
Analytic Continued Fractions for Regression:
Results on 352 datasets from the physical sciences

1st Pablo Moscato
School of Elect. Engg. and Computing

The University of Newcastle
Callaghan, NSW 2308, Australia
Pablo.Moscato@newcastle.edu.au

2nd Haoyuan Sun
California Institute of Technology

Pasadena, CA, USA
hsun2@caltech.edu

3rd Mohammad Nazmul Haque
School of Elect. Engg. and Computing

The University of Newcastle
Callaghan, NSW 2308, Australia

Mohammad.Haque@newcastle.edu.au

Abstract—We report on the results of a new memetic algo-
rithm that employs analytic continued fractions as the basic
representation of mathematical functions used for regression
problems. We study the performance of our method in compar-
ison with other ten machine learning approaches provided by
the scikit-learn software collection. We used 352 datasets
collected by Schaffer, which originated from real experiments
in the physical sciences at the turn of the 20th century for
which measurements were tabulated, and a governing functional
relationship was postulated. Using leave-one-out cross-validation,
in training our method ranks first in 350 out of the 352 datasets.
Only six machine learning algorithms ranked first in at least one
of the 352 datasets on testing; our approach ranked first 192
times, i.e. more all of the other algorithms combined. The results
favourably speak about the robustness of our methodology. We
conclude that the use of analytic continued fractions in regression
deserves further study and we also advocate that Schaffer’s data
collection should also be included in the repertoire of datasets
to test the performance of machine learning and regression
algorithms.

Index Terms—memetic computing, regression, analytic contin-
ued fraction.

I. INTRODUCTION

In 2019, Sun and Moscato introduced a new approach for
multivariate regression using analytic continued fractions as
the basic representation of mathematical functions [1]. They
presented results using a memetic algorithm [2] to identify
the variables and the coefficients that best approximate an
unknown target function. Six challenging real-world datasets
were studied and compared with one of the state-of-the-art
Genetic Programming approaches at the time. They have based
their proposal in an old result of the theory of continued
fractions. Indeed, the mathematical foundations on which this
new representation for machine learning relies on can be
traced to a theorem published by Leonard Euler in 1748 [3].
This great mathematician proved an equality between a finite
sum of products and a finite continued fraction: let a sum of
products, SP , be written as SP = a0+a0a1+a0a1a2+ · · ·+

Work supported by UoN, Caltech SURF, Maitland Cancer Appeal and
Australian Research Council Discovery Project, DP200102364.

a0a1a2 · · · an, then

SP =
a0

1−
a1

1 + a1 −
a2

1 + a2 −
. . .

. . .
an−1

1 + an−1 −
an

1 + an

. (1)

The result can be proved by induction on n, which also
implies that we can apply this result in the limit. More
importantly, this also means that if the sum of products
represents a convergent and infinite series, then the right-hand
side represents a convergent and infinite continued fraction.
This speaks of the power of this representation (e.g. exam-
ples of how it can represent a large variety of well-known
mathematical special functions can be found in [4]).

Based on these results, the authors of [1] proposed that
an unknown “target function” of a multivariate regression
problem can well approximated by a multivariate function
f : Rn → R of the form:

f(x) = g0(x) +
h0(x)

g1(x) +
h1(x)

g2(x) +
h2(x)

g3(x) +
. . .

(2)

where gi(x) ∈ R for all integer i ≥ 0, where each function
fi : Rn → R is associated with a vector ai ∈ Rn and a
constant αi ∈ R:

gi(x) = ai
Tx+ αi, (3)

and, in addition, each function hi : Rn → R is associated with
a vector bi ∈ Rn and a constant βi ∈ R:

hi(x) = bi
Tx+ βi. (4)

In the multivariate regression analysis of a single target
variable, the ultimate goal is to find the mathematical expres-
sion of an unknown target function that would fit a dataset

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

S = {(x(i), y(i))}, i.e. a set of pairs of an unknown multivari-
ate target function f : Rn → R. As a consequence, in [1] it
has been proposed that the problem of identifying the target
function reduces to a non-linear optimization problem defined
by the use of such analytic continued fractions representation.
This requires identification of the subset of the variables of x
which are more relevant together with the associated collection
of sets of coefficients {ai}, {bi}, {αi}, and {βi} that jointly
contribute to the best function given a particular metric, e.g.
the Mean Squared Error (MSE). It is also expected that forcing
the search process to reduce the objective function can be
accompanied of other search bias that aims at reducing the
number of variables, allowing the method to produce functions
that are easier to interpret.

II. THE DEPTH OF THE REPRESENTATION

Having more terms in the right-hand side of (2) would lead
to better performance on “fitting” the training data. In [5] an
illustrative example is given showing how the Gamma function
can be well-approximated with increasing values of what it is
called as Depth and it is shown for the values of 2, 4 and 6 (see
Fig. 3 of [5]). It is well-known that increasing the power of the
representation on the training dataset would lead to overfitting
and more inferior generalization. Therefore, we need to decide
if it either the depth of the representation is fixed, or it is
dynamically changed during the search/optimization process.

In [1] the authors opted for having the Depth fixed to the
value of 3. This means that it is basically of the form given by
(2) with hi(x) = 0 ∀i ≥ 2 and gi(x) = ci, where ci is any real
value independent of x and is nonzero for i ≥ 3. This said, if
when we search using a fixed representation with Depth = 0,
then our technique corresponds to approximating g0(x) with
a linear function (since (3) is linear according to (4)). In that
case, we would be looking for a linear regression model and
our technique would aim at just selecting a smaller subset of
variables. Thus, our proposed representation naturally includes
linear regression models, and it does so for any value of
Depth ≥ 0. It is then of interest to see if larger Depth values
can lead to a better representation of mathematical functions.

