
EOS: a Parallel, Self-Adaptive, Multi-Population
Evolutionary Algorithm for Constrained Global

Optimization
Lorenzo Federici

Department of Mechanical
and Aerospace Engineering
Sapienza University of Rome

Rome, Italy
lorenzo.federici@uniroma1.it

Boris Benedikter
Department of Mechanical
and Aerospace Engineering
Sapienza University of Rome

Rome, Italy
boris.benedikter@uniroma1.it

Alessandro Zavoli
Department of Mechanical
and Aerospace Engineering
Sapienza University of Rome

Rome, Italy
alessandro.zavoli@uniroma1.it

Abstract—This paper presents the main characteristics of the
evolutionary optimization code named EOS, Evolutionary Opti-
mization at Sapienza, and its successful application to challeng-
ing, real-world space trajectory optimization problems. EOS is a
global optimization algorithm for constrained and unconstrained
problems of real-valued variables. It implements a number of
improvements to the well-known Differential Evolution (DE)
algorithm, namely, a self-adaptation of the control parameters,
an epidemic mechanism, a clustering technique, an ε-constrained
method to deal with nonlinear constraints, and a synchronous
island-model to handle multiple populations in parallel. The
results reported prove that EOS is capable of achieving increased
performance compared to state-of-the-art single-population self-
adaptive DE algorithms when applied to high-dimensional or
highly-constrained space trajectory optimization problems.

Index Terms—global optimization, evolutionary optimization,
constrained optimization, differential evolution, self-adaptation,
parallel computing, island-model, space trajectory optimization

I. INTRODUCTION

Evolutionary Optimization at Sapienza, or EOS, is an
evolutionary optimization algorithm for continuous-variable
problems developed at the Department of Mechanical and
Aerospace Engineering of Sapienza University of Rome. Its
origin dates back to 2015, when a first version of the algorithm
was coded with the aim of tackling the “nearly-impossibile”
interplanetary trajectory optimization problems proposed in
the Global Trajectory Optimization Competitions [1]. Since
then, EOS has been continuously updated and improved, and
applied with success to a broad range of unconstrained and
constrained space trajectory optimization problems, as multi-
ple gravity-assist trajectories [2], rocket ascent trajectories [3],
[4], and multi-rendezvous missions [5], [6].

EOS implements a multi-population, self-adaptive, ε-
constrained Differential Evolution (DE) algorithm, with a syn-
chronous island-model for parallel computation. DE is a well-
known population-based evolutionary algorithm, devised by
R. Storn and K. Price in 1997 [7] to find the global optimum of
nonlinear, non-differentiable functions of real-valued variables.

Despite its simplicity, DE exhibits much better performance
in comparison with several other meta-heuristic algorithms
on a wide range of benchmark and real-world optimization
problems, defined over a continuous parameter space [8]. As
other Evolutionary Algorithms (EAs) and Genetic Algorithms
(GAs), DE exploits the crossover, mutation, and selection
operators to generate new candidate solutions, or individuals,
and to decide on their survival in successive generations.
Unlike traditional EAs and GAs, each mutated solution is
generated as a scaled difference of a number of distinct
individuals of the current population. This self-referential
mutation has the desirable property to automatically adapt
the different variables of the problem to their natural scale
in the solution landscape, boosting the search potential of the
algorithm [9]. All these evidences contributed to selecting DE
as the optimization core of EOS.

The standard DE algorithm is neither a globally nor a
locally convergent algorithm, that is, there exist instances for
which it is not theoretically able to identify locally optimal
solutions [10]. Nevertheless, DE has proven to be capable of
attaining high quality results in many practical optimization
problems. However, its performance may drop considerably
in complex optimization environments, characterized by non-
linear constraints, numerous isolated local minima, and a
high-dimensional search space, all typical characteristics of
space trajectory optimization problems, which are the kind of
problems EOS has been designed to deal with. For this reason,
many researchers focused on modifying the standard DE
algorithm in order to improve its effectiveness when applied to
hard, constrained, global optimization problems. Several DE
variants have thus been proposed, most of which are collected
in [9], [11]. Four weaknesses of the classical DE algorithm
have been particularly targeted by researchers: (i) (nonlinear)
constraint handling [12], (ii) the tuning of the few DE control
parameters that drive the evolution process [13], (iii) the
lack in diversity among individuals in the population along
generations [14], and (iv) the need to find a balance between

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

a wide exploration of the solution space and a quick refinement
(or exploitation) of the previously obtained solutions [15].

