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Abstract— Generative Adversarial Networks (GANs) have
demonstrated their ability to learn patterns in data and produce
new exemplars similar to, but different from, their training
set in several domains, including video games. However, GANs
have a fixed output size, so creating levels of arbitrary size for a
dungeon crawling game is difficult. GANs also have trouble en-
coding semantic requirements that make levels interesting and
playable. This paper combines a GAN approach to generating
individual rooms with a graph grammar approach to combining
rooms into a dungeon. The GAN captures design principles of
individual rooms, but the graph grammar organizes rooms into
a global layout with a sequence of obstacles determined by a
designer. Room data from The Legend of Zelda is used to train
the GAN. This approach is validated by a user study, showing
that GAN dungeons are as enjoyable to play as a level from
the original game, and levels generated with a graph grammar
alone. However, GAN dungeons have rooms considered more
complex, and plain graph grammar’s dungeons are considered
least complex and challenging. Only the GAN approach creates
an extensive supply of both layouts and rooms, where rooms
span across the spectrum of those seen in the training set to
new creations merging design principles from multiple rooms.

I. INTRODUCTION

Video game developers increase replayability and reduce
costs using Procedural Content Generation (PCG [1]). In-
stead of experiencing the game once, players see new varia-
tions on every playthrough. This concept was introduced in
Rogue (1980), which procedurally generates new dungeons
on every play. PCG is also applied to modern games like
Minecraft (2009), where users play on generated landscapes,
and No Man’s Sky (2016), where procedurally generated
worlds contain procedurally generated animals. PCG encour-
ages increased exploration and increases replayability.

An emerging PCG technique is Generative Adversarial
Networks (GANs [2]) used to search the latent design space
of video game levels, as has been done in Super Mario Bros.
[3], Doom [4], an educational game [5], and the General
Video Game AI (GVG-AI [6]) adaptation of The Legend
of Zelda [7]. In the GVG-AI version of Zelda, single-room
levels require the player to fight enemies, reach a key, and
take it to the exit. The technique applied by Torrado et al. [7]
to this game focuses on modeling non-local dependencies
with the GAN in order to assure functional placement of
the key and the exit door. Their work addresses a problem
GANs have with learning level semantics, but the levels are
restricted in scale based on the size of training instances.
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This paper explores a new hybrid PCG approach for
dungeon crawlers based on levels from the actual Legend
of Zelda (1986). Specifically, a GAN generates rooms based
on the Video Game Level Corpus (VGLC [8]) description
of the game. To scale up to large dungeons with interesting
challenges, rooms are organized into a dungeon using a gen-
erative graph grammar [9] which maps a high-level, human-
designed mission to a sequence of room obstacles, and
ultimately a complete dungeon. Combining the techniques
creates new and interesting dungeons of arbitrary size.

This new technique (Graph+GAN) was evaluated by 30
human subjects. Each played three types of dungeons to com-
pare the enjoyability, complexity, novelty, organization, and
challenges of each through surveys. They played a dungeon
from the original Legend of Zelda, a graph grammar dungeon
with rooms from the original game, and a dungeon generated
with the new Graph+GAN technique. Players rated dungeons
roughly the same in most metrics. The exception is that GAN
rooms were significantly less organized, and were considered
most complex by a significant number of participants.

These findings show that this technique can generate levels
similar to hand-crafted dungeons from The Legend of Zelda.
However, these dungeons also contain unique new content,
and a multitude of such dungeons can be generated.

II. RELATED WORK

Procedural dungeon generation has been a topic of interest
since Rogue was released in 1980. As more complex games
were released, the idea of procedurally generating dungeons
became more prevalent. The popular games in the Diablo
series use PCG for generating dungeons, quests, and events.
These features add variety and make these games more
interesting and unpredictable, increasing replayability.

Procedural generation of dungeons has been widely stud-
ied in academia [10]. Some representative techniques include
cellular automata [11], various evolutionary approaches [12],
[13], and generative grammars [9], [14].

Dormans used a generative graph grammar to procedurally
generate a dungeon mission, and a shape grammar to gener-
ate the dungeon itself [9]. Graph and shape grammars were
further explored to generate dungeons similar to The Legend
of Zelda: A Link to the Past (LttP) in an undergraduate thesis
[15]. These dungeons required particular graph and shape
grammars to produce results similar to LttP. Although new
dungeon layouts were created, the rooms came from LttP
rather than being generated from scratch.