Readers familiar with the theory of analytic continued
fractions will immediately notice that, truncating this way, we
are looking at the convergents of the continued fraction. The
first convergent then corresponds to Depth = 0; the second
convergent (the one with Depth = 1) is defined as the ratio
of two polynomials p2(x) and q2(x) and it is given by

p2(x)

q2(x)
=
g0(x)g1(x) + h0(x)

g1(x)
(5)

and the convergent of Depth = d is then the ratio of two
polynomials pd+1 and qd+1 which can be computed by using
Milne and Thomson’s matrix representation of a continued
fraction [6].

III. CHARACTERISTICS OF THE MEMETIC ALGORITHM

Memetic algorithm (MA) is gaining wide acceptance in
business analytics and data science; a recent review in [2]

showed the growing number of applications in Bioinformatics,
Combinatorial Optimization, Machine Learning, Data Analyt-
ics. More recently, they have also been used for multivariate
regression (see [1], [5]).

A. Normalization of the data

The objective of normalizing data is to bring a diverse range
of feature values into a common scale, and it is an important
prepossessing step. In this contribution, we applied MinMax
normalization on the training portion of the data given to the
algorithm (thus differing from our previous MA in [5]). The
MinMax normalization is the simplest method which rescales
the range of features to scale the range in [0, 1] as:

x′ =
x−min(x)

max(x)−min(x)
. (6)

B. The Memetic Algorithm of this contribution

In [1] Depth = 3 was used for six datasets and Depth = 4
was selected for the 94 datasets of the Penn Machine Learning
Benchmark in [5], so we have also chosen Depth = 4 for the
experiments presented in this paper.

The memetic algorithm (MA) is as the one presented in [5].
For the analysis of the datasets of [1], we have used 10-
fold cross-validation as the number of samples is significantly
higher. While k-fold Cross Validation requires less times than
Leave-One-Out Cross-Validation (LOOCV), in this case, we
have a dataset from 352 studies, and most of them have less
than 50 samples (the largest one only has 109 samples). It
is then reasonable to adopt LOOCV for the whole dataset
and be consistent. However, we have used the same data
normalization as described in Sec. III-A.

A high-level overview of the proposed MA is shown in
Algorithm 1 (due to the page limits, we refer to [5] for a
detailed description and illustrative figures). Briefly, we apply
MinMax normalization (as shown in (6)) on the training data
(Line 1) inside the algorithm and save the scaling factors scl
(in Line 2) which comprised with Max and min values of
the features and target of the training dataset. The algorithm
randomly initialized a population of agents which is structured
as a ternary-tree (as in [1], [5]). The population consists of 13
such agents. Each agent of the population contains two models
(i.e. two analytic continued fractions of Depth = 4), one is
called ‘pocket’, and another is denoted as ‘current’. If at any
stage the guiding function score of the ‘current’ became better
than the guiding function score of ‘pocket’, we swap them.

The MA evolves continued fractions (models) for a fixed
number of generations. In each generation, we mutate each
current model in the population (Line 6). Then we generate
a new population via a recombination operation (Line 7).
Afterwards, we apply local search optimization to optimize the
coefficients of a model as in [5]. This is based on a modified
version of Nelder-Mead’s algorithm as proposed by Fajfar et
al. [7]. We restart the population if the guiding function value
stagnates for 5 consecutive generations by replacing the root
solution with a model generated at random (Line 11–13). We
replace the old population with this population of optimized

models (Line 14). We keep track of the best solutions in the
population (Line 15–17). When the evolution on the training
set satisfied the terminating condition (Line 5), we return from
the method (Line 19). As the output of the algorithm, it returns
the best solution best (based on the guiding function value)
and the scaling factors scl.

We finally have the best model form the training data, and
it is the time to apply it on the testing set. Before we apply the
model, we scale the testing set applying the scaling factors scl
calculated using the training set (when normalizing), and we
compute the prediction error (MSE score) on the test set as the
generalization score. The average value of the generalization
score obtained form the LOOCV is reported in the paper.
Since we are using normalization (n) and LOOCV (l) in the
proposed Continued Fraction Regression (cfr), we will denote
this algorithm as cfr-nl throughout the paper.

Algorithm 1: cfr-nl Algorithm
Input : Num. of Vars nV ars, Mutation Rate µr,

training data Dtrn

Output: Best solution to fit the problem, best, Scaling
Factors scl

/* Normalize training data */
1 Dn

trn ← Normalize (Dtrn)
2 scl < Max,min >← Normalize.ScaleFactor(Dtrn)

/* Generate Initial Population */
3 pop← InitPopulation(nV ars,Dn

trn)
4 best← pocket(pop.root)

5 for gen ∈ 1, · · · , numGen do
/* apply variation operations */

6 popµ ← Mutate(pop, µr)
7 popr ← Recombine(popµ)

/* Local Search Optimization */
8 foreach agent ∈ popr do
9 LocalSearch(agent)

10 end

11 if guiding function stagnates for consecutive 5
gens then

12 reset(popr.root)
13 end

/* Replace old with evolved pop */
14 pop← popr

/* Keep track of best solution */
15 if guid func score(best) <

guid func score(pocket(pop.root)) then
16 best← pocket(pop.root)
17 end
18 end
19 return best, scl

The parameter values of the cfr-nl used for the experi-
ments are presented in Table I.

TABLE I
PARAMETER VALUE OF THE CFR-BASED MEMETIC ALGORITHM FOR

REGRESSION.

