
Two Fast Heuristics for Online Order Dispatching
Qingte Zhou, Huanyu Zheng, Shengyao Wang,

Jinghua Hao, Renqing He, Zhizhao Sun
Meituan-Dianping Group

Beijing, China
{zhouqingte, zhenghuanyu, wangshengyao,

haojinghua, herenqing, sunzhizhao}@meituan.com

Xing Wang, Ling Wang
Department of Automation

Tsinghua University
Beijing, China

wang-x17@mails.tsinghua.edu.cn,
wangling@mail.tsinghua.edu.cn

Abstract—Order dispatching, a key part in real-time food
delivery system, has received a lot of attention over the last
decade. Under constraints of on-time rate and some other
practical constraints, our goal is to maximize the total efficiency
of the whole system. As an online algorithm, the running time of
the algorithm for order dispatching is limited within milliseconds.
At the same time, the problem is highly dynamic and the
complexity of the solution space is huge. In this paper, we
design two fast heuristics for order dispatching in real-time food
delivery. We compare our algorithm with two state-of-the-art
algorithms. With numerical results, we show our algorithms are
faster than algorithms in the literature and with similar or better
solution quality.

Index Terms—Real-time food delivery, Order dispatching,
Heuristics, Real-world applications

I. INTRODUCTION

A. Background

Food delivery service is a fast growing market all over the
world. Take Meituan-Dianping, a Chinese food ordering plat-
form for example. According to 3rd quarter financial statement
[1], the revenue was $2.2 billion dollars, with a growth rate
of 39.4%. Moreover, there were 2.5 billion transactions, with
a growth rate of 38.1%. Under intense competition, designing
an efficient and effective on-time delivery system is the key
challenge. One of core algorithms in this system is order
dispatching. We assign orders to the most efficient driver so
as to maximize the overall efficiency of the delivery process.

There are three key stakeholders in food delivery, namely,
customers, restaurants and drivers. Customers require a fast
service. Restaurants require specialized and stable service.
Drivers provide delivery service, and require good delivery
experience. For example, the dispatched orders at a time
should be in the same direction. Moreover, given hours spent
on delivering food, drivers want to maximize their income, in
other words, the number of orders they finish. The platform
has to dispatch orders considering requirements from all three
parties and maximize the efficiency of drivers.

With these challenges in mind, our paper is motivated by
an order dispatching system, in which a group of drivers
are specialized to a restaurant. The dispatching process is as
Fig. 1. A customer orders food from our platform, then our
system pushes the order to the restaurant. At the same time,
we assign this order to one of our drivers. Note that we also
have common drivers who serve for all restaurants, who can be

Fig. 1. The order dispatching process.

assigned orders from this restaurant as well. Therefore, there
is a two-stage process deciding either assigning the order to a
specialized driver or a common driver first, and then finding
the best driver to assign. In our setting, specialized drivers are
cheaper than common drivers, thus it is preferable to assign
the order to a specialized driver. Our purpose is to maximize
the percentage of orders that assigned to specialized drivers,
under the constraints of serving customers on-time, and some
other practical constraints. For example, we have to dispatch
the same direction orders at a time. Moreover, drivers have to
finish all delivery tasks before pickup tasks next round.

The major difficulty for this problem are two folds. One
is that the problem is highly dynamic. Orders are not known
before the minute of dispatching. The other one is that the
solution space is growing fast with problem scale.

Unlike traditional vehicle routing problems or pickup and
delivery problems, orders in our setting are not known be-
forehand. In this problem, orders are generated in real time.
The decision of dispatching orders to drivers now will affect
future driver behaviors. Therefore, we have to solve the order
dispatching problem dynamically. In this paper, we reschedule
drivers’ routes in each minute and make decisions based on
these routes.

Another difficulty is that the solution space is exponentially

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

growing with the number of orders and drivers. We have tens
of orders for each restaurants each minute at peak hours. And
we also have tens of specialized drivers for a restaurant as
well as hundreds of common drivers in the same area. To
find an optimal solution is super time consuming. We have
to balance between computation time and optimality. As an
online algorithm, order dispatching has to be done within
milliseconds to meet the need of fast delivery. However, a fast
heuristic is usually near sighted, with the loss of optimality.
In this paper, we aim to find fast heuristics with better
performance and shorter computation time than the state-of-
the-art heuristics.