A recent development is the use of GANs to model the
latent design space of a level corpus. Volz et al. used a

978-1-7281-6929-3/20/$31.00 ©2020 IEEE



GAN to generate Super Mario levels with objective-based
evolution [3]. A similar approach was later applied to Doom
levels [4]. A GAN can even be replaced with an autoencoder,
as was done to evolve levels for Lode Runner [16]. The
approach worked in Mario despite a small data set, and the
Doom and Lode Runner data sets were quite large.

However, for certain games it is hard to produce playable
levels because of limited training data. This challenge was
overcome by Park et al. with multiple GANs [5]: one GAN
to create levels for a puzzle game from a small training set,
and a second GAN using an augmented data set consisting
of the original set plus levels from the first GAN that were
actually solvable. Torrado et al. [7] used a similar approach,
incorporating playable levels back into the training set when
designing levels for the GVG-AI [6] version of Zelda.

In this paper, rather than make the GAN do more work,
a division of labor is imposed. The GAN models the inte-
rior of individual rooms, and a generative graph grammar
determines the dungeon layout and what items/obstacles are
placed in each room. The result is a method that creates
dungeons based off of The Legend of Zelda, described next.

III. THE LEGEND OF ZELDA

The Legend of Zelda involves 18 dungeons across two
quests (9 each) accessible via an overworld map. Each
dungeon is composed of several rooms filled with enemies,
items, and secret passages, where the end goal of each
dungeon is find a Triforce, which completes the dungeon.

Each room is the same size. Although room layouts vary,
many are reused both within and across dungeons. Rooms
can be connected in a variety of ways: simple doors, doors
requiring a key (Lock), doors that only open when all
enemies in the room are defeated (Soft Lock), doors that
open when a puzzle is solved (Puzzle), and passages that
need to be bombed to open. These connections are always
in a side wall of the room, though some dungeons have stairs
to standalone rooms that are not part of the main map layout.
Stairs are excluded from dungeons in this study.

Many interesting items can be collected in the game, but
only a few are relevant to this paper: keys, hearts, bombs,
and the raft. Hearts replenish a player’s health. Bombs allow
the player to blow up walls to reveal hidden doors or kill
enemies. The raft item allows players to move across one
water tile. It is introduced in Dungeon 4-1 (4th dungeon of
Quest 1, Fig. 1) and used throughout the rest of the game.

Data about Zelda levels was obtained from the Video
Game Level Corpus (VGLC [8]). This data provides text
representations of the tiles present in each dungeon. Details
of this representation, and how it maps to the one used in
this paper, are in Table I. There are many symbols from the
VGLC data, but since many of these tiles serve the same
purpose as others, the tile training set is simplified.

IV. DUNGEON GENERATION

A GAN is trained to generate individual rooms, which can
then be combined into dungeons using a generative graph
grammar. The 2D layout of the rooms is derived in part

Fig. 1: Dungeon 4-1 from Legend of Zelda converted to the
Rogue-like engine. The goal is to reach the Triforce (triangle)
in the top-right room. In the middle right, there is a blue #
item, which is the raft; it allows players to cross one water
tile (dark blue), which is necessary to traverse the room three
spaces to the left of the room with the raft. In the original
game, the raft room was underground (via stairs), and did not
appear on the map. Due to limitations of the game engine
for this study, the room was directly added to the map.

from the graph. To assure that the dungeon is beatable, some
additional walls may need to be knocked down. Users can
then play a Rogue-like game in the repaired dungeon.

A. Zelda GAN

To generate Zelda rooms, the same GAN architecture/code
used in Mario [3] is used (Fig. 2). The only differences
are a change in output size to accommodate a different
tile type count, and a reduced latent vector size of 10
because initial experiments indicated that an unnecessarily
large latent vector led to large areas in the latent space with
little variation. The output width and height were maintained
at 32×32 for backwards compatibility. Zelda rooms are only
16×11, but the GAN makes the surrounding space floor tiles.

This GAN can be trained on any 2D tile-based level
representation. The generator takes latent vectors of noise
from [−1, 1]10 as input, and outputs a 3D volume of 32×32
vectors of length 6. Each value in each vector corresponds to
a tile type in Table I, and these vectors are collapsed so that



TABLE I: Tile Types Used in Generated Zelda Rooms.
Tile types come from VGLC, but many were unnecessary in the
simplified Rogue-like engine used to play the levels. Thus the
available tile set was reduced to three relevant types: floor, wall,
and water. VGLC rooms were converted to use only these three tile
types when serving as training input to the discriminator, and GAN
outputs were used to make rooms using only these three tiles.