Parameter Value
Scale of Penalty (∆) 0.10
Mutation Rate (µ) 0.10
Fraction’s Depth 4
Population Size (tree-based) 13
Number of Generations 200
Reset root of population after stuck for generations 5
Feature Scaling/Normalization Method MinMax
Number of Nelder-Mead Instances 4
Number of Iterations in Nelder-Mead 250
Nelder-Mead terminates if stagnates for consecutive iterations 10
Percentage of Samples used to evaluate model in local search 20%

IV. MACHINE LEARNING-BASED ALGORITHMS

In [5], [8], a set of 10 state-of-the-art Machine Learning
(ML) based regression approaches have been used for the
task of benchmarking the performance of regression methods.
We have opted to use those same 10 algorithms (implemented
in [9] as Scikit-learn API [10]) to compare the performance of
our proposed approach, labelled cfr-nl method. We refer the
reader to [8] for a detailed description of those ML algorithms;
however, we are summarizing them with references in Table II
to enhance the readability of this contribution.

TABLE II
LIST OF MACHINE LEARNING-BASED ALGORITHMS USED FOR

COMPARISON, WITH DEFAULT PARAMETER VALUES FROM SCIKIT-LEARN
LIBRARY.

Algorithm Name Ref.
Adaptive Boosting (Adaboost) Regression ada-b [11]
Gradient Boosting (Gradboost) Regression grad-b [12]
Kernel Ridge krnl-r [13]
Least-Angle Regression with Lasso (lasso-lars) lasso-l [14]
Linear Regression l-regr [10]
Linear Support Vector Regression (SVR) l-svr [15]
Multilayer Perceptrons (MLPs) Regressor mlp [16]
Random Forests Regression rf [17]
Stochastic Gradient Descent (SGD) Regression sgd-r [18]
Extreme Gradient Boosting (xgboost) xg-b [19]

V. DESCRIPTION OF SCHAEFFER’S 352 DATASETS

Cullen Schaffer collected 352 bivariate numeric datasets
during his PhD Thesis work, mostly from investigations in
the physical sciences, and he proposed a function-finding
algorithm in [20]. The dataset1 is now on the public domain
and downloadable from the UCI-Machine Learning Reposi-
tory [21]. From the accompanying description, we highlight
that the datasets are organized into 217 “cases”, generally
from a single source (publication or article). The first 62 cases
are “willfully chosen as useful, notable or interesting from a
wide variety of sources including handbooks, theses, journal
articles, textbooks, student laboratory reports and others”. For
instance, ‘Case 55’ is extracted from one of Robert Andrew
Millikan’s oil drop experiments reported in 1911 [22], part

1Function Finding Data Set at http://archive.ics.uci.edu/ml/datasets/
Function+Finding

of the experimental work that leads him to obtain the Nobel
Prize in 1923. The remaining ones are obtained from Physical
Review from issues of the early years of the 20th century. They
pose a challenge of finding functions fitting the data. Schaffer
imposed these conditions for inclusion in his collection: First,
the source reported a governing functional relationship, and it
was bivariate, and second, the data were reported in tabular
form and should be the result of a measurement (as opposed
to just being theoretically postulated). Schaffer, designed his
E* function-finding algorithm [20] on Cases 1 though 122 and
then tested it on Cases 123 through 222. In that use we will
differ as it is explained in Sec. VI.

In [1], six datasets were used. We have chosen to present
also results on them and to compare with 10 ML methods on
six datasets. In this case, the average MSE score obtained for
10-fold Cross-Validation on the normalized data in Table III.
We advise, however, that these scores are computed on a
normalized dataset, as a consequence the MSE scores reported
in [1] are not directly comparable to the ones in this paper.
However, this study, using the same Depth value allows us
to look at a different type of dataset and on which we have
previous computational experience.

VI. EXPERIMENTAL RESULTS

We employed The University of Newcastle’s High-
Performance Computing (HPC) grid2. The grid machines are
configured with the GCC compiler version 4.8.5 and run using
64 bit Red Hat Enterprise Linux Server 7.5 (Maipo). C++11
is used to develop the algorithm and compiled with -O2
optimization. We split the execution of the algorithm on 352
datasets into 7 batches. For each batch, we assigned 4 CPU
cores, 4GB RAM, and a total of 10 hours of CPU wall time to
execute the Leave-One-Out Cross-Validation (LOOCV) on the
datasets. CPU time has not been a concern of this particular
study; we refer to [5] for comparative time performances of
our algorithm against existing symbolic regression approaches
based on genetic programming.

A. Results on the six datasets (from CEC 2019, previous
contribution [1])

Table III resumes the results. In all cases the result obtained
by cfr-nl is consistently very close to the performance of
the best one of the 10 algorithms studied (in bold). We will
return to these results in the Discussion section.

B. Results of cfr-nl on the Datasets of 352 Functions

We now present the average Mean Squared Error (MSE)
obtained by the models of our purposed cfr-nl algorithm
in Table IV for Leave-One-Out Cross-Validation (LOOCV) of
352 functions. We ordered the results from smallest to largest
of the MSE score obtained by our method. We choose to
include the tabulated scores as they can be useful in the future
for other researchers willing to compare the performances of
other methods on the same dataset.