B. Literature Review

As far as we concerned, the most relevant problem to our
setting is the pickup and delivery problem with time windows
(PDPTW), which is an extension of vehicle routing problem
with time windows (VRPTW). In the past few decades,
extensive research has been carried on and a large number
of approaches have been proposed for traditional PDPTW.
They can be roughly classified into three categories: exact
algorithms, meta-heuristics-based approaches, and construc-
tion heuristics. Generally, exact algorithms [2], [3] establish
the integer programming formulation of the problem and
find optimal solutions via branch-and-bound-based algorithms.
Exact algorithms are usually restricted to small-scale PDPTWs
because the computation cost increases rapidly as the problem
size grows.

Considering the capability of providing good-quality so-
lutions for larger-scale instances in limited time, researchers
turn their attention to heuristics and meta-heuristics. Heuristics
are often fast and easy to implement. Lu and Dessouky [4]
proposed an insertion-based heuristic to solve the multi-driver
pickup and delivery problem with time windows. During the
insertion, they considered the insertion cost that not only
includes the classical incremental distance but also the cost of
the reduction of the time window slack due to the insertions.
Hosny and Mumford [5] developed a sequential construction
heuristic (SEQ) which tries to gradually modify the current
route until no further improvement is possible, and then the
feasibility of current route is checked. The procedure ended
when all requests have been inserted into the routes. They
concluded that the proposed SEQ proves to be the most
favorable solution construction method compared to some
adapted parallel construction algorithms [6]. Qu and Curtois
[7] proposed two iterative heuristic algorithms for the job
insertion problem, which is a special case of PDPTW. They
developed two methods to select the next job to insert, the
first one using a greedy heuristic and the second using a
regret heuristic. During insertion, they occasionally choose the
second, third or fourth best options instead of simply choosing
the best option. They conclude that the greedy heuristic is
favorable according to computational results.

Compared with heuristics, meta-heuristics require more
computation time but the ability of giving a high quality
solution is significantly enhanced. Nanry and Barnes [8] are

among the first to present a meta-heuristic for the PDPTW.
Their approach is based on a reactive tabu search algorithm
that combines several standard neighborhoods. Pankratz [9]
proposes a grouping genetic algorithm (GGA) for solving the
PDPTW which features a group-oriented genetic encoding
in which each gene represents a group of requests instead
of a single request. Ropke and Pisinger [10] extended the
large neighborhood search (LNS) previously suggested for
VRPTW [11] and present an adaptive LNS, which is composed
of several removal and insertion heuristics that are used
with a frequency corresponding to their historic performance.
Nagata and Kobayashi [12] extended a guided ejection search
(GES) algorithm to solve the PDPTW. They showed that the
perturbation procedure has a great impact on both the solution
quality and computation time to which they gave a careful
attention. Other hybrid methods [13]–[15] also gives good
performance, trying to combine the merits of different meta-
heuristics.

For the dynamic version of PDPTW, The standard solution
methodology is the use of a rolling time horizon proposed
by Psaraftis [16]. Mitrovic-Minic et al. [17] introduces the
concept of double-horizon based heuristics for the dynamic
PDPTW. Such heuristics may be applied to both routing
and scheduling subproblems. Extensive computational experi-
ments have shown that the use of a double-horizon can yield
gain in route costs when compared with classical (single)
rolling horizon methods. Anker and Hmmerle [18] proposed
an optimization algorithm called KoTH-ACO based on the
MAX-MIN Ant System. Their KoTH algorithm shows faster
convergence and better solution qualities than the MAX-MIN
Ant System in benchmark instances. Gianpaolo Ghiani et al.
[19] presented a simple but effective policy that every time a
new request occurs, allocates it with the goal of minimizing the
overall customers inconvenience. The basic idea is to reserve
a fraction of the vehicles to service the requests qualified for
being satisfied as soon as possible. Guo et al. [20] proposed a
two-phase method for robust dynamic multi-objective vehicle
routing problem. The experiments show that the proposed
method can find more robust routes with less computation cost.
A comprehensive review of dynamic PDPTW can be found in
[21].

However, the exact algorithms and meta-heuristics-based
approaches mentioned above are not suitable for real-time
order dispatching due to the following reasons.

i) Online order dispatching problem requires that existing
order sequence on every driver can not change when inserting
the new order into original route.

ii) New orders to be inserted should not violate capacity, on
time, same direction, and delivery before pickup constraints.

iii) The computation time of the algorithm is supposed to be
millisecond level because of the scenario where the algorithm
is executed.

