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Abstract—Unmanned aerial vehicle (UAV) is a highly coupled
and multivariable nonlinear complex system, the attitude fusion
of which is often disturbed by the noise of low-cost inertial mea-
surement unit (IMU). In order to improve the UAV attitude fusion
precision, a novel hybrid attitude fusion method is introduced in
the paper. An error model between the IMU output and attitude is
established by a long short term memory neural network (LSTM
NN). The attitude fusion error can be estimated well with the
aid of the powerful nonlinear fitting and time series processing
ability of the LSTM NN. The experimental results demonstrate
that the root mean square error (RMSE) of pitch, roll and yaw
can be reduced to 0.69 degrees, 0.73 degrees and 0.59 degrees
respectively, which can effectively improve the accuracy of the
attitude fusion.

Index Terms—Attitude fusion, LSTM, neural network, UAV

I. INTRODUCTION

In recent years, with the development of artificial intel-
ligence, unmanned aerial vehicles (UAVs) are expected to
perform more intelligent and complex tasks, such as mobile
object detection [1], powerline inspection [2] and so on. One
of the necessary conditions for these advanced missions is
to accurately acquire the position and attitude of the UAV at
each moment. Therefore, attitude measurement is the premise
of UAV attitude control and important part of the navigation
system, which directly affects the overall performance of
UAVs.

UAVs mainly use micro-electro-mechanical gyroscope, ac-
celerometer and magnetometer to construct a low-cost attitude
and heading reference system (AHRS) to measure the attitude.
The tri-axis gyroscope can measure the triaxial angular ve-
locity under the UAV motion state. The attitude angles can
be calculated by integrating the angular rate, which process
dynamic characteristics and high accuracy in short period of
time. However, this method would produce cumulative error
when it is used for attitude calculation. If it is not modified
regularly, the final attitude cannot be used in UAV navigation.
The accelerometer can also be used for the inclination mea-
surement of UAVs, but it is sensitive to the gravity and motion
accelerations at the same time. When UAVs are maneuvering
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for a long time, the attitude measurement by a single sensor
will produce a large measurement error. Therefore, it is an
essential research subject to develop a multisensor data fusion
algorithm for the low-cost IMU with high reliability and
precision demand [3]- [5].

The algorithms commonly used for UAV attitude fusion
include complementary filter (CF) [6]- [8], gradient descent
algorithm [9]- [11] and Kalman filter [12]- [14]. The main idea
of the CF is to transform the gravity acceleration vector in the
navigation coordinate system into the body coordinate system
through rotation matrix, and cross product the acceleration
measurement value in body coordinate system to obtain atti-
tude error. Finally, the attitude error caused by the gyroscope
integral drift can be modified by proportional-integral (PI)
operation. CF algorithm has a small amount of calculation
and good real-time performance, but its accuracy is not high.
In particular, when UAVs are accelerating or decelerating, the
measured value of the accelerometer will often include the
motion acceleration. In this case, the cross product operation
with gravity acceleration will generate large error.

Gradient descent method is used to calculate gravity ac-
celeration and magnetic field error gradient to obtain attitude
quaternion and compensate the gyroscope drift error. However,
due to the varied step size of the gradient descent, it is
often difficult to accurately determine the step size of gradient
descent, resulting in low precision of the attitude solution.
Generally, Kalman filter algorithm takes the attitude angle
obtained by gyroscope integration as the state variable, and the
attitude angle calculated by accelerometer and magnetometer
as the observation variable, to establish the state equation and
measurement equation, for iterative filtering. Kalman filter is a
linear optimal estimation algorithm. Although some scholars
put forward unscented Kalman filter [15] and particle filter
[16], for nonlinear systems, the improvement accuracy is not
obvious with heavy calculation load.