2https://www.newcastle.edu.au/research-and-innovation/resources/
research-computing-services/advanced-computing

TABLE III
AVERAGE MSE SCORE OBTAINED BY CFR-NL AND 10 MACHINE
LEARNING ALGORITHMS FOR 10 FOLD CROSS VALIDATION AND

NORMALIZATION ON SIX DATASETS USED IN [1]

Methods airfoil concrete cooling heating housing yacht
ada-b 0.0106 0.0089 0.0043 0.0025 0.0049 0.0006
grad-b 0.0051 0.0040 0.0016 0.0002 0.0039 0.0001
krnl-r 0.0865 0.0170 0.0078 0.0066 0.0098 0.0216
lasso-l 0.0340 0.0436 0.0660 0.0742 0.0323 0.0598
l-regr 0.0166 0.0170 0.0075 0.0063 0.0078 0.0214
l-svr 0.0172 0.0185 0.0080 0.0066 0.0081 0.0314
mlp 0.0133 0.0112 0.0075 0.0058 0.0072 0.0209
rf 0.0023 0.0043 0.0021 0.0002 0.0045 0.0003
sgd-r 0.0329 0.0304 0.0107 0.0099 0.0186 0.0416
xg-b 0.0051 0.0041 0.0017 0.0002 0.0039 0.0002
cfr-nl 0.0119 0.0100 0.0064 0.0047 0.0080 0.0006

C. Performance Ranking on Schaeffer’s 352 datasets

We show the box plots in Fig. 1 to illustrate the perfor-
mances of the algorithms for training (in Fig. 1(a)) and testing
(in Fig. 1(b)) sets. The MSE score in the y-axis are log10-
scaled (we displayed the points up to 1e+02) and the boxes
are ordered from smallest to largest of median score (50th

percentile). The reason that we are displaying the results only
on that interval is that all algorithms, including our own,
had a poor generalization performance for a single dataset
(‘Case 28’) corresponding to a dataset with only six samples
for which a functional model of the form log y = k1 log x+k2
was proposed in [23].

From the Fig. 1 we can see that the proposed cfr-nl
achieved the best result (considering the median or 50th

percentile score) in the comparison against the 10 machine
learning algorithms for both in training and testing sets.

We computed the ranking of the algorithms for their per-
formances for each of the 352 datasets. The violin plots in
Fig. 2 shows the box-and-whisker plots with the quantitative
distribution of the ranking results. We have shown the training
performances of the algorithms in Fig. 2(a). The proposed
cfr-nl achieves impressive rankings in training sets (most
of the time being the best-ranked method). In training, the
closest performing ML method to cfr-nl is the Linear
Support Vector Regressor (l-svr). The testing performances
of the methods are shown in Fig. 2(b). We can observe that
cfr-nl and l-regr are the two best algorithms in terms of
achieving better rankings in testing results. The performance
of l-regr is quite surprising for us, due to the simplicity of
the method, but it may be a part of the characteristics of these
352 datasets. In fact, for these regression problems, the full
potential of cfr-nl in variable selection is not significantly
showing, since the problems do not have many variables, but
its representation power is present. The two worst-performing
algorithms were lasso-l and sgd-r.

Table V complements the presentation of the violin plots
of Fig. 2 with a listing of the number of times an algorithm
ranked first (1st) and last (L) in the training and testing sets
of the 352 datasets. From the table we observe that cfr-nl

TABLE IV
THE AVERAGE TEST MEAN SQUARED ERROR (MSE) SCORE OBTAINED BY THE PROPOSED ALGORITHM WITH LEAVE-ONE-OUT CROSS-VALIDATION

(LOOCV) ON 352 FUNCTIONS (SORTED BY ASCENDING MSE SCORES).