To the best of our knowledge, there is no work addressing
the same problem as ours. In this paper we describe real-
time order dispatching problem in detail, with some real-life
complexities. We also develop two fast heuristics to provide

a solution with good quality, which is designed by modifying
the classical greedy and regret heuristics.

The remainder of this paper is organized as follows. Section
II describes online order dispatching problem and elaborate
the constraints. The proposed algorithm is then presented in
Section III, including modified greedy insertion heuristic and
modified regret insertion heuristic. Computational results are
reported in Section IV. Section V gives a discussion about the
relationship between our problem and evolutionary algorithms.
Section VI concludes the paper with analysis and future
research.

II. PROBLEM DESCRIPTION

This section describes real-time order dispatching problem
by elaborating constraints and objective function in detail. In
real-world applications, the new orders generate continuously.
We gather the new orders generated from last minute with the
consideration of order urgency and computation complexity.

For every minute, the order dispatching problem contains
n new orders and m drivers. Let W = {1, 2, . . . , n} be
the set of new orders to be dispatched. Each order i has
a pickup node and a delivery node, which are denoted as
{i+, i−} respectively. Denote the set of pickup nodes as
V + = {i+|i ∈ W} and the corresponding delivery nodes
as V − = {i−|i ∈ W}. V = V +

⋃
V − represents the nodes

that are associated to the new orders. Let R = {1, 2,m}
be the set of drivers. The starting position of driver j is
denoted as j+, and H = {j+|j ∈ R} is the set of starting
positions of all drivers. Moreover, there is a sequence of
dispatched orders, either picked-up already or not. Say that
driver j is now working on several orders, which are denoted
as Ωj , and Ω = {Ωj |j ∈ R}. Similarly, the set of unvisited
pickup and delivery nodes of dispatched orders is denoted as
U = U+

⋃
U−, where the number of pickup and delivery

nodes may not be identical.
Each order i ∈ W

⋃
Ω has an earliest pickup time TPi. A

driver cannot pick up the food of order i before TPi. There
is also an estimated time of arrival ETAi, which is a promise
to customers when the order is generated. For every possible
node p, q ∈ V

⋃
H
⋃
U , the travel distance is denoted as dpq ,

the travel time is denoted as tpq , the visiting time of node p is
Dp. A heterogeneous fleet of drivers starts from their current
position, moving according to the route assigned to them.
Every driver has a maximum capacity Q, which limits the
maximum quantity of goods the driver can carry at a certain
time.

A feasible solution to online order dispatching problem is
a feasible matching from orders to drivers. Then we can form
a set of feasible routes obtained by inserting the new orders
into the original routes of drivers. The sequence of dispatched
order nodes that the driver is executing should not be changed.
For each assigned order, the pickup and delivery nodes have
to be visited exactly once by the same driver. The pickup node
has to be visited before the corresponding delivery node. In
addition, each feasible route is constructed without violating
the following constraints.

(a) The original route

(b) An infeasible new route

Fig. 2. Explanation of the same direction constraint.

(a) The original route

(b) An infeasible new route

Fig. 3. Explanation of the delivery before pickup constraint.

i) On time: Define the overtime OT i of order i as follows:

OT i = max(0, Di− − ETAi) (1)

If order i is assigned to driver j and the corresponding pickup
node is inserted at position ki in the route of driver, then the
overtime of all orders after position ki has to be 0.

ii) Same direction: If the new order is near enough, we do
not consider this constraint. Otherwise we define set Φ, which
is composed of delivery nodes of driver’s original route. Note
that there may be delivery nodes too close to the restaurant, we
delete them from set Φ. Each delivery node i in set Φ forms
a vector, say ~i for example, starts from the restaurant and
ends at the delivery node. When there is a new order inserting
into the route, we calculate ~new, which also starts from the
restaurant and ends at the delivery node. The constraint says
that each angle composed by~i and ~new has to be less than
a certain angle. Fig. 2 explains the constraint with a graphic
example. Fig. 2(a) shows the original route, in which orders
1, 2, 3 are picked up first and delivered one after another. Fig.
2(b) shows the new route where the pickup node and delivery
node of new order is inserted into the start and the end of the
original route, respectively, which violates this constraint.

iii) Delivery before pickup: If the new order is near enough,
we do not consider this constraint. Otherwise, all orders
a driver has already picked up should be delivered before
picking up a new order. Fig. 3 shows the situation where
the constraint is violated. The original route of the driver is
to finish deliveries of order 1, 2, 3 sequentially as shown in
Fig. 3(a). If the pickup node of a new order 4 is inserted in
a position like Fig. 3(b), then the constraint is not satisfied,
which means that the driver has to go back to the restaurant
again before finishing delivery tasks already assigned.

