce the biomimetic under-

water vehicle first. Then the formation problem of the BUV

is modeled, and the theoretical analysis of a simple case is

given.

A. Introduction to the BUV

Inspired by Stingrays, Fig.1 illustrates the biomimetic un-

derwater vehicle designed in our previous work [14]–[16].

The BUV can perform multiple locomotion modes by control

the propagating waves on bilateral fins, including forward

/backward swimming, diving/floating, turning maneuver and

even rotating in situ. Compared with traditional underwater

vehicles propelled by axial propellers, the BUV is less likely to

cause entanglement of aquatic weeds, and could move flexibly

in a narrow underwater space with environmental friendliness.

It has broad application prospects in underwater search and

rescue, biological observation, and underwater operations.

(a) (b)

Fig. 1. (a) Stingray. (b) The biomimetic underwater vehicle.

B. Modeling of the Formation Problem

As shown in Fig. 2, consider a scenario in which multiple

BUVs need to form a formation towards the target (here is

a ship). This paper considers the line formation problem on

two-dimensional plane. Assume that there are n BUVs, whose

initial positions are IP = {P1, P2 · · · , Pn}. Their target

positions are TP = {P ′
1, P

′
2 · · · , P

′
n}, which are desired to

form a line formation towards the goal G and the distance

between each two adjacent BUVs is d. The problem is that

how they could form the desired formation in the least time

(or the shortest distance).

Fig. 2. Formation problem diagram.

Considering that the BUVs can turn in situ, when calculating

the moving distance between the initial positions and the target

positions, we assumed the underwater vehicle as a mass point.

Thus it’s easy to build the model of above formation problem:

min TotalDis = αdmean(IP, TP ) + (1− α)dmax(IP, TP )
(1)

s.t.

{
P

′
i , G ∈ l i = 1, 2 · · ·n

d(P
′
i , P

′
i−1) = d i = 2, 3 · · ·n (2)

where d(P
′
i , P

′
i−1) denotes the distance between point P

′
i and

point P ′
i−1. The mean distance dmean(IP, TP ) can be defined

as

dmean(IP, TP ) =
d(P1, P

′
1) + d(P2, P

′
2) + · · ·+ d(Pn, P

′
n)

n
(3)

The maximum distance dmax(IP, TP ) is defined as

dmax(IP, TP ) = max{d(P1, P
′
1), d(P2, P

′
2) · · · , d(Pn, P

′
n)}
(4)

The line l can be expressed as y = kx + b. Coefficient α
denotes the crucial coefficient between the mean distance and

the maximum distance BUVs will travel, which is used to

avoid much too long distance that some BUVs will move.

C. Theoretical Analysis of A Special Case

In this subsection, some theoretical analyses are given based

on the above model. For simplicity, we take n = 3, α = 1
for an example. Assuming that the first target point of line

formation is x
′
1, and the slope of the line is k. Then other final



points are functions of x
′
1 and k. Mathematically speaking,

those points can be expressed by:

p
′
i =

{
x

′
i+1 = x

′
i +

id√
1+k2

i = 1, 2 · · ·n− 1

y
′
i = k(x

′
i − x0) + y0 i = 1, 2 · · ·n (5)

where n = 3. The line of final formation is denoted as y(x) =
k(x− x0) + y0 for that goal point G(x0, y0) is on the line.

Since there are only two parameters x
′
1, k to be optimized,

we can solve the problem using the partial derivative method:

TotalDis =
1

3

3∑
i=1

√(
xi − x

′
i

)2
+

(
yi − y

′
i

)2
(6)

⎧⎪⎪⎨
⎪⎪⎩

∂TotalDis
∂k = − 1

3

∑3
i=1

(xi−x′
i)

∂x′
i

∂k +(yi−y′
i)

∂y′
i

∂k√
(xi−x′

i)
2+(yi−y′

i)
2

= 0

∂TotalDis
∂x′

1
= − 1

3

∑3
i=1

(xi−x′
i)

∂x′
i

∂x′
1
+(yi−y′

i)
∂y′

i
∂x′

1√
(xi−x′

i)
2+(yi−y′

i)
2

= 0

(7)

Then we can obtain the analytic solutions of x
′
1 and k. Set

d = 10, G = (50, 50), P1 = P2 = P3 = (0, 0), we can get

x
′
1 = −7.07, k = 1 and Fobj = 6.67. The target positions

of these three BUVs are P
′
1 = (−7.07,−7.07), P

′
2 = (0, 0),

P
′
3 = (7.07, 7.07). Obviously, the results are correct.

From the analysis shown above, we can find that even if

there are only three BUVs, the computation process of the

partial derivative method is complicated. When the number

of the BUVs increases, it will be harder or even impossible

to obtain analytic solutions. Furthermore, this method cannot

solve matching problems between initial and final points since

the objective function is discrete and we cannot obtain the

partial derivative of discrete functions if maximum distance

is taken into consideration. Therefore, we should seek other

method to deal with this problem and PSO algorithm meets

the requirement.

