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Abstract—The development of preference-based optimizers has
become an important trend in multi/many-objective optimization.
Among those, the knees play a vital role in environmental
selection process. Especially, they can accelerate convergence and
maintain a high degree of diversity. Motivated by this, we suggest
a new knees driven evolutionary algorithm based on pruning-
power indicator to solve multi/many-objective problems. Here,
the pruning power of a solution represents the number of points
dominated by the solution in the local partition, which is used
to identify knees. Then, an efficient pruning-power indicator
is developed and then is proven mathematically to be able to
characterize the solutions and further reduce the complexity
of the hypervolume measurement. Based on this indicator, the
algorithm uses angle-based partitioning and the nondominating
sorting to accelerate convergence and maintain diversity of solu-
tions. Finally, the algorithm is validated experimentally by using
several DTLZ and WFG test problems and common performance
measure. Experimental results validate the effectiveness of the
proposed algorithm.
Index Terms—Knees, preference, multi-objective optimization,

many-objective optimization

I. INTRODUCTION

Many real-world problems can be commonly considered
as a multi-objective or many-objective optimization problem
(MOP or MaOP) within which multiple objectives (more than
3 objectives refer to MaOP) are required to be optimized
simultaneously and they are usually conflicted with each other.
These MOPs can be found in many application areas, such
as economics, engineering, and industrial networks [1]–[6].
Obviously, no single optimal solution that can satisfy all the
objectives exists, but a set of trade-off solutions called Pareto
optimal solutions (PS) can be obtained for MOPs. According-
ly, it is expected to obtain a set of all Pareto-optimal solutions
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called Pareto-optimal front (PF) [7], [8]. Recently, evolution-
ary algorithms (EAs) have become the popular approach to
deal with MOPs and MaOPs since they have a strength of
evolving individuals to approximate different sections of the
PF simultaneously in a single run.. For these EAs, two main
goals need to be considered: to minimize the distance of the
population to the PF (i.e., convergence), and to maximize the
spread of the population along the PF (i.e., diversity). A large
number of multi-objective or many-objective EAs (MOEAs or
MaOEAs) have been developed in the literatures based on the
principle of different selection strategies, such as enhanced or
relaxed dominance [8]–[11], decomposition with scalarizing
aggregation functions [12], [13], performance indicators [14],
[15] and hybrid approaches [16], [17]. It is worthy noted that
in many MOEAs, the preferences are exploited deliberately to
boost the algorithmic performance in terms of diversity and
convergence of solutions. The preference information is used
to govern population evolution towards the specific region of
interest. For example, the solutions in the knee region of the
PF will be naturally preferred if no other specific preferences.
In KnEA [18], the knees are first identified based on the
normal boundary intersection measure, and the density of
the knee regions is adjusted by an adaptive niche strategy.
This algorithm has been shown experimentally to be efficient
for MaOPs. The KR-NSGA-II [19] utilizes the control of
knee regions as mobile reference to guide the search process.
In addition, if the reference vectors in MOEA/D can be
considered as a kind of preferences [4], they have shown the
merit of guiding the evolution of nondominated population
towards the PF with desired diversity of population. Obviously,
the use of preferences with other traditional multi-objective
approaches can provide further insights on the characteristics
of the obtained solutions.

In this paper, we suggest a new optimizer based on a
new dominance preference for MOPs and MaOPs. First, the
populations are mapped into a set of partitions in the form of
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hyperspherical coordinates. Then, the pruning power of each
solution is evaluated to represent its dominance power over
other members in their located partition. Usually, the solutions
with better pruning power are preferred in the environmental s-
election because they can make more contribution to the search
performance. Accordingly, the solutions in these partitions can
be evolved independently towards the PF with more and more
accurate approximation [18], [19].