The objective is to maximize the order dispatched rate
(ODR), which is computed by (2):

ODR =
DN

TN
(2)

where DN represents the number of new orders dispatched
to specialized drivers, and TN represents the number of all
new orders. The problem is to dispatch as many new orders
to specialized drivers as possible, given constraints mentioned
above.

III. PROPOSED APPROACH

The online order dispatching is a highly dynamic problem.
Every minute, we do the following rescheduling process shown
in Fig. 4.

We collect the information of new orders and drivers from
the last minute as algorithm input. Then we calculate the
dispatch results as output. Finally we push the new orders
to corresponding drivers and notice them their new routes.

Two fast heuristics namely modified greedy insertion (MGI)
heuristic and modified regret insertion (MRI) heuristic are
proposed for the problem described in Section II. These
heuristics are based on greedy insertion (GI) heuristic and
regret insertion (RI) heuristic [10], respectively. GI and RI are

Fig. 4. Online order dispatching process.

chosen as state-of-the-art route construction heuristics because
they are effective and efficient algorithms, widely used in the
literature. The main difference between our MGI and MRI
is the way they rank orders when inserting orders to the
route. Therefore, we can describe the main process of both
algorithms with the following pseudo-codes, which are shown
in Algorithm 1.

The inputs are the set of unassigned new orders W and the
set of drivers R. For each driver r, an initial route is given
according to the sequence of dispatched order nodes that the
driver is executing. Let ∆fw,r denote the lowest incremental
insertion cost of inserting order w into route of driver r.
The metric of insertion cost is the total time consumption,
including travel time and waiting time. Set ∆fw,r = ∞
if order w cannot be inserted into route of driver r. If an
order w cannot be inserted into any position of any route
due to the violation of constraints described in Section II,
we remove it from W . For a given order w, we define
cw = minr∈R{∆fw,r}, which is the cost of inserting order
w at its best position overall. This position is denoted as the
minimum cost position.

As for the ranking of unassigned orders, two different
criteria are proposed, which will be introduced in subsections
III-A and III-B. According to the sequence of sorted order list
Ws, we insert the order into its minimum cost position one by
one until meeting driver r who has been assigned order in the
same iteration. We denote AR as the set of drivers who are
assigned orders in each iteration. Then we need to update the

Algorithm 1 Pseudo-codes of MGI and MRI
Require: the set of unassigned orders W and the set of drivers

R with original routes;
1: Calculate ∆fw,r for each order w ∈W and driver r ∈ R

pair;
2: while W ! = Ø do
3: for w in W do
4: if there is no feasible position for w to insert then
5: W = W\w;
6: end if
7: end for
8: Rank the orders W according to modified greedy cri-

terion or modified regret criterion and get sorted order
list Ws;

9: Initialize the set of assigned orders AO = Ø and the
set of assigned drivers AR = Ø;

10: for w in Ws do
11: Find the driver r∗ with lowest cost cw;
12: if r∗ /∈ AR then
13: Insert order w into its minimum cost position;
14: AO = {AO,w};
15: AR = {AR, r∗};
16: else
17: break;
18: end if
19: end for
20: W = W\AO;
21: if W ! = Ø then
22: Update ∆fw,r for each order w ∈W and driver r ∈

AR pair;
23: end if
24: end while

related insertion cost ∆fw,r for each unassigned order w ∈W
and driver r ∈ AR pair. This process continues until all orders
have been assigned or no more orders can be inserted into any
feasible position.

Observe that in each iteration, instead of dispatching only
one order like GI and RI, we dispatch at least one order
and usually many orders. This means that our proposed
heuristics may use less iterations and less times of insertion
cost recalculation. Therefore, we expect our MGI and MRI to
be faster heuristics.

A. Modified Greedy Criterion

The greedy insertion heuristic executes a feasible order
insertion into a driver’s route with the lowest cw at each
iteration. Since the objective of the problem is to maximize
order dispatched rate, the greedy insertion heuristic may be
myopic and lead to a low quality solution.