III. SOLUTIONS

A. Particle Swarm Optimization

The development of particle swarm optimization dates from

the basic particle swarm optimization which was raised by

Eberhart and Kennedy [13]. Basic particle swarm optimization

can be expressed as

Vij(t+1) = Vij(t)+c1r1(Pij(t)−X(t))+c2r2(Gij(t)−X(t))
(8)

Xij(t+ 1) = Xi,j(t) + Vij(t+ 1)

where Vij(t) and Xij(t) are the jth velocity and position of

ith particle at tth iteration, respectively. c1 and c2 are so-called

acceleration coefficients. r1 and r2 are the random variable in

the range of [0, 1]. Pij(t) and Gij(t) denote the jth previous

best position of ith particle.

In order to improve the convergence performance of basic

particle swarm optimization, Shi et al. added inertia weight to

the basic PSO [17]. This modified PSO algorithm with inertia

weight can be denoted as follows

Vij(t+1) = ωVij(t)+c1r1(Pij(t)−X(t))+c2r2(Gij(t)−X(t))
(9)

TABLE I
MATCHING EXAMPLE, N=5

1 2 3 4 5
Value 0.8147 0.9058 0.1270 0.9134 0.6324

Sorted order 3 5 1 2 4

Xij(t+ 1) = Xi,j(t) + Vij(t+ 1)

Later, Clerc found that by introducing a constriction factor,

the PSO could be prevented from failing into a local optimal

solution [18], which can be denoted as

Vij(t+1) = χ [Vij(t) + c1r1(Pij(t)−X(t)) + c2r2(Gij(t)−X(t))]
(10)

Xij(t+ 1) = Xi,j(t) + Vij(t+ 1) (11)

where constriction factor χ is a function of parameters c1 and

c2 and can be expressed as

χ =
2∣∣2− l −√
l2 − 4 ∗ l∣∣ , l = c1 + c2, l > 4 (12)

Because particle swarm optimization, which doesn’t need

to adjust too many parameters and doesn’t require gradient

information, is easy and succinct to be implemented, it has be-

come a practical and classical tool in dealing with optimization

problems. And it has been widely used in many fields such as

neural network training [19], [20], control [21], and electric

power systems [22]. In this paper, we will use this modified

PSO with constriction factor to solve the problem of optimal

line formation.

B. PSO-based optimal formation Algorithm flow

According to aforementioned modeling and analysis, the

x-coordinate of the first target point and the slope of the

optimal line formation are two important parameters that PSO

algorithm need to optimize. In addition, the pairing problem

between initial points and target points also need to be handled

by PSO, which is one of main shortcomings of theoretical

analysis in section II. The main flow of the PSO-based optimal

formation solution can be summarized as follows.

Step 1: Initialize the problem of line formation, such as the

initial points of n BUVs and the coordinate of the goal point.

As for PSO algorithm, it is important to set appropriately the

parameters including the number of all particles, the initial

velocities and positions of particles, acceleration coefficients,

the maximum loop time, the dimension of solution space, etc.

Step 2: Calculate the objective function (fitness) according

to (1), before which we should match the initial points and

target points by the sort-based method.

Take five vehicles for an example. As shown in the Table

I, firstly, we generate five random numbers and sort them in

ascending order. The pairing of initial index of these random

numbers with the corresponding index of sorted numbers

are matching results. It is obvious that there should be n
parameters to sort if the number of BUVs is n.



If the fitness of new position is better than that of the

previous best position Pbesti(t), the Pbesti(t) is replaced

by the new position.

Pbesti(t+1) =

{
Xi(t) Fobj(Xi(t)) < Fobj(Pbesti(t))

Pbesti(t) Fobj(Xi(t)) ≥ Fobj(Pbesti(t))
(13)

where Xi(t) denotes the new position of the ith particle.

Step 3: Calculate the best fitness in Pbest1,··· ,n(t), and the

best position is modified by

Gbest(t+1) = argmin{Fobj(Pbest1(t)), · · · , Fobj(Pbestn(t))}
(14)

Step 4: Update the velocities and the position of each

particle according to (10), (11) and (12).

Step 5: Determine whether the positions and the velocities

of particles are beyond the minimum and maximum range. If

a particle go beyond the range of [Xmin, Xmax] or [Vmin,

Vmax], the particle should be reset based on

Xij(t) =

{
Xmax Xij(t) > Xmax

Xmin Xmin < Xmin
(15)

Vij(t) =

{
Vmax Vij(t) > Vmax

Vmin Vmin(t) < Vmin
(16)

Step 6: If iterations run up to setting value, the PSO

algorithm exits or else go to Step 2.

IV. NUMERICAL SIMULATIONS RESULTS

A. Formation of Three BUVs

In order to demonstrate the validity of the proposed method,

the simulation results of the special case introduced in section

II are firstly compared with the results of theoretical analysis.