Tile type VGLC Game Rogue-like Rogue Type

Floor F Floor

Wall W Wall

Block B Wall

Door D Wall

Stair S Wall

Water P Water

Walk-able Water O Water

Water Block I Water

Monster Statue M Water

Generator 

10 z 

4 x 4 x 256 8 x 8 x 128 
16 x 16 x 64 

32 x 32 x 6 

conv 
conv 

conv 

Discriminator 

1 

Fig. 2: The Zelda GAN architecture.

the tile at its position in the resulting 2D image corresponds
to the maximum value in the vector1. The upper-left 16×11
portion of the image can then be interpreted as a Zelda room.

An additional discriminator network is also used during
training. Its input is a one-hot encoded version of either a
Zelda room from the training set, or fake output produced by
the generator. Over the course of 10,000 epochs it is trained
to make its single output 1 for real Zelda rooms and −1 for
generated rooms. The generator itself is trained along with
the discriminator, to the point where it produces convincing
fake Zelda rooms. After training, the discriminator performs
no better than a coin toss, and is thus discarded.

To generate the training set, the 18 dungeons in VGLC
were split into rooms and encoded as GAN inputs. Because
there are many repeated rooms throughout the dungeons,
duplicates were eliminated. Some Zelda tiles have a similar
function, but a different aesthetic. Such tiles were merged
into one, as seen in Table I. The VGLC data incorrectly des-
ignates statue tiles as monsters, but the GAN interprets them
as water tiles. Additionally, doors were removed from the
training data, because doors need to be placed in accordance
with the game mission defined by the graph grammar.

B. Graph Grammar

A generative graph grammar [9] determines how rooms
connect in a dungeon. A designer-provided backbone graph
represents the mission of a dungeon. The backbone includes
specific rooms that must be present in the dungeon. The
backbone used in this paper is Start → Enemy → Key
→ Lock → Enemy → Key → Puzzle → Lock → Enemy
→ Triforce. The backbone is a sequence of non-terminal

1Only three of six values are used. The GAN originally supported six tile
types, but this setting was not changed after settling on three tile types.
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Fig. 3: Graph Expansion Example. The first two nodes of
the initial graph are replaced with a randomly chosen sub-
graph defined by the available graph grammar rules. Non-
terminal symbols are represented as capital letters (yellow)
and terminals as lower case letters (blue). The process repeats
until there are no non-terminals. Nodes correspond to rooms.

TABLE II: Non-terminal Graph Grammar Symbols.
Each non-terminal symbol defines a type of room that must be in
the dungeon, but during the generation process, edges connecting to
non-terminal symbols get transformed to more elaborate sub-graphs
that contain terminal representations of indicated rooms.

Symbol Short Description
Start S Dungeon starting room. Only one.

Enemy E Room with random number of enemies.
Key K Has enemies, and key appears after defeating them.

Lock L Has door that is unlocked by a key.
Soft Lock SL Has enemies, and a door that opens when they are

defeated. Also contains raft item.
Puzzle P Has door that opens when puzzle block is pushed.

Triforce T Has Triforce. Dungeon complete once found. Only one.

symbols that get replaced until only terminals remain. For
each pair or single symbol there is a finite set of rules
defining what could replace it. For example, (Key → Lock)
could be replaced with a key room that has two neighbors: a
dead-end enemy room, and a locked room leading onward.
Full rule set is in online material2 (Fig. 8). Each rule defines a
mini-graph that is placed into the backbone and can be made
up of both non-terminals and terminals. An example of the
iterative replacement process is in Fig. 3. This process can
generate multiple graphs representing different dungeons, but
ensures that the general sequence stays the same.

Non-terminals used by the grammar are in Table II. Not
all symbols in the table are in the initial backbone, but can
be added by grammar rules. The available rules assure that
at least one Soft Lock room is in every dungeon, despite its
absence from the backbone. Once a graph is created, the
actual 2D layout of rooms must be determined.

C. Dungeon Layout

Dungeon rooms are placed in breadth-first order beginning
with the start room of the graph. However, there may not
be space around a room to accommodate its neighbors. To
ensure that all rooms are placed, the algorithm backtracks if
no space is available around a room needing a neighbor.