We try to improve the performance of greedy insertion
heuristic by incorporating information from the number of
feasible drivers. We first rank all the orders by its feasible
drivers number, the smaller the better. When comparing two
orders with the same number of feasible drivers, the one with

a lower cw is better. Here, the number of feasible drivers is
used to evaluate an order’s current feasibility, which provides
a look-ahead guidance. An order with lower feasibility needs
to be assigned with higher priority.

B. Modified Regret Criterion
The regret insertion heuristic improves the greedy insertion

heuristic through the use of a look-ahead strategy. For each
order, let xw,i ∈ {1, . . . , R} be a variable indicating the driver
for which order w has the ith lowest insertion cost. Then, the
regret value of order w can be defined as:

RVw =

k∑
i=2

(
∆fw,xw,i

−∆fw,xw,1

)
(3)

The regret insertion heuristic selects the order with maxi-
mum regret value and insert it into its minimum cost position.
However, the influence of ∆fw,xw,i −∆fw,xw,1 with different
i can be different and should not be weighted equally. For
example, the difference between the cost of the 2nd driver and
the 1st driver can be weighted much higher than the difference
between the cost of the 10th driver and the 1st driver. Because
an order is much less likely to be assigned to its 10th driver
than 2nd driver.

In our proposed MRI, we use a decay rate γ ∈ (0, 1) to
control the weight of ∆fw,xw,i

−∆fw,xw,1
for ith driver. And

the regret value of order w in MRI can be defined as:

RV ∗w =

k∑
i=2

(
∆fw,xw,i

−∆fw,xw,1

)
γi−2 (4)

For order with only one feasible rider to assign, we set
RV ∗w = −∆fw,xw,1 .

The parameter k controls the number of drivers that we
need to consider in regret insertion heuristic. In our modified
regret criterion, we determine the parameter k according to
the number of feasible drivers. We also first rank all the
orders by its number of feasible drivers, the smaller the better.
When comparing two orders with the same number of feasible
drivers, the one with higher RV ∗w is better. Generally speaking,
we choose the insertion with least feasibility and most regret
value if it is not done now. Under this criterion, we not only
maintain the ability of looking ahead, but also reduce some
redundant calculation.

IV. EXPERIMENTAL RESULTS

In this section, numerical experiments are provided to test
the performance of proposed heuristics. First, we give an
overall comparison of the four heuristics. Then we compare
MGI with GI and MRI with RI in terms of solution quality
and computation time, respectively. 20 instances are randomly
sampled from real order dispatching problems. We partition
the instance set into two sets, ‘21 to 30’, and ‘31 to 40’,
according to the number of new orders. The decay rate γ of
MRI is set as 0.5.

All experiments are run on a MacBook Pro with 2.2 GHz
processors / 16 GB RAM under Mac OS. All the algorithms
are coded in Java SE8 using Intellij IDEA.

A. Overall Comparison of Four Heuristics

In this subsection, we give an overall comparison of four
heuristics, including MGI, MRI, GI and RI.

Table I demonstrates the average performance of four
heuristics on 20 instances. From Table I, we can see that the
order dispatched rates (ODR) of MGI, MRI and RI are quite
close, which are significantly higher than GI. This means that
proposed MGI and MRI obtain very near solutions with RI for
all test instances and outperform GI. As for computation time,
two proposed heuristics are faster than their original version.
The average computation time of MGI and GI is 101.28ms
and 115.17ms, which is 12.06% faster. Meanwhile, the average
computation time of MRI and RI is 111.11ms and 140.69ms,
which is 21.02% faster. From the above analysis, it can be
confirmed that the effectivenesses of MRI and MGI is not
harmed by our speeding up technique.

Table II shows the average performance of four heuristics on
‘21 to 30’ instances set. It is seen that two proposed heuristics
outperform original heuristics in both solution quality and
computation time.

Table III compares the average performance of four heuris-
tics on ‘31 to 40’ instances set. We can find that MGI is better
than GI in terms of order dispatched rate and time consump-
tion. Compared with RI, the order dispatched rate of MRI is
slightly lower but the computation speed is significantly faster.

From the comparison above, we show the effectiveness and
efficiency of two proposed heuristics by comparing our results
with RI and GI in the literature.