Function MSE Function MSE Function MSE Function MSE Function MSE Function MSE
Case 161b 5.24e-7 Case 61b 1.71e-4 Case 13 8.68e-4 Case 112b 4.10e-3 Case 130a 0.023 Case 181d 0.181
Case 192 9.44e-7 Case 106b 1.76e-4 Case 163 9.10e-4 Case 71a 4.20e-3 Case 124 0.024 Case 159b 0.183
Case 161a 1.13e-6 Case 43c 1.77e-4 Case 76c 9.21e-4 Case 108c 4.26e-3 Case 70a 0.025 Case 123 0.188
Case 82b 1.26e-6 Case 30a 1.82e-4 Case 101b 9.57e-4 Case 81a 4.26e-3 Case 188 0.025 Case 63 0.196
Case 170a 2.15e-6 Case 36 1.82e-4 Case 76a 1.02e-3 Case 31 4.30e-3 Case 185 0.026 Case 168 0.221
Case 82a 5.42e-6 Case 148a 1.91e-4 Case 164 1.05e-3 Case 173a 4.41e-3 Case 197d 0.028 Case 209a 0.246
Case 88 6.20e-6 Case 128a 1.92e-4 Case 78 1.06e-3 Case 104a 4.54e-3 Case 41b 0.029 Case 112a 0.254
Case 218c 8.78e-6 Case 100a 1.96e-4 Case 72 1.06e-3 Case 106a 4.61e-3 Case 212a 0.029 Case 147 0.257
Case 142 9.86e-6 Case 153d 2.06e-4 Case 116 1.07e-3 Case 181c 4.65e-3 Case 98c 0.030 Case 204d 0.261
Case 128c 9.89e-6 Case 77 2.16e-4 Case 184 1.13e-3 Case 52 4.78e-3 Case 80a 0.030 Case 53 0.271
Case 218a 1.05e-5 Case 136b 2.19e-4 Case 134a 1.18e-3 Case 186b 4.86e-3 Case 199a 0.031 Case 138a 0.346
Case 113c 1.07e-5 Case 197c 2.31e-4 Case 129a 1.23e-3 Case 43b 4.86e-3 Case 183c 0.032 Case 181a 0.363
Case 160 1.08e-5 Case 127c 2.54e-4 Case 221 1.24e-3 Case 193 5.29e-3 Case 122c 0.032 Case 158b 0.387
Case 110 1.22e-5 Case 54 2.75e-4 Case 187c 1.24e-3 Case 198 5.37e-3 Case 137 0.032 Case 135a 0.388
Case 145a 1.29e-5 Case 27 2.82e-4 Case 81b 1.26e-3 Case 16 5.71e-3 Case 14 0.033 Case 125b 0.394
Case 208 1.36e-5 Case 204a 2.87e-4 Case 93 1.28e-3 Case 183a 6.33e-3 Case 89 0.033 Case 131a 0.406
Case 218b 1.90e-5 Case 73 3.02e-4 Case 167 1.29e-3 Case 214a 6.37e-3 Case 182d 0.033 Case 132 0.425
Case 166b 1.94e-5 Case 219 3.14e-4 Case 38 1.30e-3 Case 37a 6.68e-3 Case 96a 0.033 Case 214d 0.441
Case 111b 2.13e-5 Case 10 3.20e-4 Case 200c 1.30e-3 Case 35 6.85e-3 Case 175 0.033 Case 211 0.496
Case 113a 2.85e-5 Case 84d 3.24e-4 Case 44 1.36e-3 Case 206a 6.96e-3 Case 62b 0.034 Case 56b 0.531
Case 140 2.96e-5 Case 190b 3.49e-4 Case 99a 1.44e-3 Case 6 7.19e-3 Case 71b 0.038 Case 41a 0.603
Case 148b 3.18e-5 Case 115 3.51e-4 Case 8 1.46e-3 Case 172 7.23e-3 Case 21 0.040 Case 216 0.676
Case 113b 3.44e-5 Case 205 3.68e-4 Case 30b 1.51e-3 Case 18 7.26e-3 Case 62a 0.041 Case 91b 0.772
Case 148d 3.48e-5 Case 59 3.77e-4 Case 68 1.72e-3 Case 214c 7.96e-3 Case 128d 0.041 Case 204b 0.853
Case 100c 3.80e-5 Case 171c 3.77e-4 Case 178c 1.73e-3 Case 134b 8.00e-3 Case 209c 0.042 Case 47 0.853
Case 11 4.17e-5 Case 126b 3.84e-4 Case 86 1.86e-3 Case 22 8.27e-3 Case 91a 0.049 Case 122a 0.857
Case 45 4.22e-5 Case 58 3.91e-4 Case 217 1.90e-3 Case 39 8.91e-3 Case 41c 0.050 Case 151 0.992
Case 100d 4.41e-5 Case 104b 3.94e-4 Case 180 1.92e-3 Case 196b 9.11e-3 Case 214b 0.054 Case 206c 0.999
Case 102 4.43e-5 Case 114 4.05e-4 Case 80b 1.94e-3 Case 96b 9.52e-3 Case 182b 0.059 Case 135d 1.156
Case 48 4.81e-5 Case 7 4.14e-4 Case 130b 1.96e-3 Case 187a 9.55e-3 Case 153c 0.062 Case 79 1.179
Case 87 4.89e-5 Case 165 4.24e-4 Case 187d 1.98e-3 Case 152c 9.64e-3 Case 152b 0.063 Case 181b 1.199
Case 46a 4.90e-5 Case 174 4.41e-4 Case 125a 1.99e-3 Case 144b 9.85e-3 Case 149 0.066 Case 135c 1.213
Case 1 5.05e-5 Case 9 4.46e-4 Case 210 2.03e-3 Case 127b 0.011 Case 176b 0.067 Case 159a 1.319
Case 173b 5.13e-5 Case 84b 5.01e-4 Case 117 2.05e-3 Case 201 0.012 Case 55 0.068 Case 121 1.483
Case 203 5.19e-5 Case 136d 5.17e-4 Case 191 2.08e-3 Case 83 0.012 Case 143 0.069 Case 66 1.825
Case 152a 5.56e-5 Case 186c 5.18e-4 Case 153b 2.11e-3 Case 200d 0.012 Case 194b 0.074 Case 109 1.982
Case 92 5.74e-5 Case 108b 5.23e-4 Case 171a 2.18e-3 Case 154 0.012 Case 196d 0.077 Case 215 2.873
Case 170b 6.64e-5 Case 50 5.28e-4 Case 108a 2.20e-3 Case 15 0.012 Case 196a 0.081 Case 103 3.955
Case 213a 6.87e-5 Case 162 5.31e-4 Case 194a 2.30e-3 Case 119 0.012 Case 122d 0.083 Case 156 4.356
Case 129c 7.28e-5 Case 20 5.72e-4 Case 64 2.55e-3 Case 200b 0.012 Case 204c 0.099 Case 25 4.807
Case 100b 7.38e-5 Case 190a 5.80e-4 Case 189 2.55e-3 Case 171b 0.013 Case 69 0.105 Case 178a 4.901
Case 70b 7.58e-5 Case 46b 6.01e-4 Case 97 2.60e-3 Case 84c 0.013 Case 131b 0.105 Case 37b 5.145
Case 138b 7.60e-5 Case 99b 6.05e-4 Case 212c 2.77e-3 Case 179b 0.014 Case 207 0.106 Case 182c 5.693
Case 145b 8.02e-5 Case 150 6.30e-4 Case 169 2.80e-3 Case 56a 0.015 Case 176a 0.110 Case 182a 6.438
Case 5 8.60e-5 Case 220 6.45e-4 Case 196c 2.83e-3 Case 190c 0.015 Case 178b 0.122 Case 202 6.830
Case 218d 9.44e-5 Case 128b 6.51e-4 Case 129b 2.84e-3 Case 98d 0.016 Case 84a 0.124 Case 194c 6.852
Case 111a 9.83e-5 Case 120 6.60e-4 Case 40 2.91e-3 Case 197b 0.016 Case 195b 0.125 Case 183b 7.026
Case 133 1.04e-4 Case 60 6.64e-4 Case 194d 2.96e-3 Case 130c 0.017 Case 122b 0.126 Case 90 7.247
Case 85 1.05e-4 Case 118 6.87e-4 Case 95 3.12e-3 Case 98b 0.017 Case 139 0.133 Case 146 8.899
Case 127a 1.09e-4 Case 200a 6.96e-4 Case 195a 3.12e-3 Case 144a 0.017 Case 197a 0.135 Case 2 14.417
Case 106c 1.20e-4 Case 43a 7.11e-4 Case 4 3.12e-3 Case 98a 0.018 Case 131c 0.145 Case 158a 14.571
Case 166a 1.24e-4 Case 187b 7.15e-4 Case 179a 3.13e-3 Case 67 0.018 Case 153a 0.147 Case 49 15.823
Case 136c 1.24e-4 Case 19 7.23e-4 Case 111c 3.21e-3 Case 51 0.020 Case 17 0.150 Case 158c 19.139
Case 136a 1.40e-4 Case 108d 7.29e-4 Case 56c 3.43e-3 Case 209b 0.020 Case 222 0.154 Case 157 19.673
Case 105 1.41e-4 Case 177 7.45e-4 Case 141 3.61e-3 Case 42 0.020 Case 41d 0.156 Case 135b 47.605
Case 126a 1.46e-4 Case 155 7.98e-4 Case 206b 3.62e-3 Case 107 0.021 Case 76b 0.170 Case 12 52.566
Case 74 1.53e-4 Case 186a 8.21e-4 Case 206d 3.66e-3 Case 186d 0.022 Case 75 0.175 Case 28 4.17e+8
Case 148c 1.65e-4 Case 61a 8.36e-4 Case 199b 3.72e-3 Case 24 0.023 Case 23 0.177
Case 101a 1.66e-4 Case 213b 8.50e-4 Case 212b 3.84e-3 Case 94 0.023 Case 209d 0.178