Specifically, a list of edges (between rooms) is generated
in breadth-first order from the start room. This list is iterated

2southwestern.edu/˜schrum2/zeldagan.html



e

sl s e

e e l e k p l e

tek

(a) Graph Representation of Dungeon

(b) Corresponding 2D Layout of Dungeon

Fig. 4: Creation of Dungeon From Graph. (a) Graph that
represents a dungeon. Each node represents a room, and
each edge represents a doorway between rooms. Symbols
in each node indicate the type of obstacles present in the
room. The graph is directed, but the player can go back
and forth between rooms. The directed edges show how the
player would encounter each room for the first time. (b) The
complete generated dungeon based on the above graph, with
specific room layouts determined by the GAN. Note that
one edge of the graph (diagonal from s to e) is lost when
generating the dungeon.

through, and any room in an edge not yet placed is added
to the dungeon. After the start room, all rooms must be
placed in relation to the first room in an edge. A random
position orthogonally adjacent to the previously placed room
is chosen for its neighbor, backtracking whenever all sur-
rounding positions of a room are occupied. Backtracking
undoes the last placement and attempts an alternative that has
not yet been tried. Search continues until the list of edges is
exhausted. Note that only the first occurrence of each room
is placed. Although the graph represents the connectivity of
rooms, the 2D layout typically loses edges present in the
original graph. The layout attempts to match the graph as
closely as possible (Fig. 4).

Certain rooms are manipulated according to the grammar
symbols. Enemy rooms randomly get 1–3 enemies placed
in random locations. Key rooms have a key placed in a
random empty spot in the room followed by randomly placed
enemies. Lock rooms have a locked door placed at the
connection leading to the next room. Soft Lock rooms have a
soft locked door and randomly placed enemies. Additionally,
the first soft locked room of the dungeon contains a raft
item. Puzzle rooms have a door that can only be opened
by finding and pushing a particular block in the room in
a specific direction. A random spot in the room currently
with or without a block becomes the puzzle block. Triforce
room has a Triforce, represented as a yellow triangle, in the
middle of the room. Bomb-able doors have a 40% chance
of replacing a normal door; normal meaning that it is not
locked, soft locked, or puzzle locked.

D. Room Repair

To assure that each dungeon is beatable, some rooms are
modified to create a path between certain points of interest.
A* search is used to check that dungeons are beatable. The

A* state representation tracks puzzle blocks, keys, and the
raft item, but ignores enemies and always assumes there are
sufficient bombs for bomb-able walls.

If A* fails to beat a dungeon, then one room is modified.
Each room has points of interest (POIs): doors, keys, puzzle
blocks, the raft, and the Triforce. A* tracks the visited and
unvisited POIs. On search failure, a random unvisited POI is
chosen along with a random visited POI in the same room
(if there were no visited POIs, then two unvisited POIs are
chosen). A modified Bresenham’s line algorithm [17] draws
floor tiles from the visited POI to the unvisited POI. Puzzle
blocks are a special case requiring POIs for both before and
after the push. Afterward, A* resumes where it left off. This
process repeats until A* beats the dungeon.

The repair process assures that all dungeons are playable,
though only 10 of 30 GAN dungeons and 16 of 30 pure
graph grammar dungeons needed any repair. Per dungeon,
the average number of rooms repaired was less than one for
the 30 GAN dungeons and the 30 graph grammar dungeons.

E. Rogue-like Game

To interact with the dungeons, a Rogue-like game was
created in Java using the AsciiPanel library by Trystans3.
The Rogue-like game emulates the gameplay in Legend of
Zelda. However, the game is turn-based and only features
one enemy type. Many fancy items in Zelda are absent, but
there are still bombs, and every level has a raft.

All actions are turn-based, so combat is simple. The player
moves first and then the enemies. If an enemy is adjacent
to the player, including diagonal to it, it will attack. Each
enemy attack has a 50% chance of hitting and subtracting a
heart from the player. The player can only attack enemies in
orthogonally adjacent positions, by pressing the appropriate
arrow key. When an enemy blocks the avatar’s movement,
an arrow press is an attack instead of a move. When enemies
are not adjacent to the player, they move toward it, but only
if the player is within line of sight of 4 tiles. Otherwise, they
move randomly. Enemies also move over water tiles.