In the proposed approach, the pruning power rate (PPR)
indicator is used to approximate the localized hypervolume
value within a local partition, which is conductive to enhancing
convergence in multi-objective space. In addition, the solutions
are regarded to evolve within different partitions rather than
along different reference vectors. Based on the PPR indicator,
the best pruning power points driven EA called BppEA is
developed, where the individuals are mapped into the hyper-
spherical coordinates system, and the space is divided into a set
of partitions. In principle, the best solutions in each partition
are selected to approximate the PF based on PPR indicator,
and this approximation will be more and more accurate with
good diversity as the evolution proceeds.

The main contributions of this paper can be summarized as
follows: The pruning power rate (PPR) evaluation method
is proposed mathematically as a new performance indicator,
which is useful to identify knees in the local part. Compared
to conventional methods based on Euclidean distance, the
PPR indicator is rather simple and effective, only using
hyperspherical cooperates of solutions to the partition, which
is more cost-efficient for many-objective optimization. In the
hyperspherical partitioning approach, each partition not only
specifies a unique subregion in the objective space, but also de-
fines the positions of solutions in hyperspherical coordinates,
which can enhance the diversity of population.

The remainder of this paper is organized as follows. In
Section II, we give the design of of pruning power indicator.
Then, the proposed algorithm are presented in Section III.
Section IV gives the experimental study. Finally, conclusions
are output in Section V.

II. PRUNING POWER INDICATOR

In this section, we aim to estimate the hypervolume domi-
nated by a given point p in its located partition, defined as the
pruning power rate of p.

In order to design the pruning power rate (PPR) criterion,
we first give two basic definitions:
Definition 1 (pruning area): ∃x ∈ pi and pi is the

ith partition if condition: S = {y|x � y, ∀y ∈ pi}, then the
pruning area of x, i.e., Darea(x), is defined as the volume of
the hypercube constructed by S, i.e., Darea(x) = V (S).
Definition 2 (pruning power rate): ∀pi, ∃x ∈ pi, if

conditions satisfy: (i) Area(pi) is the volume of the partition
hypercube covered by pi, (ii) Darea(x) is the pruning area
of x, then the PPR of x is defined as PPR(x) = Darea(x)

Area(x) .
Then, we show how to calculate PPR in a conventional

way. For bi-objective minimization problem, K partitions
are preset by one angular dimension ϕ, given a solution

p = {xp, yp} in the ith partition, as shown in Fig.1, its PPR
is calculated as

PPR(p) =
Darea(xp, yp, ϕ1, ϕ2)

Parea(ϕ1, ϕ2)
(1)

Fig. 1. Illustrating the main idea for calculating PPR(P )

From Fig.1, it is clear that yp = xptanϕp where 0 �

ϕi−1 � ϕp � ϕi � Π/2. For simplicity, we take the
notation ϕ1 = ϕi−1 and ϕ2 = ϕi. As presented in [20], the
pruning area of p is Darea(xp, yp, ϕ1, ϕ2) = Area(ϕ1, ϕ2)−
SOPC − SOPD . Then, through the mathematical deductions,
the pruning area of p where 0 � ϕ1 � ϕ2 � Π/4 is calculated
as

Darea(xp, yp, ϕ1, ϕ2) = Area(ϕ1, ϕ2)−
1

2
∗ rp ∗ sin(ϕp − ϕ1) ∗ rp ∗ sinϕp

sinϕ1
−

1

2
∗ rp ∗ sin(ϕ2 − ϕp) ∗ rp ∗ cosϕp

cosϕ2

(2)

Considering the symmetry and analogy of the case Π/4 �

ϕ1 � ϕ2 � Π/2, the total area and pruning area are defined
as

Area(ϕ1, ϕ2) =
L2

2
(2− tanϕ1 − 1

tanϕ2
)

Parea(xp, yp, ϕ1, ϕ2) =

Parea(xp, yp,
Π

2
− ϕ1,

Π

2
− ϕ2)

(3)

Nevertheless, it is difficult to calculate in high dimensions.
Thus, the equation of the PPR indicator can be further
simplified as:

PPR′(Xp) = (sin(ϕ2 − ϕp) + sin(ϕp − ϕ1))/r (4)

The detailed derivation process about PPR and PPR′ is
provided in the supplementary material1. The Pearson correla-
tion coefficient (PCC) is used to validate the linear correlation

1https://github.com/NEU-EA/CEC2020



between PPR′ and PPR in 9-partitioning case (as shown
Fig.3 in [20]). Due to the space symmetry at y = x (except
for yp

tanϕ1
= L), we only consider the lower left partitions.