1e−11

1e−07

1e−03

1e+01

cfr−nl l−regr l−svr mlp grad−b xg−b ada−b rf krnl−r lasso−l sgd−r

Tr
ai

n
M

S
E

 (l
og

 s
ca

le
)

(a) Training Performance

1e−04

1e−01

1e+02

cfr−nl l−regr l−svr mlp grad−b xg−b ada−b rf krnl−r lasso−l sgd−r

Te
st

 M
S

E
 (l

og
 s

ca
le

)

(b) Testing Performance (cropped y-axis values > 1e+02)

Fig. 1. Box plot showing the average MSE score (in log10 scale) by 10 machine learning algorithms and the proposed method (cfr-nl) for LOOCV of
352 Functions in a) Training Sets and b) Testing Sets. To better visualize the testing performance in (b) we have limited the y-axis to the maximum 1e+02
which removes a single case (a dataset with only six samples) in which all methods have terrible bad result due to the existence of a problematic outlier [23]
way out of the normal range.

TABLE V
NUMBER OF TIMES THE ALGORITHM RANKED 1ST AND LAST (L) FOR THE
PERFORMANCES ON 352 DATASET FOR TRAINING (t.) AND TESTING (T.)

WITH LOOCV

Alg. t.1st t.L T.1st T.L Alg. t.1st t.L T.1st T.L
cfr-nl 350 0 192 25 rf 0 0 4 1
l-regr 0 0 97 4 krnl-r 0 0 3 109
l-svr 2 0 22 2 xg-b 0 0 3 1
mlp 0 224 15 5 lasso-l 0 0 0 9
ada-b 0 128 10 6 sgd-r 0 0 0 196
grad-b 0 0 6 1

not only achieves impressive training (t.) performance (350
times ranked 1st) but also achieved the 1st rank 192 times (i.e.
54.5 percent of the time) for the testing (T.) performances.
It has ranked last only for 25 testing cases (7.1 percent)
and never ranked last for training. The closest performing
algorithm of cfr-nl is the well-established linear regression
(l-regr) method which has become 1st 97 times in testing
but never become 1st in training. It has ranked last in only
4 cases in testing. Multilayer Perceptrons Regressor (mlp)
and Adaptive Boosting Regression (ada-b) are two of the
worst-performing algorithms based on the ranking of training
performances. On the other hand, Least-Angle Regression with
Lasso (lasso-l) and Stochastic Gradient Descent (sgd-r)
regression are the only algorithms that have never be able to
rank 1st for any testing case. Moreover, sgd-r has ranked last
in 196 times for testing sets, which is the worst performance
among all algorithms.

D. Statistical Significance Test

We applied a modification of the Friedman test [24] by Iman
and Davenport [25] to test whether there exist any significant
differences in the median rankings of the algorithms based on
their MSE scores. The statistical test found p-value < 2.2e-16
(with Corrected Friedman’s chi-squared = 68.089, df1 = 15,
df2 = 1395) which indicates that the null hypothesis “all

the algorithms perform the same” can safely be “rejected”.
Therefore, we proceeded with the post-hoc test.

For post-hoc test, we have applied Freidman’s post-hoc
test on the median rankings of the algorithms based on test
MSE scores. Obtained p-values are plotted in the heatmap
shown in Fig. 3. In the heatmap, the dendogram showed
the hierarchical grouping of the algorithms according to their
similarity of p-values. From the heatmap, it is noticeable that
there exist ‘no significant differences’ (see the Color Key
for the corresponding p-value) in performances of the pairs:
{cfr-nl, l-regr}, {l-svr, mlp}, {xg-b, ada-b} and
{grad-b, ada-b}.