Upon death, enemies sometimes drop a heart or a bomb.
If the player with no bombs enters an empty room, enemies
sometimes spawn so the player will be able to pick up bombs.
There is at least one bomb-able wall in each dungeon.

V. HUMAN SUBJECT STUDY

The method of dungeon generation described thus far
(Graph+GAN) is evaluated by having humans compare it to
two other types of dungeon: a graph grammar dungeon that
does not use a GAN (Graph), and Dungeon 4-1 from Legend
of Zelda (Original). Whenever a Graph dungeon places
a room, it is chosen randomly from the set of all rooms in the
VGLC training set. Graph and Graph+GAN dungeons seen
by each participant were different. The Original dungeon
played by every participant was Dungeon 4-1, because it is
sufficiently interesting to represent a meaningful comparison.
Some earlier dungeons are simplistic in comparison, and

3http://trystans.blogspot.com/



many later dungeons are so large that having users play
them would be too time consuming. Dungeon 4-1 is also
ideal because its raft item allows players to traverse obstacles
in a new way, whereas many of the special items in other
dungeons are weapons that introduce combat mechanics
difficult to emulate in the Rogue-like engine.

The study had 30 participants (university students, faculty,
and staff). Each participant played through a dungeon of each
of the three types in a different order (5 per each of 6 possible
orders). After each dungeon, the participant took a survey
ranking the dungeon on a 1–5 scale in various categories.
After the second dungeon, users indicated which of the two
were better in various respects, and after the third dungeon
all three were ranked relative to each other. Participants also
provided open-ended text responses at each stage.

Players start each dungeon with 0 bombs, 0 keys, and 4
hearts. It was possible to die, in which case the user would
start the dungeon over, but the game would be easier. The
starting/max number of hearts would increase, as would the
chance of defeated enemies dropping a heart pickup. After
dying, the starting hearts would increase to 6, then 8, then
20. Unexpectedly, one participant did not finish one of the
dungeons even with this many tries, and thus repeated the
dungeon starting over at 4 hearts. The heart drop rate for
defeated enemies started at 30%, and increased with each
death to 60%, then 90% for the remaining deaths.

Source code for running the user trials as well as video
of the trials is accessible here: southwestern.edu/

˜schrum2/zeldagan.html.

VI. RESULTS

Statistical analysis of numerical ratings and relative rank-
ings is provided, as are objective measures of the novelty
of rooms in each dungeon type. Qualitative user responses
provide additional insight into the quantitative data.

A. Numeric Participant Ratings

Graph and Graph+GAN dungeons are comparable to
Original in most respects. Kruskal-Wallis tests (df = 2)
indicate that there are no significant differences between
dungeon types in terms of enjoyability (H = 1.5065, p =
0.4708), challenge in finding the exit (H = 2.5478, p =
0.2797), challenge from enemies (H = 1.2331, p = 0.5398),
map complexity (H = 2.8105, p = 0.2453), room complex-
ity (H = 1.2279, p = 0.5412), and room novelty (H =
4.2023, p = 0.1223). Only in terms of room organization
is there a significant difference between dungeon types
(H = 11.337, p = 0.003454), and post-hoc pairwise Mann-
Whitney U tests with FDR error correction show that it is
specifically the Graph+GAN rooms that are less organized
than rooms of both Original (p = 0.0056) and Graph
(p = 0.0164). Since Original and Graph make use of
the same set of rooms, there is no significant difference in
their level of organization (p = 0.4866). Distributions of
participant ratings for each dungeon type in all categories
are shown as violin plots in Fig. 5.

B. Relative Participant Rankings of Dungeons

After all three dungeons, participants ranked dungeons in
terms of enjoyment, room complexity, room novelty, map
layout challenge level, and chaos of the rooms (Fig. 6). For
each category the number of Most and Least ratings for each
dungeon type were compared using exact multinomial tests.

There is no significant difference in Most ratings in
the categories of enjoyment (p = 0.185), room novelty
(p = 0.2622), map challenge (p = 0.7647), or room
chaos (p = 0.07238). The null hypothesis that was not
rejected is that the 30 user ratings are evenly split into 10
per dungeon type. Only for room complexity was there a
significant difference between Most ranks (p = 0.005532).
Post-hoc pairwise binomial tests with FDR error correction
indicate that Graph+GAN rooms received significantly more
Most Complex ranks than Graph (17 vs. 3, p = 0.0077),
though the ratings in Fig. 5 indicate that the degree of the
difference is small. Also, despite Graph and Original
rooms coming from the same set, there is no significant
difference between the number of Most Complex ranks of
Original vs. Graph+GAN (10 vs. 17, p = 0.2478). The
difference between Original and Graph was also not
significant (10 vs. 3, p = 0.1384).