Artificial neural network, which does not need to establish
a mathematical model for the system and can fit the non-
linear system characteristics well, is a mainstream machine
learning algorithm at present [17]. The UAV attitude solution
is generally obtained by integrating the measured value of
IMU sensor, so the attitude error has a great correlation with
IMU error. This correlation is often difficult to establish an
accurate mathematical model, but it can be treated as a kind



of time sequence data to be accurately fitted by artificial neural
network [18] [19]. The traditional feedforward neural network
has no dependence between the input of the previous moment
and the output of the current moment, that is, it cannot store
the previous time nodes information, which cannot be used
to deal with the time sequence data well. As an important
branch of deep learning, recurrent neural network (RNN) can
realize the function of memory with its own unique recurrent
structure, and can be used to predict the value of the next
moment which are related to the historical information. Since
RNN has gradient vanishing problem, long short term memory
neural network (LSTM NN) is designed to solve the one by
adding special gate units [20] [21]. LSTM NN can generate the
corresponding threshold value through training, and the input
values are transmitted to the gate control unit after calculating
with the weights of each node, and then compared with the cor-
responding threshold value. After a series of such operations,
LSTM NN can selectively store hidden layer state outputs
of previous moments according to the relationship between
the input and the output of the training sets, thus effectively
solving the gradient vanishing problem. The “memory unit”
of LSTM NN is equivalent to a delay operator, which enables
the network to have dynamic memory ability and also well
conforms to the inertial characteristics of the IMU sensor. In
[?], we use the attitude angle output of the PIXHAWK through
Kalman filter as the training set Y of LSTM. The trained
LSTM NN is used to directly estimate the UAV attitude angle.
During the experiments, it is found that after a long time, the
output attitude angle error of LSTM would drift. Therefore,
we redesign the LSTM NN structure in this paper, while the
difference between the attitude angle of pixhawk output and
the attitude angle of the motion capture system output are used
to train LSTM NN and assumed as the feedback compensation
back of pixhawk output. It would reduce the UAV attitude
angle error drift with higher accuracy.

The remainder of the paper is organized as follows. In
Section II, a brief overview of the CF for UAV attitude fusion
is given. Section III describes a novel hybrid attitude fusion
algorithm based on LSTM NN. Simulation experiment and
result analysis are provided in Section I'V. Conclusion is given
in Section V.

II. THE UAV ATTITUDE FUSION METHOD

The purpose of UAV attitude calculation is to obtain the
attitude angle of the aircraft body coordinate system in
the geographical coordinate system. In UAV navigation, the
geographic coordinate system is usually determined by the
local north, east and down direction based on the right-hand
rule. Similarly, the body coordinate system is determined
by the front, right and down direction of the aircraft based
on the right-hand rule. Euler angle method, direction cosine
method and quaternion method are commonly used in attitude
calculation. Euler angle is the simplest way to express rotation.
Formally, it is a three-dimensional vector, the values of which
represent the rotation angles of an object around three axes
(X, Y and Z axis) in the coordinate system. The UAV attitude

can be represented by Euler angle, such as pitch, yaw and
roll. This transformation of the coordinate system can also be
achieved by multiplying the position vector of a coordinate
system by a 3 x 3 rotation matrix, which is usually called the
directional cosine method. Quaternion is a four-dimensional
complex, which can be used to express the direction of a
rigid body or coordinate system in three-dimensional space.
In this paper, the quaternion method is adopted to calculate
the UAV attitude, as the Euler angle method has a gimbal
lock problem, and it cannot be used for the whole attitude
solution. The direction cosine can be used to solve the whole
attitude, but the calculation is too heavy to meet the UAV real-
time requirement. The quaternion method has the advantages
of small computation, no singularity and can satisfy the real-
time attitude calculation in the process of aircraft movement.
According to literature [23], the quaternion at the current
moment, i.e., the current attitude, can be calculated by solving
the quaternion differential equation,

q0 q0 —Wzq1 — W, q2 — W43
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where [ g0 @1 ¢2 ¢3 ]tT represents the quaternion of the
current momentand [ o ¢1 ¢2 g3 ]tT+ Ay 1s the quaternion
of the next sampling interval. At is the sampling interval.
[ we wy w, |expresses the rotation angular velocity of the
body coordinate system.

According to the above analysis, as long as
[ we wy w. | can be accurately measured, the quaternion
at the current moment can be constantly updated and
iterated to obtain the quaternion at the next moment. The
[ we wy w. ] is usually measured by the gyroscope in the
airborne IMU. However, due to the noise in low-cost IMU,
attitude error will accumulate under the effect of integration,
so it is necessary to fuse the measurements of other sensors
to correct gyroscope error.