In addition to the post-hoc results illustrated with heatmap,
the Critical Difference (CD) diagram proposed in [26] can
also be used to visualize the differences among algorithms.
The CD plot is based on the Nyemeni post-hoc test and might
have slightly different results from the pairwise Friedman test
we had done in the post-hoc test. It places the algorithm on the
x-axis of their median ranking of performances and computes
the critical difference of rankings between the algorithms. If
the ranking difference of any pair of algorithms is greater
than the critical difference, they are regarded as ‘significantly
different’. Finally, the statistically ‘non-significant’ algorithms
are connected in a group with horizontal lines.

We plot the CD graph (in Fig. 4) using the implementation
of [27] for our experiments with a significance threshold of
p = 0.05. The statistical non significant different algorithms
are connected by the horizontal line in the plot. We can see that
no significant differences exist in the performance rankings of
{cfr-nl, l-regr}, {l-svr, mlp, grad-b, ada-b} and
{grad-b, ada-b, xg-b} sets of algorithms on 352 datasets.
Moreover, the median ranking of cfr-nl is less than three
(3), which is the best result among all of the algorithms.

E. Discussion

After analyzing the median performance ranking of 10 state-
of-the-art machine learning-based regression algorithms (on a

3

6

9

cfr−nl l−regr l−svr mlp grad−b ada−b xg−b rf krnl−r lasso−l sgd−r

R
an

k
(in

 T
ra

in
in

g
S

et
s)

(a) Training Rank

3

6

9

cfr−nl l−regr l−svr mlp grad−b ada−b xg−b rf krnl−r lasso−l sgd−r

R
an

k
(in

 T
es

tin
g

S
et

s)

(b) Testing Rank

Fig. 2. Violin plot showing the observed ranking (computed on MSE Scores in LOOCV) of all algorithms on 352 functions in the ascending order of their
median ranking on testing data in a) Training Sets and b) Testing Sets.

l−
sv
r

m
lp

cf
r−
nl

l−
re
gr

sg
d−
r

kr
nl
−r

la
ss
o−
l

rf

gr
ad
−b

xg
−b

ad
a−
b

l−svr

mlp

cfr−nl

l−regr

sgd−r

krnl−r

lasso−l

rf

grad−b

xg−b

ada−b

0 0.2 0.4 0.6
Value

Color Key

Fig. 3. Heatmap showing the levels of p-values obtained by the Post-hoc
pairwise Test using Freidman’s Aligned Rank Test for the performances of
the algorithms.

2 3 4 5 6 7 8 9 10 11
CD

cfr−nl
l−regr
l−svr
mlp

grad−b
ada−b

xg−b
rf
krnl−r
lasso−l
sgd−r

Fig. 4. The critical difference (CD) plot show the statistical significance of
rankings for achieved MSE scores on 352 datasets. Groups of algorithms that
are ‘not significantly different’ (at p = 0.05) are ‘connected’ with a horizontal
line.

total of 358 datasets), our proposed approach exhibited better
performances while compared with most of the approaches,
particularly in the 352 datasets collected by Schaffer. We
note that for these, an important fact distinguishes them,
i.e. “a governing functional relationship was reported”. The
significance of the performance of cfr-nl is also supported
by statistical testing. Nevertheless, surprisingly, in this col-
lection of datasets, it has become closer and competitive to
l-regr. This is in contrast with what we observed in [5],
where the only statistically similar algorithm (in terms of
generalization performance on the Penn Machine Learning

Benchmark Database) to our approach based on analytic
continued fractions was Extreme Gradient Boosting (xg-b).
In this case, xg-b has a relatively lower performance since not
only cfr-nl and but also l-regr have statistically better
performances. Moreover, in this case xg-b is not statistically
different to Support Vector Regression (l-svr), Multilayer
Perceptrons Regressor (mlp), Gradient Boosting Regression
(grad-b), and Adaptive Boosting Regression (ada-b).

In terms of the generalization performance (shown in
Fig.1(b)), the proposed method outperformed all of the state-
of-the-art machine learning algorithms for the median MSE
scores (50th percentile). It maintains the same lead in terms of
the rankings of the algorithms shown in Fig. 2. Furthermore,
the method outperformed all algorithms for the number of
times an algorithm was ranked 1st among the 11 methods.
The results of these exploratory analyses, together with the
lead is shown by our approach in a different dataset in [5],
collectively advocate for the superiority of cfr-nl over all of
the state-of-the-art machine learning-based regression methods
in terms of its generalization performance.

We note that for this study, we conducted two types of
statistical tests. The post-hoc test (illustrated in Fig. 3) revealed
that there exists ‘no significant difference’ in performances
between the leading methods, our cfr-nl and linear regres-
sion (l-regr), on this 352 datasets. In the critical difference
plot (shown in Fig. 4), cfr-nl has shown the best ranking,
just with ‘no significant difference’ against the ranking of
l-regr. The statistical tests confirmed that cfr-nl is a
better approach than most (9 out of 10) of the ML methods
and at least comparable with the linear regression in predicting
functions form real-world physics problems. We note that
when using the Penn Machine Learning Database, l-regr
did not perform as well, being the second last performing
method. This also speaks of the robustness obtained by using
analytic continued fractions and within a memetic algorithm
approach that also performs variable selection.