Then, we select 10000 points randomly and record statistical
results in Table 1. From this table, we can observe that PPR′

strongly even extreme strongly correlates to PPR, and the
identification accuracy of PPR′ reaches more than 0.9.

TABLE I
CORRELATION AND ACCURACY OF THE REDUCED PPR

Partition mean median min max std PPR coeff
First

partition 0.98 1 0.78 1 0.057 0.87

Second
partition 0.98 1 0.84 1 0.043 0.94

Third
partition 0.99 1 0.87 1 0.033 0.93

III. PROPOSED ALGORITHM

In this section. the best pruning power points driven EA
(BppEA) is presented based on the pruning power indicator
in detail, which is inspired on the nondominated sorting
approach. The framework of BppEA is given in Algorithm
1.The main procedures of the algorithm are presented as
follows.

Algorithm 1 Main framework of BppEA.
Input: N (population size), Max Gen ( the maximum number

of generations)
Output: P (final population)

1: /* Initialization */
2: Generate the initial population Pt

3: /*n is the number of partitions*/
4: Angle Boundary = Equi volume Partition(n)
5: /* Main Loop */
6: while t ≤ Max Gen do
7: Qt = Variation(Pt)+ Mating selection(Pt)
8: St = Pt ∪Qt

9: Multi-scale normalization St

10: /* Nondominated sort at i partion */
11: Nondominated sort(St, Angle Boundary)
12: K = Compute pruning power of points (St, An-

gle Boundary )
13: Pt = Environmental selection(St, K , N )
14: t++
15: end while

A. Hyperspherical space partitioning
The main goal of hyperspherical space partitioning is to

divide the objective space into a set of partitions only by using
the angular coordinates. There are two ways to generate these
partitions. The equi-volume partitioning approach proposed in
[20] uses angular coordinates to generate a set of equi-volume
partitions. In addition, the reference vectors introduced in [12]

can also be used to construct partitions: each reference vector
is initialized as the center axis of each corresponding partition.
In this paper, we use the first approach and its main procedures
are as follows. First, the cartesian coordinates of the space
is transformed to the hyperspherical coordinate system. And
then, the following operations are performed according to [20]:
suppose N is the number of partitions, S is the m-dimensional
space, Si =

[
ϕi−1
1 , ϕi

1

]× ...×[
ϕi−1
m−1, ϕ

i
m−1

]
where ϕi−1

j and
ϕi
j are the boundary angular coordinates of ϕj in the partition

i, and Vm is the total volume of S, in order to yield several
approximately equant partitions, the volume of each partition
is set to Vm/N , and the V i

m for the ith partition is calculated
as

V i
m =

∫ r

0

∫ ϕ
j+1

1

ϕ
j
1

...

∫ ϕ
j+1

m−1

ϕ
j

m−1

dV (5)

where dV is the volume element of the ith partition. And
each of the angular coordinates ϕ1, ϕ2, ..., ϕm−1 is determined
according to the conditionV i

m = Vm/N . The details can be
referred to [20].

The following operation is to determine the boundaries of
each partition for the fairness of the partitioning. As suggested
in [20], we adopt a binary search approach to find the boundary
angular coordinates. This search is based on the assumption
that each angle ϕi is divided into k = m−1

√
N parts, which

ensures there are totally N partitions and k−1 boundary angles
in the objective space. For example in the case with m = 3
and N = 9, the objective space can be divided into 3 parts by
using ϕ1 and ϕ2, while ϕ1

1 = 48.21, ϕ2
1 = 70.55 , ϕ1

2 = 30
and ϕ2

2 = 60.