For Least ranks, there was no significant difference in
enjoyment (p = 0.1117), room complexity (p = 0.156),
room novelty (p = 0.5943), or room chaos (p = 0.0724).
However, there was a significant difference in map challenge
(p = 0.0184). Specifically, post-hoc binomial tests with
FDR correction indicate that Graph received significantly
more Least Challenging ranks than Original (17 vs. 4,
p = 0.022). This finding is interesting because the layouts
for Graph+GAN and Graph were defined by the same
algorithm. However, the differences between Original
and Graph+GAN (4 vs. 9, p = 0.267) and Graph and
Graph+GAN (17 vs. 9, p = 0.253) were not significant.

Despite few distinctions being statistically significant,
there are interesting non-significant differences. First, 15
users found Original most enjoyable. However, when
compared with the 1–5 ratings in Fig. 5, it seems that the
degree to which Original was more enjoyable was minor.
In contrast, 16 participants found Graph+GAN rooms most
chaotic. The 1–5 ratings for Room Organization relate to
these responses, and indicate that GAN rooms may actu-
ally be moderately more chaotic/less organized. Original
received the highest number of Most Novel ranks (13) and
smallest number of Least Novel ranks (8) with respect to its
rooms, whereas Graph received the most Least Novel ranks
(13) and least Most Novel ranks (6). This contrast is strange
because every room in Original is a room that could be in
Graph dungeons. The GAN generated rooms, often unique
to these dungeons, were ranked Most Novel 11 times and
Least Novel 9 times. This confusion can be clarified with
the objective measure of novelty presented next.

C. Objective Novelty Comparisons

An objective calculation of room novelty was made to
measure differences between dungeon types. Room Novelty



Fig. 5: Participant Ratings Of Each Dungeon Type. Violin plots depict distributions of participant ratings on a 1–5 scale
for properties of each dungeon type. Each group of plots shows ratings of Original, Graph, and Graph+GAN. The
aspects being rated are under each group. The only category with a statistically significant difference is Room Organization:
Graph+GAN rooms are less organized than others.

Fig. 6: Participant Relative Rankings Of Each Dungeon Type. Stacked bar charts show the number of participants that
assigned each dungeon type a particular rank with respect to each other in each category. Categories are listed along the
bottom. Each bar shows the count that ranked the given dungeon type as Least, Middle, and Most from bottom to top. Some
notable observations are that 15 participants rated Original as most enjoyable, 17 rated Graph+GAN as most complex,
and 16 rated Graph+GAN as most chaotic. In contrast, 14 rated Graph as least enjoyable, 15 rated Graph as least complex,
and 17 rated Graph map layouts as least challenging.

is the average normalized distance of that room from all other
rooms in its dungeon. The distance metric is the count of tile
positions in which two rooms differ. Only the novelty of the
primary 12×7 floor area is considered (excluding walls and
doors). Dungeon Novelty is the average novelty of all rooms
in the dungeon. Summary novelty statistics are in Table III.

Comparing novelty scores of different dungeon types using
one-way ANOVA reveals significant differences (F (2, 75) =
7.317, p = 0.00125). Post-hoc pairwise comparisons with
Tukey’s HSD and error-adjusted p-values are presented. Even
though Graph only uses rooms from the original game,
Graph is significantly more novel than Original (p =
0.00854). Here, Original refers to all 18 dungeons from
the original game. Graph+GAN is also significantly more
novel than Original (p = 0.00116), but not significantly
different from Graph (p = 0.7377).

The novelty of Dungeon 4-1 specifically is 0.2970, which
is higher than the averages for all dungeon types; a very novel
dungeon was used in this study. Users explicitly mentioned
this: “I enjoyed that the layout was different in almost all
rooms.” Fig. 1 verifies this, and indicates why users rated
the novelty of this dungeon high, even though the set of all
rooms in the original game has low novelty.