CF algorithm is widely used in the attitude fusion of small
and medium-sized UAVs. As shown in Fig. 1, it is a block
diagram of the CF attitude fusion. Before the attitude calcula-
tion, each sensor measurement should be normalized to reduce
the estimation error. By using the rotation matrix between the
geographic coordinate system and the body coordinate system,
the gravity acceleration vector and the magnetic field intensity
vector in the geographic coordinate system can be rotated to
the body coordinate system respectively, i.e., [ vz vy v, 17
and [ w, w, w, |'. Because the magnetic declination
angle exists between the geomagnetic north pole and the
geographic north pole, the local magnetic declination angle
can be corrected by looking up the magnetic declination table.
At this time, the acceleration and magnetic field intensity
measured by the accelerometer and magnetometer in the
body coordinate system are respectively [ a, a, a, |*
and [ m, m, m, ]7. When the attitude angle is small,
the cross product of [ v, v, v, |Tand| ay a, a, 7,



[ wy, w, w,]" and [ my m, m, |’ can be approxi-
mated to the angle value of the two groups of vectors, which
is the cumulative error generated by the gyroscope noise. The
purpose of correcting gyroscope can be achieved by adding
the two sets of error and performing proportional-integral(PI)
operation according to Eq.(2), to compensate the error to the
gyroscope measurements [6]- [8].
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where w, is the angular velocity without correction. w is the
angular velocity after correction. K, and K are PI cofficents.
0 is the error compenstaion value.
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Fig. 1. Illustration of the attitude fusion using CF

In this paper, LSTM NN is used to compensate the error of
CF attitude fusion algorithm, so as to improve its accuracy.

III. UAV ATTITUDE FUSION BASED ON LSTM NN
A. The LSTM Neural Network

LSTM NN, which are successfully in stock prediction [24],
language translation and speech recognization [25], is a new
breakthrough in machine learning. Three gates, i.e., input
gate, forget gate and output gate, are designed in LSTM NN,
which are known to be crucial to achieving good performance
for dealing with sequence data. Fig. 2 shows the basic unit
structure of an LSTM neural network. The LSTM NN uses
two gates to control the content of the cell state c. One is the
forget gate, which determines how much data of the cell state
at the last moment c;_1 is retained to the current moment c;.
The other is the input gate, which determines how much data
is saved to the unit state at the current time of network input
x;. The LSTM NN uses the output gate to control how much
data is output to the current output value h; from the unit state
c¢. These three gates correspond to the write, read and reset
operation of the UAV IMU data sequence respectively in the
attitude fusion. In Fig. 2, the first one from left to right is
the forget gate, and the specific mathematical expression is as
follows [19]- [21],

fe =Wy - [hi—1,z¢] + by) 3)

where Wy is the weight matrix of the forget gate. by is the
bias of the forget gate. o is the sigmoid function. The value
of f; denotes the degree of forgetting, where 1 denotes the
complete retention and 0 denotes the complete removal.
After determining the value saved in the previous cell state
ct—1, it is up to the input gate to decide which new information
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Fig. 2. Basic structure of a LSTM Unit

is stored in the current cell state c;. The input gate consists of
two parts: one is the sigmoid layer, to determine which values
will be updated, and the other is the tanh layer, used to describe
the status of the current input unit ¢; and calculated based on
the previous output and the current input. The specific data
expressions are as follows,

ir = o(Wi - [hi—1, 7] + b;) C))
¢, = tanh(W, - [hy_1, ¢] + be) 5

According to Eq.(6), the current memory c; and long-term
memory c¢;—1 of LSTM NN can be combined to form a new
unit state c;. Because of the forget gate control, it can keep
the information from previous moments and it can avoid the
current irrelevant content entering the memory due to the input
door.