B. Multi-scale normalization
The normalization is used to ensure all normalized individ-

uals are located in the first quadrant of the coordinate system,
without distorting their relative relationships on different-scale
objectives. Here the Schur product is employed using the ideal
point Z∗ and the nadir point Znad, as

Fi(x) =
f

′

i (x) ◦ (znad − z∗)∥∥f ′

i (x) ◦ (znad − z∗)
∥∥ (6)

where f
′

i (x) is the ith translated objective value, ◦ denotes
the Schur product and it takes two matrices of the same
dimensions and produces another matrix, where each element
is the product of elements of the original two matrices.

C. Compute pruning power of points
In principle, compute purning power of points aims to s-

elect the best points in terms of the pruning power, and add
them to the population. The main steps include: (1) calculate
the pruning power values of each solution in each partition,
and (2) select a certain number of points with better pruning
values to add them in the population one by one.

Due to that the pruning power of each point is evaluated
in the form of hyperspherical coordinates, the diversity and
convergence of solutions in the space can be easily managed
according to its radial coordinate and angular coordinates.



Algorithm 2 Environmental selection(P , K , N ).
Input: P (Normalized population) K(Rank of Normalized

population) N (Number of population)
Output: Pt(Offspring population)

1: i = 0, id = 0
2: Pt = ∅, remain = ∅, n = length(K)
3: F = NDSort(P ) // nondominated sorting
4: Pt = Pt ∪ F1, i = i+ |F1|
5: while id ≤ n and i ≤ N do
6: j = 0
7: id++
8: while j ≤ (N − |F1|) /n and Kid �= ∅ do
9: Pt = Pt ∪ (S : argmaxS∈Kid

PP (s))
10: Kid = Kid\S
11: j ++
12: i++
13: end while
14: if j �= (N − |F1|) /n then
15: remain = remain∪ (id, R = (N − |F1|) /n− j)
16: end if
17: end while
18: while remain �= ∅ and i ≤ N do
19: I(id, RI) = {I : I ∈ remain}
20: adj = {Kadjacent I}
21: Pt = Pt ∪ (S : random(adj,RI))
22: i = i+RI

23: Kadjacent I = Kadjacent I\S
24: end while

D. Environmental Selection

Environmental selection is to select better solutions as
parents for the next generation. Similar to NSGA-II [7], these
elitist solutions are selected from a combination of the parent
and offspring populations. The non-dominated solutions in the
parent population are selected firstly. Then, the pruning power
evaluation PPR indicator is used in environmental selection.
Algorithm 2 presents the main steps of environmental selec-
tion.

Note that before environmental selection, the normalized
population is grouped into a set of partitions, and then the
first (N − |F1|)/n best individuals are selected from the
subpopulation for the next generation. However, there may
not be enough individuals to be selected in some portions. In
this case, unselected points in the adjacent partitions will be
selected.

E. Time Complexity Analysis

Within a generation, for a population size N and an M-
dimensional problem, the complexity of mating selection is
O(MN2), and the simulated binary crossover (SBX) and
polynomial mutation need computation time O(DN) to gen-
erate N offspring, where D is the number of decision vari-
ables. In environmental selection, nondominated sorting needs
computation time O(MN2), objective partitioning and PPR

TABLE II
SETTING OF EXTERNAL AND INTERNAL DIVISIONS.

Objectives (m) Divisions (H1,H2) Weighted vectors (N)
3 12,0 91
5 6,0 210
8 3,2 156

TABLE III
PARAMETER SETTING OF T ON DTLZS AND WFGS.