The number and dimension of particles are set to 200 and

5, respectively, together with the iterations 150. Both c1 and

c2 are set to 2.05 in the whole evolutionary process. To keep

the uniformity of the objective function, we still choose (6)

as objective function. Moreover, the ranges of x-coordinate of

first target point and k are set to [−10, 10] and [0, 2]. The

random numbers o1, o2, o3 used to deal with the pairing

problem are set to [0, 1]. The maximum and minimum range

of velocity of each dimension can be expressed by a matrix:

A =

⎡
⎢⎢⎢⎢⎣

−5 5
−1 1
−0.5 0.5
−0.5 0.5
−0.5 0.5

⎤
⎥⎥⎥⎥⎦ (17)

In order to illustrate the evolutionary process, the evolution

of optimized parameters and objective fitness are depicted

in Fig. 3, Fig. 4, and Fig.5, respectively. It is seen from

the figures that the values of optimized parameters have

large changes from 1th generation to 25th generation, while

in the latter stage, the values are relatively stable. In the

end, the x-coordinate of the first target point and the slope

of the line formation converge to -7.07 and 1. Due to the

particularity of this case (all three initial points are located in

the same position), the matching between initial points and

target points are arbitrary. And the global optimized objective

fitness converges to 6.67. The final formation is plotted in

Fig.6.
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Fig. 3. Evolution of the x
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Fig. 4. Evolution of the parameters used for sorting.

In Table II, we make a comparison between the simulation

and the theoretical analysis shown in section II. Both methods

obtains the same results, which demonstrates the validity of

the proposed algorithm.

TABLE II
COMPARISON OF THEORETICAL ANALYSIS AND SIMULATION RESULTS.

Theoretical analysis Proposed method
First final position (-7.07,-7.07) (-7.07,-7.07)

Second final position (0,0) (0,0)
Third final position (7.07,7.07) (7.07,7.07)

The slope k 1 1
Objective fitness 6.67 6.67

B. Formation of Many BUVs
In the previous simulation, we discuss the formation of only

three BUVs, whose initial positions are identical. Furthermore,
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Fig. 6. Final formation of three BUVs

we only consider the sum distance all BUVs have to move, and

don’t limit the maximum distance each BUV moves, which is

obviously unreasonable.

In this part, we consider the formation of ten BUVs (i.e.

n = 10). The initial positions of all BUVs are generated

randomly. The same parameter setting is used except that

particle dimension is 12 (n+2), the range of x1 = [150, 250],
G = (1000, 1000), and α = 0.5.

The x
′
1, k are two crucial parameters which decide the final

shape of formation. In Fig. 7, they converge to x
′
1 = 178.6835

and k = 0.9268 in the end, respectively. Therefore, the

equation of the final line formation is

y = 0.9258(x− 1000) + 1000 = 0.9258x+ 74.2 (18)

The evolution of first three parameters used for pairings is

illustrated in Fig. 8. Considering length reasons, the evolu-

tionary process of other parameters are omitted. The pairing

results are shown in Table III.

TABLE III
PAIRING RESULTS BETWEEN INITIAL POINTS AND TARGET POINTS

No. Init(x, y) Final(x, y) Pairing
1 (231.4724, 215.7613) (186.0118, 244.2249) 2
2 (240.5792, 297.0593) (229.9813, 285.0499) 8
3 (162.6987, 295.7167) (200.6683, 257.8332) 4
4 (241.3376, 248.5376) (215.3248, 271.4416) 6
5 (213.2359, 280.0280) (222.6530, 278.2457) 7
6 (159.7540, 214.1886) (178.6835, 237.4207) 1
7 (177.8498, 242.1761) (193.3400, 251.0291) 3
8 (204.6882, 291.5736) (207.9965, 264.6374) 5
9 (245.7507, 279.2207) (237.3096, 291.8541) 9
10 (246.4889, 295.9492) (244.6378, 298.6582) 10

In addition, the value of objective fitness decreases nonlin-

early, and converges to 39.8659 eventually as shown in Fig.

9. The final formation is depicted in Fig. 10.
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′
1, k.
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V. CONCLUSION AND FUTURE WORK

The optimal line formation problem of multiple BUVs have

been solved from the perspective of evolutionary computation.
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The mathematical model of optimal formation problem is first-

ly built and a special case is theoretically analyzed by partial

differential equations. In order to solve the shortcomings of the

method of partial differential equations, we propose a PSO-

based optimal formation method. The validity of the proposed

method is demonstrated by comparing the results of theoretical

analysis with the simulations results.

The ongoing research will consider formation tracking,

formation target round-up and other practical issues, and seek

to perform experimental research and verification of multiple

BUVs. In addition, we only study the formation problem in a

two-dimensional plane in this paper. The formation of BUVs

in three-dimensional space is one of challenging problems.
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