TABLE I
PERFORMANCE OF FOUR HEURISTICS ON ALL INSTANCES

Heuristic Average ODR (%) Average time (ms)
MGI 64.65 101.28
MRI 65.47 111.11

GI [10] 60.23 115.17
RI [10] 65.63 140.69

TABLE II
PERFORMANCE OF FOUR HEURISTICS ON INSTANCES WITH 21 TO 30

NEW ORDERS

Heuristic Average ODR (%) Average time (ms)
MGI 68.68 94.05
MRI 69.75 93.26

GI [10] 62.99 99.74
RI [10] 69.40 111.87

TABLE III
PERFORMANCE OF FOUR HEURISTICS ON INSTANCES WITH 31 TO 40

NEW ORDERS

Heuristic Average ODR (%) Average time (ms)
MGI 61.21 108.51
MRI 61.82 130.59

GI [10] 57.88 128.96
RI [10] 62.42 169.52

B. Comparison between MGI and GI

In this subsection, we compare the proposed MGI with GI
instance by instance.

Fig. 5 shows the order dispatched rates of MGI and GI over
20 instances. It illustrates that order dispatched rates of MGI
are higher than GI on almost all instances. GI often postpones
the insertion of difficult orders, so that most of time GI cannot
insert these orders to any feasible position as many of the
routes are already full of orders. But with the information of
the number of feasible drivers, MGI reduces the greediness of
GI, which leads to a better solution in most of the time.

As for computation time, Fig. 6 indicates that MGI is faster
than GI on 18 of 20 instances. Since MGI may insert more
than one order in each iteration, the number of iterations is
lower than GI on most instances, which leads to a shorter
running time.

Fig. 5. Order dispatched rate comparison between MGI and GI.

Fig. 6. Computation time comparison between MGI and GI.

C. Comparison between MRI and RI

In this subsection, an instance by instance comparison
between MRI and RI is also illustrated.

From Fig. 7, we can see that the order dispatched rates of
MRI are higher than RI on 6 of 20 instances and lower on 9
of 20. Indeed, the order dispatched rates are quite close over
all instances, which indicates that MRI and RI share similar
effectiveness on these instances.

As for efficiency, MRI is faster than RI over all the instances
in Fig. 8. We can find that the advantage of MRI over
RI on computation time increases on larger instances. With
the consideration of the number of feasible drivers, some
redundant calculation of RI can be eliminated. Since MRI may
insert more than one order in each iteration, the computation
time of MRI is also reduced.

Fig. 7. Order dispatched rate comparison between MRI and RI.

Fig. 8. Computation time comparison between MRI and RI.

V. DISCUSSION

Evolutionary algorithms have shown to be powerful for
global optimization of a wide range of problems both in
research and real-world applications. The major reason for
why we do not use evolutionary algorithms in this paper are
two folds. One is that the computation time is supposed to be
millisecond level, but evolutionary computation is relatively
time consuming. The other one is that the problem we studied

is a highly dynamic and highly constrained problem. The
region of feasibility is very limited, compared to the classical
PDPTW. When using evolutionary algorithms, it is hard to
find a feasible solution using evolutionary operators.

The solutions derived by proposed heuristics still have
some space to be improved. Evolutionary algorithms are good
choices. When the computation time is not the bottleneck,
we can start from initial solutions by proposed heuristics
and improve the solutions by designing a proper evolutionary
algorithm.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we study online order dispatching problem
considering some realistic constraints. We present two fast
heuristics, namely modified greedy insertion (MGI) and mod-
ified regret insertion (MRI), based on greedy insertion (GI)
heuristic and regret insertion (RI) heuristic, respectively. The
heuristics are tested on a series of instances that are randomly
sampled from real order dispatching problems. The results of
these experiments show that the solution quality of MGI and
MRI are consistently improved with respect to GI and are
very close to RI. As for computation time, MGI is faster than
GI and MRI is also faster than RI, which demonstrates the
efficiency of proposed heuristics.

In the future, we will take more dynamic nature of online
order dispatching problem into consideration. With the help
of machine learning, we are able to make some predictions
for the near future. Taking these predictions into the process
of decision making may lead to a better performance from a
period view.

ACKNOWLEDGEMENTS

This research is supported by the National Science Fund
for Distinguished Young Scholars of China [No. 61525304],
the National Natural Science Foundation of China [No.
61873328], and Meituan-Dianping Group.

REFERENCES

[1] (2019, Nov.) Announcement of the results for the three months ended
september 30, 2019. [Online]. Available: https://www1.hkexnews.hk/li
stedco/listconews/sehk/2019/1121/2019112100554.pdf.