Problem Obj.3 Obj.5 Obj.8
DTLZ1 0.6 0.2 0.1
DTLZ2 0.6 0.2 0.1
DTLZ4 0.6 0.2 0.1
WFG1 0.5 0.5 0.5
WFG2 0.5 0.5 0.5

calculation need computation time O(MN2). To sum up, the
time complexity of BppEA is O(MN2).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, The BppEA is evaluated experimentally
against NSGA-III [11], MOEA/D [12] and KnEA [18] on a
set of benchmark functions. NSGA-III uses a set of uniform
distributed reference points to promote the maintenance of
population diversity based on NSGA-II [11]. MOEA/D is a
decomposition-based EA [12]. The main idea of KnEA is to
make use of knee points to enhance the search performance
of MOEAs for MaOPs [18]. In KnEA, knee points among
the non-dominated solutions are preferred in mating selection
and environmental selection. Two widely used test bed suites,
namely DTLZ and WFG, are used. The experiments are con-
ducted on 5 test problems: DTLZ1, DTLZ2, DTLZ4, WFG1
and WFG2. And 3, 5 and 8 objectives will be respectively
considered for each test problem.

A. Experimental Setting
All the compared algorithms have two common parameters:

the maximum iteration number MaxI and the population size
N . Here MaxI is 500 and N is set to 100. In addition,
each algorithm is implemented 20 times independently on
each problem. Other parameters for NSGA-III, MOEA/D and
KnEA remain the same with their original references [11],
[12], [18]. To be specific, the weight vectors of NSGA-III and
MOEA/D are generated using a two layer scheme, as shown
in Table II, where the settings of the external and internal
divisions (H1 and H2) for different numbers of objectives
are listed. According to [18], Table III gives the setting of
the adjustable parameter T on DTLZ and WFG test suites for
KnEA. As shown in Table III, T is set to 0.5 for DTLZ2,
DTLZ4, and all test problems in the WFG suite.

For BppEA, several parameters are set empirically as: the
population size is 120, and the number of partitions are set to
100,81 and 128 for the problems with 3, 5 and 8 objectives,
respectively. As for the variation operator, BppEA use SBX



TABLE IV
IGD RESULTS OF COMPARED ALGORITHMS ON TEST SUITS, WHERE THE BEST TERMS ARE BOLD

Problem Obj. KnEA MOEA/D NSGA-III BppEA
3 2.2860E-02(2.87E-03) 3.1127E-02(6.59E-06) 2.0570E-02(1.33E-05) 2.0141e-02(2.87e-04)

DTLZ1 5 8.3830E-02(9.03E-04) 6.8067E-02(5.68E-06) 4.4044E-02(2.40E-01) 4.1105e-02(1.60e-03)
8 2.7300E-01(4.19E-02) 1.3770E-01(2.73E-04) 1.4871E-01(2.40E-01) 1.5538e-01(1.52e-02)
3 5.6420E-02(3.35E-02) 5.5464E-02(9.45E-08) 5.4957E-02(7.06E-05) 5.4592e-02(1.92e-03)

DTLZ2 5 1.1460E-01(2.49E-03) 2.1200E-01(8.33E-05) 2.1636E-01(8.28E-04) 2.1654e-01(1.82e-03)
8 2.5760E-01(2.58E-01) 3.8680E-01(2.13E-05) 4.3354E-01(7.33E-02) 3.9164e-01(8.22e-04)
3 5.4230E-02(2.99E-03) 5.4880E-02(2.18E-03) 5.4505E-02(4.95E-05) 5.7292e-02(1.21e-03)

DTLZ4 5 2.1670E-01(6.09E-05) 4.2682E-01(1.77E-04) 3.9178E-01(1.83E-01) 2.1381e-01(4.80e-04)
8 3.5280E-01(1.68E-02) 4.8315E-01(9.56E-02) 4.7071E-01(1.15E-01) 3.9522e-01(6.34e-03)
3 1.4130E+00(2.04E-01) 2.9978E-01(3.94E-03) 1.4517E-01(1.50E-03) 5.2736e-01(6.07e-02)