In addition to calculating novelty scores for each dungeon,
averages across all rooms present in a given collection
of dungeons can also be calculated (Table III). ANOVA
indicates a significant difference between the room novelties
of all rooms from the original game, all rooms in all 30
Graph dungeons, and all rooms in all 30 Graph+GAN
dungeons (F (2, 1439) = 47.85, p < 0.0001). Tukey’s HSD
once again indicates that Graph and Graph+GAN are
significantly more novel than Original (p < 0.0001), but



TABLE III: Objective Novelty Scores.
Summary statistics of novelty scores for different collections of
dungeons and rooms are shown. N is the sample size. The first
three rows are based on Dungeon Novelty, and the next six on
Room Novelty. Calculations are performed across all rooms in the
given collections, and across only the unique rooms. Original
is less novel, unless you focus on unique rooms only.

Type N Avg ± StDev Min Max
Original Dungeons 18 0.2348± 0.0496 0.1311 0.3178

Graph Dungeons 30 0.2752± 0.0485 0.1975 0.3759
Graph+GAN Dungeons 30 0.2837± 0.0357 0.1970 0.3899
All Original Rooms 459 0.2481± 0.1118 0.1545 0.6733

All Graph Rooms 491 0.2941± 0.0772 0.2035 0.5920
All Graph+GAN Rooms 492 0.3019± 0.0816 0.2108 0.5891

Unique Original Rooms 38 0.3442± 0.0888 0.2453 0.6062
Unique Graph Rooms 87 0.3437± 0.0713 0.2471 0.5334

Unique Graph+GAN Rooms 367 0.3268± 0.0720 0.2337 0.5802

not significantly different from each other (p = 0.3751).
Calculations on sets of only the unique rooms of each

collection are also performed (Table III), because these
collections have many repeated rooms, especially those in
Original. Although Graph uses the same rooms, they
are sometimes modified by the repair process (Section IV-
D), so Graph has more unique rooms. Graph+GAN has the
most unique rooms. When reduced to only unique rooms,
there is no significant difference among types (F (2, 489) =
2.517, p = 0.0818), indicating that Original dungeons re-
use certain rooms more heavily than the random sampling
of Graph or the GAN output of Graph+GAN.

D. Informative Participant Quotes

Quotes contextualize the quantitative findings. In particu-
lar, why was Dungeon 4-1 appealing? Participants enjoyed
the water obstacle that was only passable with the raft. One
said, “water cross tool/item was enjoyable.” Another said, “I
liked that you had to wait later in the level to get the water
walking thing and that helped you get further in the level.”

More generally, backtracking was appealing, as indicated
about a Graph dungeon: “I liked the need to backtrack
through a couple of the dungeon rooms for necessary items if
you didn’t find them first.” However, for the graph backbone
in this study, only some generated levels required the raft to
be beaten. In others, players found the raft before needing
it. One user said of a Graph dungeon, “I liked that this
dungeon had rooms that used the raft more than the other;
however, I got the raft early enough to where I didn’t have
to worry about water.”

Better design of the graph backbone could enforce back-
tracking as in Dungeon 4-1. However, some users appreciated
how expectations were subverted: “I liked that there was the
raft item near the beginning of the dungeon that I could see
but couldn’t reach. I felt like I had to figure out a way to get
to the raft, but couldn’t.” Of a Graph+GAN dungeon: “This
dungeon was very chaotic, with items you didn’t need in
places you couldn’t access. I liked that a lot because it threw
me off and had me thinking about different possibilities.”

This quote supports data indicating that GAN rooms are
less organized. A participant observed: “there were parts
of rooms and enemies that I couldn’t reach.” This oddity
could be avoided by restricting item and enemy placement

to reachable locations. Reachability aside, many GAN rooms
simply look more chaotic: “There was a large mix of wall and
water blocks, in ways that didn’t seem completely natural.
There was very little symmetry and a lot of obstacles.”

Although the GAN produces chaotic rooms, 10 partici-
pants specifically said things like “They seemed organized,”
and “I felt like the rooms were organized.” The GAN also
produces rooms from the original training set, and unique
rooms that have a level of structure similar to original rooms
(Fig. 7). Randomness led to some users seeing more rooms of
one type than the other. Some people appreciated the chaotic
rooms: “they were chaotic but in a good way, none seemed
like a copy of the previous and kept me on my toes.”

Much criticism was directed at Graph dungeon layouts.
Participants said, “I didn’t enjoy how simple the dungeon
was overall,” “The map layout was very simple, not very
novel,” and “this one favored simpler layouts.” Graph+GAN
dungeons did not receive many comments like this, despite
using the same graph grammar. Randomness in generation
may have played a role, though it may be that chaotic GAN
room layouts distracted from issues with the dungeon layout.