[2] Q. Lu and M. Dessouky, “An exact algorithm for the multiple vehicle
pickup and delivery problem,” Transportation Science, vol. 38, no. 4,
pp. 503–514, 2004.

[3] R. Baldacci, E. Bartolini, and A. Mingozzi, “An exact algorithm for the
pickup and delivery problem with time windows,” Operations Research,
vol. 59, no. 2, pp. 414–426, 2011.

[4] Q. Lu and M. M. Dessouky, “A new insertion-based construction heuris-
tic for solving the pickup and delivery problem with time windows,”
European Journal of Operational Research, vol. 175, no. 2, pp. 672–
687, 2006.

[5] M. I. Hosny and C. L. Mumford, “New solution construction heuristics
for the multiple vehicle pickup and delivery problem with time win-
dows,” in MIC2009, Metaheuristic International Conference, 2009.

[6] J.-Y. Potvin and J.-M. Rousseau, “A parallel route building algorithm
for the vehicle routing and scheduling problem with time windows,”
European Journal of Operational Research, vol. 66, no. 3, pp. 331–
340, 1993.

[7] Y. Qu and T. Curtois, “Job insertion for the pickup and delivery problem
with time windows,” Lecture Notes in Management Science, vol. 9, pp.
26–32, 2017.

[8] W. P. Nanry and J. W. Barnes, “Solving the pickup and delivery problem
with time windows using reactive tabu search,” Transportation Research
Part B: Methodological, vol. 34, no. 2, pp. 107–121, 2000.

[9] G. Pankratz, “A grouping genetic algorithm for the pickup and delivery
problem with time windows,” OR Spectrum, vol. 27, no. 1, pp. 21–41,
2005.

[10] S. Ropke and D. Pisinger, “An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows,”
Transportation Science, vol. 40, no. 4, pp. 455–472, 2006.

[11] P. Shaw, “A new local search algorithm providing high quality solutions
to vehicle routing problems,” APES Group, Dept of Computer Science,
University of Strathclyde, Glasgow, Scotland, UK, 1997.

[12] Y. Nagata and S. Kobayashi, “Guided ejection search for the pickup
and delivery problem with time windows,” in European Conference on
Evolutionary Computation in Combinatorial Optimization. Springer,
2010, pp. 202–213.

[13] S. Naccache, J.-F. Côté, and L. C. Coelho, “The multi-pickup and
delivery problem with time windows,” European Journal of Operational
Research, vol. 269, no. 1, pp. 353–362, 2018.

[14] R. Bent and P. Van Hentenryck, “A two-stage hybrid algorithm for
pickup and delivery vehicle routing problems with time windows,”
Computers & Operations Research, vol. 33, no. 4, pp. 875–893, 2006.

[15] C. S. Sartori and L. S. Buriol, “A matheuristic approach to the pickup
and delivery problem with time windows,” in International Conference
on Computational Logistics. Springer, 2018, pp. 253–267.

[16] H. N. Psaraftis, “Dynamic vehicle routing problems,” Vehicle Routing:
Methods and Studies, vol. 16, pp. 223–248, 1988.

[17] S. Mitrovic-Minic, R. Krishnamurti, G. Laporte et al., “Double-horizon
based heuristics for the dynamic pickup and delivery problem with time
windows,” Transportation Research Part B: Methodological, vol. 38,
no. 8, pp. 669–685, 2004.

[18] M. Ankerl and A. Hämmerle, “Applying ant colony optimisation to
dynamic pickup and delivery,” in International Conference on Computer
Aided Systems Theory. Springer, 2009, pp. 721–728.

[19] G. Ghiani, E. Manni, and A. Romano, “A dispatching policy for
the dynamic and stochastic pickup and delivery problem,” in Interna-
tional Conference on Applied Physics, System Science and Computers.
Springer, 2017, pp. 303–309.

[20] Y.-N. Guo, J. Cheng, S. Luo, D. Gong, and Y. Xue, “Robust dynamic
multi-objective vehicle routing optimization method,” IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, vol. 15, no. 6,
pp. 1891–1903, 2017.

[21] G. Berbeglia, J.-F. Cordeau, and G. Laporte, “Dynamic pickup and
delivery problems,” European Journal of Operational Research, vol.
202, no. 1, pp. 8–15, 2010.