WFG1 5 2.2430E+00(4.21E-01) 1.2328E+00(6.26E-03) 5.0456E-01(8.06E-03) 4.9828e-01(4.91e-02)
8 3.8110E+00(4.21E-01) 2.1185E+00(4.78E-02) 1.1667E+00(5.84E-02) 1.3317e+00(1.07e-01)
3 2.3970E-01(1.33E-03) 7.3140E-01(2.16E-01) 1.8901E-01(5.19E-03) 1.7006e-01(2.28e-02)

WFG2 5 5.2450E-01(9.87E-02) 5.1584E+00(3.02E-02) 8.2326E-01(5.04E-03) 4.7637e-01(2.24e-02)
8 2.6150E+00(2.12E-02) 8.6599E+00(1.84E-02) 3.3279E+00(1.14E+00) 1.9417e+00(8.73e-02)

crossover and polynomial mutation, with the distribution ex-
ponents ηc = 20 and ηm = 20, respectively. Crossover rate is
pc = 1.0, and mutation rate per variable is pm = 1/D, where
D is the number of decision variables.
B. Results And Analysis

The statistical results including the mean and standard
deviation values in terms of the IGD metric obtained by the
four MaOEAs are shown in Table IV, where the best items are
highlighted. Generally, it is found that BppEA performs very
competitively to other peer algorithms on DTLZ test instances,
while NSGA-III also shows its superiority on DTLZ2.

To be specific, from Table IV, it can be observed that
BppEA is able to find the best IGD values on all the problem
instances of DTLZ1, DTLZ4, and WFG2. Both BppEA and
NSGA-III perform powerfully on all test problems with 3
objectives. It is stressed that BppEA outperforms other algo-
rithms on DTLZ1, and DTLZ4 when the number of objectives
is larger than 5. Similar to that of KnEA and NSGA-III,
the performance of BppEA is also very promising on the
three DTLZ test problems with more than 3 objectives. Note
that NSGA-III obtains the second best results on all the
DTLZ problems, which shows its stale performance. Fig.2(a)
and Fig.2(b) illustrate the evolution processes of IGD val-
ues obtained by BppEA on WFG2 with 3 and 8 objective,
respectively. From these figures, it can be observed that as
the number of objectives increases, BppEA becomes better in
terms of the convergence and diversity.

From Table IV, we also see that MOEA/D and NSGA-III
can obtain satisfactory results in terms of IGD on WFG prob-
lems with 3 or 5 objectives. From these experimental results,
it is confirmed that MOEA/D and NSGA-III are competent
algorithms for MaOPs with a small number of objectives.
The performance of KnEA and BppEA is also encouraging
since they are able to obtain comparable results with those of
MOEA/D and NSGA-III on all WFG problems with more than
5 objectives. Furthermore, BppEA performs relatively better
than NSGA-III and KnEA on WFG test problems with more
than 3 objectives.
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Fig. 2. IGD values on WFG2 of BppEA

V. CONCLUSION

This paper develops a new MaOEA based on a new pruning
power indicator called BppEA to solve MaOPs. BppEA aims
to obtain excellent wideness and uniformity of solutions via
enhancing environmental selection procedures with different
evolution rules. Specifically, in BppEA, the search space is
first split into a set of partitions in hyperspherical coordinate
system, and then the pruning power (PPR) indicator is
proposed to evaluate the dominance ability of each solution
in the partition. At each generation, the solutions with best
PPR values in each partition are expected to approximate
different segments of the PF. In this way, the convergence
and diversity of solutions can be maintained during the search
process. The proposed algorithm has been experimentally test
on a set of test benchmarks. Experimental results validate
the effectiveness of the proposed approach. A comprehensive
sensitivity analysis of parameters of the algorithm, and its real
world applications will be highlighted in our future work.
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