¢t = fr-ci—1 +it'C; 6)

The final output of LSTM is determined by the output gate
and the cell state as,

o = 0(Wy - [hi—1,2¢] + bo) @)
hy = oy - tanh(cy) (8)
B. Design of attitude fusion structure based on LSTM NN

After data fusion, the traditional attitude calculation method
usually has one-way output and lacks feedback. Therefore,
based on the traditional CF attitude fusion method, LSTM NN
is used to fit the error of CF attitude fusion and compensates
it to the attitude angle, so as to improve the accuracy of the
CF attitude fusion method effectively. As shown in Fig. 3, the
IMU on the UAV is calibrated firstly to reduce the zero drift
error of the sensor, and the attitude angles, i.e., pitch é, roll
qAS and yaw 7, are solved by the CF attitude fusion method.
The deviation values d6,0¢,dy between the reference data
and the CF output are fitted and predicted by the LSTM NN.
Considering the real-time requirement and human experience,
a three-layer LSTM neural network is designed in this paper.
The IMU output data are used as LSTM NN input, which
are triaxial angular velocity, triaxial acceleration and triaxial
magnetic field intensity. The first layer is the input layer, the
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Fig. 3. The UAV attitude fusion scheme based on LSTM NN

neuron number of which depends on the dimension of the input
vector, that is, 9 neurons. The LSTM NN outputs are the error
between the attitude angle fused by CF and the actual attitude
angle, namely pitch angle error, roll angle error and yaw angle
error, namely three neurons. LSTM unit is used in the hidden
layer, and the number of neurons can be determined according
to the following empirical formula [26],

h=+v(x+y)+a )

where x, y and h are the number of neurons in the input layer,
output layer and hidden layer, respectively. a is the adjustment
parameter, the value of which is from 1 to 10. In general, the
number of the hidden layer neurons is larger than that of the
input neurons. Hence, the number of the neurons of the hidden
layer is ranged from 4 to 13. The test results show that when
the number of neurons in the hidden layer is 10, the fitting
effect is the best.

After determining the basic network structure, the LSTM
NN needs to be trained by gradient descent method to adjust
the weights and bias values between neurons in the hidden
layer, so as to fit the corresponding nonlinear relationship
between input data and output data. When the actual output
is inconsistent with the expected output, the stage of error
backpropagation begins. Through the output layer, the error
starts to modify the weight according to the gradient descent
method and propagates back from the hidden layer to the input
layer. The process of the information propagation and error
backpropagation cycles until the network reaches a predeter-
mined performance level, or these steps have been repeated
for a predetermined learning time. After the network training,
IMU data are input into the trained LSTM NN to obtain the
corresponding attitude angle error, which is then compensated
to the attitude angle solved by the complementary filtering
algorithm to further improve the accuracy of the attitude angle.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this paper, simulation experiments are carried out
by using the software of MATLAB 2018b and Ubuntu
16.04+Python 3.6+Keras 2.0.9 deep learning framework. The
computer configuration used in the experiment is: Intel Core
15-3210M 2.5GHz, 8GB RAM. In order to ensure that the
experimental data are as close as possible to the real flight data,
we independently developed a quadcopter to collect IMU data
during flight. As shown in Fig. 4, the quadcopter is equipped

with a PIXHAWK autopilot which adopts dual processors and
dual IMU redundancy design to ensure the data reliability.
Invensense MPU 6000 and ST Micro LSM303D are as the
main IMU sensors with a gyroscope bias of about 5 deg/s
and an accelerometer bias of approximately 60mg [27]. Our
experiments are carried out in a laboratory equipped with
Vicon motion capture system, so the attitude data output by
Vicon motion capture system is used as the standard reference
data. As shown in Fig.5, it is the result of CF attitude fusion

Fig. 4. The quadcopter equipped with PEIXHAWK autopilot and vicon motion
capture system

using IMU data in Pixhawk, where the blue solid line represent
the attitude angles fused by CF and the reference data from
Vicon motion capture system is depicted in orange. The data
acquisition time is 45 seconds, and the sampling rate is 200
Hz, totally 9000 data. In the first 10 seconds, when the UAV
moves at a constant speed or at rest, the attitude fusion
algorithm of CF can track the attitude angle well. The root
mean square error (RMSE) of pitch, roll and yaw are all
less than 0.5 degrees, which shows that the attitude fusion
algorithm of CF has high accuracy when the UAV attitude
angle changes little. However, starting from 11 seconds, when
the UAV makes a large-scale maneuvering motion, such as
turning and accelerating, there is large error in each attitude
angle. As shown in Table I, the maximum errors (ME) of pitch
and roll are 12.53 degrees and 20.12 degrees respectively,
and the RMSEs are approximately 2.41 degrees and 2.49
degrees, respectively. The yaw error is obviously larger, the
ME of which is close to 16.31 degrees, and the RMSE is
about 11.38 degrees. In this case, the UAV attitude is mainly
carried out by gyroscope. Since accelerometer is affected by
motion acceleration, the measurement accuracy is reduced.
The magnetometer is disturbed by the surrounding magnetic
field, and due to the inertial property of the inertial device, it
is unable to track the motion change rapidly, so the solution
error will be relatively large.