All these aspects have been addressed in EOS by combining
some of the most successful ideas found in the literature.
Specifically, five major add-ons have been implemented in
EOS to improve the performance of the standard DE al-
gorithm: (i) a ε-constrained method, to deal with (possibly
nonlinear) constraints, (ii) a self-adaptation of the control
parameters, (iii) an epidemic mechanism, to maintain diversity
within the population during the evolution, (iv) a pruning
of the worst sections of the solution space, to speed up the
convergence process, and (v) a synchronous, multi-mutation,
island-model, to achieve a proper balance between exploration
and exploitation of the search space. Moreover, the code
has been made parallel by using a hybrid MPI-OpenMP
programming, to obtain reasonable computation times even in
presence of high dimensional problems and/or computationally
expensive cost functions.

The paper is organized as follows. After the basic notation
of optimization problems is introduced in Sec. II, the standard
DE algorithm and its operators are briefly described in Sec. III.
The following sections give a detailed description of the
improvements made in EOS to DE, i.e., the self-adaptive
scheme (Sec. IV), the epidemic mechanism (Sec V), the
pruning technique (Sec VI), constraint handling (Sec. VII)
and the parallel island-model (Sec. VIII). Finally, successful
applications of EOS to real-world problems borrowed from the
space sector, that is, the optimization of a Multiple Gravity-
Assist (MGA) trajectory, of the ascent trajectory of a multi-
stage launcher and of an Active Debris Removal (ADR)
trajectory, are reported in Sec. IX.

II. OPTIMIZATION PROBLEM

Given a problem described by D real-valued variables:

x =
[
x(1), . . . , x(D)

]
(1)

and a cost function f(x), the aim of an optimization process
is to find the vector x∗ that minimize f(x):

x∗ = argmin
x∈Ω

f(x) (2)

where Ω represents the solution space. In unconstrained op-
timization problems, Ω is a D-dimensional hyperrectangle,
defined as the Cartesian product of the variable bounding
intervals xL =

[
x

(1)
L , . . . , x

(D)
L

]
and xU =

[
x

(1)
U , . . . , x

(D)
U

]
:

Ω = Ωb =
{

x ∈ RD : xL ≤ x ≤ xU

}
⊂ RD (3)

In the case of constrained optimization problems, the so-
lution space Ω is further reduced by the presence of K in-
equality constraints Ψ(x) =

[
Ψ(1)(x), . . . ,Ψ(K)(x)

]
, which

in general are nonlinear functions of the design variables:

Ω =
{
x ∈ Ωb : Ψ(x) ≤ 0

}
⊂ RD (4)

The possible presence of equality constraints is already in-
cluded in expression (4); indeed, any equality constraint of the

form: Φ(k)(x) = C can be rewritten as an inequality constraint
if an arbitrarily small tolerance δ is introduced:

Ψ(k)(x) := |Φ(k)(x)− C| ≤ δ (5)

III. STANDARD DIFFERENTIAL EVOLUTION

A brief description of the standard DE algorithm is here
provided. Let us consider the unconstrained minimization
problem defined by Eqs. (2) and (3). An initial collection
(or population) pop0 of Np candidate solution vectors (or
individuals) is generated by randomly sampling the solutions,
as evenly as possible, in the solution space:

pop0 = {xi ∈ Ω}i=1,...,Np
(6)

where:

x
(j)
i = x

(j)
L + p

(j)
i

(
x

(j)
U − x

(j)
L

)
(7)

for j = 1, . . . , D, where p(j)
i indicates a random number with

uniform distribution in [0, 1]. The value of the cost function
(or fitness) f(xi) is evaluated for each individual (or agent)
xi composing the initial population.

At any iteration G (or generation) of the algorithm, a new
population popG+1 is created by applying to each vector
xi ∈ popG a sequence of three operations, named mutation,
crossover, and selection, defined as follows.

A. Mutation

During mutation, a mutated or donor vector vi is created
as a linear combination of a few population members. Several
mutation rules were proposed in the original paper by Storn
and Price [7] in order to attain either a wider exploration of
the search space or a faster convergence to the optimum (i.e.,
exploitation). Since then, many other rules have been devised,
with the same purpose, by a number of researchers [16]. In the
current version of EOS, four strategies, among those available
in the literature, have been adopted:

1) vi = xr1 + F (xr2 − xr3)
2) vi = xbest + F (xr1 − xr2)
3) vi = xi + F (xr3 − xi) + F (xr1 − xr2)
4) vi = xbest + F (xr1 − xr2) + F (xr3 − xr4)