VII. CONCLUSIONS AND FUTURE WORK

In the future we would like to explore the possibility of
introducing new variables which may be linked via simple

arithmetic forms to the existing ones and let the memetic
algorithm search for the best combinations to build models.
We know, for instance, that in some cases it may lead to faster
convergence of the analytic continued fraction. As an illustra-
tive example, we know that x tan(x) can be approximated as
follows [28]:

x tan(x) =
x2

1−
x2

3−
x2

5−
x2

7−
. . .

(7)

so it seems reasonable to extend the methodology to include
the possibility that given a dataset S = {(x(i), y(i))}, we
can explore the combination of the variables. This is very
interesting as the pioneering algorithm E* proposed by C.
Schaffer [20], the curator of the dataset are we now using, is
based in considering only the linear relationships y = k1x+k2,
six types of “power proportionalities” (i.e. of the form y = xn

for n ∈ {−2,−1,−.5, .5, 1, 2}), as well as the null answer
”No relationship identified”. We aim then to explore if the
introduction of combination of variables and the use of “power
proportionalities” can help to extend the set of original vari-
ables and perhaps lead to faster convergent analytic continued
fractions with better results in generalization.

The good performance of boosting based algorithms (e.g.
grad-b, ada-b, and xb-g) in this study in Table III,
together with the relatively good result of xb-b and grad-b
in [5] motivates us to consider including boosting within our
methodological framework. In conclusion, putting together
the performance of our memetic algorithms that use analytic
continued fractions, compared with many current algorithms
for multivariate regression, indicate that this approach deserves
further investigation.

ACKNOWLEDGMENT

We thank Markus Wagner for his thoughtful comments on
an earlier version of the manuscript.

REFERENCES

[1] H. Sun and P. Moscato, “A memetic algorithm for symbolic regression,”
in IEEE Congress on Evolutionary Computation, CEC 2019, Wellington,
New Zealand, June 10-13, 2019. IEEE, 2019, pp. 2167–2174.

[2] P. Moscato and L. Mathieson, “Memetic algorithms for business an-
alytics and data science: A brief survey,” in Business and Consumer
Analytics: New Ideas, P. Moscato and N. J. de Vries, Eds. Springer,
2019, pp. 545–608.

[3] L. Euler, Introductio in analysin infinitorum, 1748, vol. 1, ch. 18,
Reprinted as Opera (1)8.

[4] F. Backeljauw and A. Cuyt, “Algorithm 895: A continued fractions
package for special functions,” ACM Trans. Math. Softw., vol. 36, no. 3,
Jul. 2009.

[5] P. Moscato, H. Sun, and M. N. Haque. (2019) Analytic continued
fractions for regression: A memetic algorithm approach. arXiv. [Online].
Available: https://arxiv.org/abs/2001.00624

[6] O. Eg̃eciog̃lu, Ç. K. Koç, and J. R. Coma, “Fast computation of con-
tinued fractions,” Computers & Mathematics with Applications, vol. 21,
no. 2, pp. 167 – 169, 1991.

[7] I. Fajfar, J. Puhan, and A. Bũrmen, “Evolving a Nelder-Mead algorithm
for optimization with genetic programming,” Evolutionary computation,
vol. 25, Jan 2016.

[8] P. Orzechowski, W. La Cava, and J. H. Moore, “Where are we now?:
A large benchmark study of recent symbolic regression methods,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
ser. GECCO ’18. New York, NY, USA: ACM, 2018, pp. 1183–1190.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine Learning in Python ,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[10] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine
learning software: experiences from the scikit-learn project,” in ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
2013, pp. 108–122.

[11] H. Drucker, “Improving regressors using boosting techniques,” in Pro-
ceedings of the Fourteenth International Conference on Machine Learn-
ing, ser. ICML ’97. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1997, pp. 107–115.

[12] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, pp. 1189–1232, 2000.

[13] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The
MIT Press, 2012.

[14] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle
regression,” Annals of Statistics, vol. 32, pp. 407–499, 2004.

[15] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and Computing, vol. 14, no. 3, pp. 199–222, Aug 2004.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[17] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, Oct 2001.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res.,
vol. 12, pp. 2825–2830, Nov. 2011.

[19] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: ACM, 2016, pp. 785–794.

[20] C. Schaffer, “A proven domain-independent scientific function-finding
algorithm,” in Proceedings of the 8th National Conference on Artificial
Intelligence. Boston, Massachusetts, USA, July 29 - August 3, 1990,
2 Volumes, H. E. Shrobe, T. G. Dietterich, and W. R. Swartout, Eds.
AAAI Press / The MIT Press, 1990, pp. 828–833.

[21] D. Dua and C. Graff. (2017) UCI machine learning repository. Website.
[Online]. Available: http://archive.ics.uci.edu/ml

[22] R. A. Millikan, “The isolation of an ion, a precision measurement of
its charge, and the correction of Stokes’s Law,” Phys. Rev. (Series I),
vol. 32, pp. 349–397, Apr 1911.

[23] G. K. von Hevesy and F. A. Paneth, A manual of radioactivity. Oxford
University Press, 1926.

[24] M. Friedman, “The use of ranks to avoid the assumption of normality
implicit in the analysis of variance,” Journal of the american statistical
association, vol. 32, no. 200, pp. 675–701, 1937.

[25] R. L. Iman and J. M. Davenport, “Approximations of the critical
region of the fbietkan statistic,” Communications in Statistics-Theory
and Methods, vol. 9, no. 6, pp. 571–595, 1980.

[26] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006.

[27] B. Calvo and G. Santafé Rodrigo, “scmamp: Statistical comparison of
multiple algorithms in multiple problems,” The R Journal, Vol. 8/1, Aug.
2016, 2016.

[28] R. E. Crandall, Projects in scientific computation. Springer, 1994.