Aiming at the problem that the CF algorithm does not
function well when the maneuverability of UAV varies sub-
stantially, the hybrid algorithm based on LSTM NN proposed



TABLE I
THE ATTITUDE ERROR FROM CF FUSION METHOD

Pithch (deg) Roll (deg) Yaw (deg)
ME [ RMSE ME [ RMSE ME [ RMSE
12.53 2.41 20.12 2.49 16.31 11.38
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Fig. 5. The attitude angle fused by CF

in this paper is tested. About 70% of the data collected in
this study are used as training set for the LSTM NN training,
that is, the first 32 seconds, a total of 6300 sets of data. The
configuration of the LSTM NN is shown in Table II, and the
train time is about 5.35 seconds after testing. About 30% of
the latter data are used as test sets, i.e., 32s to 45s, totaling
2700 sets of data, which is also the process of UAV large-scale
maneuvering movement.

Figs. 6, 7 and 8 describe pitch, roll and yaw error estimated
by trained LSTM NN, where the error between the attitude
fused by CF and the reference attitude data is depicted in
orange, that is, the data to be predicted by LSTM NN, and
the actual attitude error predicted by LSTM NN in blue. From
these figures, it can be seen that LSTM NN can predict the
attitude well, where the RMSE of pitch, roll and yaw are 0.69,
0.73 and 0.59, respectively.

Fig. 9 is the final attitude fusion result after LSTM NN
compensation. It can be seen that the attitude angle error
of this hybrid attitude fusion method is smaller than that
of the single CF attitude fusion method. As shown in Table
III, the maximum error of pitch, roll and yaw are decreased
from the original 12.53 degrees, 20.12 degrees and 16.31
degrees to 3.25 degrees, 4.16 degrees and 2.33 degrees, and the

TABLE II
THE SPECIFICATIONS OF LSTM NN

Batch size 128
Training epoch 100
Learning rate  0.01
Input step size 3

Pitch-error[deg]

Roll-error{deg]

Yaw-error{deg]
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Fig. 6. The pitch error estimated from LSTM NN
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Fig. 8. The yaw error estimated from LSTM NN



RMSEs improved by 71.4%, 70.7% and 94.8%, respectively.
Therefore, the experimental results can verify that the LSTM
NN compensation method can greatly improve the accuracy
of the CF attitude fusion method. The method designed in this
paper has a small coupling between modules, and can also be
applied to improve the accuracy of other fusion algorithms,
with good scalability.

TABLE III
THE ATTITUDE ERROR FROM CF/LSTM
Pithch (deg) Roll (deg) Yaw (deg)
ME | RMSE ME | RMSE ME | RMSE
3.25 0.69 4.16 0.73 2.33 0.59
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Fig. 9. The attitude fused by the LSTM/CF hybrid method

V. CONCLUSION

In order to solve the problem of poor accuracy of tradi-
tional attitude calculation for UAV large-scale maneuver and
considering the sequence characteristics of inertial devices,
this paper proposes an attitude fusion algorithm based on
LSTM NN compensation, and establishes a hybrid model to
compensate sensor drift and data fusion error. In this method,
the IMU sensor output in the UAV actual flight process is
used as the input of LSTM NN, and the error compensation
values of attitude angle are obtained through the trained LSTM
NN. The proposed method can effectively reduce the attitude
fusion error and the hybrid structure is compatible with other
algorithms to improve the accuracy of attitude fusion. Future
research will consider the effect of changing LSTM step size
and fusing more types of sensors so as to design a general
framework for the computation reduction.
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