The most criticized layout was a linear layout without
much branching: “just a diagonal line, not many choices,”
and “It was not as difficult to make it from room to room due
to the lack of multiple bordering squares.” These complaints
could be remedied by having segments for the dungeon
backbone with more diverse path options. However, the main
issue seems to be randomness in the 2D layout, because some
Graph dungeons had interesting layouts: “The map layout
had me thinking of different areas the secret doors were in.
It was interesting to try and figure out where to go next.”

Ultimately, conflicting opinions about several aspects of
Graph and Graph+GAN dungeons are likely based partly
on differing user preferences and perspectives, but are po-
tentially also based on the variety of dungeons that can be
produced by these methods, making it hard to categorize all
dungeons of either type in the same way.

VII. DISCUSSION AND FUTURE WORK

The Graph+GAN technique presented in this paper pro-
cedurally generates dungeons similar in terms of enjoyment,
challenge level, and complexity to Dungeon 4-1 from The
Legend of Zelda. Dungeon 4-1 is special because it in-
troduces the raft item which makes new types of puzzles
possible. Creating dungeons comparable to this dungeon
is impressive. Furthermore, the Graph+GAN technique can
create an effectively infinite multitude of such dungeons.

Improving the handcrafted backbone for the graph gram-
mar could vastly improve layouts, remedying many user
complaints. The dungeon generation method would be the
same, but a better designer could encourage the method
to produce better output. Tweaking the backbone requires
relatively little effort, given that the benefit is an infinite
multitude of levels. The backbone could be adjusted to
force backtracking after obtaining the raft, and could provide
any desired number of locked doors and/or puzzle rooms.
Without a graph grammar, a designer can fix a specific level,



Fig. 7: Spectrum of Rooms Generated by the GAN. Some are identical or nearly identical to rooms in the training set, but
others seem less structured and predictable, thus showcasing the diversity of the GAN outputs, but also revealing why its
rooms are sometimes considered chaotic and unorganized.

but needs to expend great effort to create whole new levels
adhering to a particular high-level design plan.

Both Graph and Graph+GAN techniques produce a mul-
titude of levels, but Graph makes repetitive use of the same
rooms. Even when it produces a layout as interesting as an
Original level, it offers nothing new in terms of rooms. In
contrast, GAN rooms are less organized, and considered most
complex. Some users enjoyed the unpredictability of certain
GAN rooms, but the GAN can also produce structured rooms
similar to those from the original game.

In the future, it is desirable to have a data-driven method
replace the graph grammar entirely. Whether GANs or some
other method can be adapted for this purpose is uncertain.
The variation across the 38 unique rooms in the original
game (training set) seems less than the variation across
the 18 dungeons. There is a combinatorial explosion of
potential complexity in complete dungeons when the variety
of possible rooms is taken into account, and 18 dungeons of
very different sizes may not be enough for a GAN to learn
general design principles. However, bootstrapping methods
(that work with limited data) for applying GANs to level
design are an area of active research [7], [5]. Generating the
entire dungeon based on data will hopefully better capture
design patterns of the original dungeons.

Rather than having a simple GAN generating walls and
water blocks, it would be desirable to have generated en-
emies, keys, puzzle blocks, etc. For further research, a
conditional GAN [18] could be used to generate rooms based
on type. For instance, enemy rooms or puzzle rooms could
be specifically requested. This approach would better match
the original game’s enemy, puzzle block, and key placement.

Though this paper shows the potential of the Graph+GAN
approach, a more impressive example would utilize all details
of Zelda’s levels, and create a gameplay experience closer to
the original. Unfortunately, the VGLC data is lacking many
details. However, the current GAN model could, without
modification, generate rooms for a more intricate game if
the gameplay engine were more complex. Tweaks to the
engine could also enable online play, making the game more
accessible for future studies.

VIII. CONCLUSIONS

A new hybrid approach to generating game dungeons com-
bining a Generative Adversarial Network with a Generative
Graph Grammar was presented and validated with a user
study. User responses indicate that results were comparable
to a handcrafted level from The Legend of Zelda. Better
design of the graph backbone, and a more sophisticated game
engine could result in a more impressive experience. This

new approach to Procedural Content Generation could prove
valuable for commercial video games.
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