(8)

where F ∈ R is a parameter driving the mutation (scale
factor), xbest is the best individual in the current population,
and r1, . . . , r4 represent randomly chosen, non-repeated, in-
dexes belonging to [1, Np] \ {i}. Each strategy has its own
weaknesses and strengths: strategies based on the mutation
of the best individual, such as strategies 2 and 4 (referred
to as DE/best/1 and DE/best/2, respectively) typically show a
faster rate of convergence toward an (often local) minimum,
whereas strategies based on randomly chosen individuals, such
as strategies 1 and 3 (referred to as DE/rand/1 and DE/current-
to-rand/1, respectively) explore to a greater extent (yet more
slowly) the whole search space.

B. Crossover

During crossover, a trial vector ui is obtained by mixing
the components of the agent vector xi and the donor vector
vi. By relying on empirical comparisons [17], the binomial
crossover was preferred to the exponential one in EOS, and
implemented as:

u
(j)
i =

{
v

(j)
i if p(j)

i ≤ Cr or j = jr

x
(j)
i otherwise

(9)

for j = 1, . . . , D, where p(j)
i is a random number with uniform

distribution in [0, 1], Cr ∈ [0, 1] is another control parameter
of the algorithm (named crossover probability) and jr is a
random index chosen once per individual in the range [1, D]
that ensures that at least one element in ui is inherited from
vi. At this point, the bounding intervals are enforced on the
design variables:

u
(j)
i =

x

(j)
L if u(j)

i < x
(j)
L

x
(j)
U if u(j)

i > x
(j)
U

u
(j)
i otherwise

(10)

for j = 1, . . . , D.

C. Selection

Eventually, the agent and trial vectors are compared. In the
case of an unconstrained optimization problem, the one that is
characterized by the best fitness value is retained and inserted
in the new population popG+1:

xG+1
i =

{
uGi if f(uGi) ≤ f(xGi)

xGi otherwise
(11)

The corresponding selection step in the case of constrained
optimization is discussed in Sec. VII.

D. Termination Criteria

This three-step process is repeated iteratively, creating at
each generation a new population that replaces the previous
one. Several termination criteria can be adopted, either alone
or in conjunction, to stop the optimization procedure. The most
common are:

• maximum number of fitness evaluations (FES), NF ;
• maximum number of generations, NG;
• maximum number of consecutive generations without any

improvement of the best solution found, NG,best.

In typical EOS applications, the termination criterion is
mainly based on the maximum number of generations NG.
This parameter strongly depends on the complexity of the
analyzed problem, and it is generally selected in such a way
that the outcomes of independent runs of the algorithm bring,
in almost all cases, to similar results. So, a few preliminary
runs of the code are necessary to identify a suitable value for
NG.

IV. SELF-ADAPTATION OF CONTROL PARAMETERS

A common practical issue for many stochastic algorithms
concerns the selection of suitable values for the control pa-
rameters, i.e., the numerical quantities that drive the different
phases of the optimization process. A fine tuning of the param-
eters is often mandatory in order to maximize the algorithm
performance while solving a given problem.

The basic version of DE is characterized by only three
control parameters. Apart from the population size Np, the
performance of the DE algorithm depends on an appropriate
selection of the scale factor F , which controls the mutation
phase, and the crossover probability Cr, which controls the
crossover phase. However, as for other meta-heuristics, the
best tuning of the control parameters, in terms of effectiveness
and robustness of the algorithm, is usually related to the
structure of the problem at hand [18].

In order to avoid a manual trial-and-error tuning of the DE
control parameters prior to the solution of any problem, the
jDE self-adaptive scheme proposed by Brest et al. [19] is
implemented in EOS for automatically adjusting the values of
both F and Cr during the optimization, without introducing
any significant computational burden. In jDE, each individual
owns its private copy of F and Cr, which are randomly initial-
ized within the intervals [Fmin, Fmax] and [Cr,min, Cr,max],
and thus different from individual to individual. Therefore,
each individual evolves according to its own set of parameters.
The hope is that good values of these control parameters would
contribute to produce better individuals, which, being more
prone to survive and produce offspring, will propagate their
parameters into the population on following generations.

At the end of the current generation G, each individual xi
undergoes, with a probability pτ , a random mutation of its
control parameters:

FG+1
i =

{
Fmin + pi,1∆F if pi,2 ≤ pτ
FGi otherwise

CG+1
r,i =

{
Cr,min + pi,3∆Cr if pi,4 ≤ pτ
CGr,i otherwise

(12)

where pi,1, . . . , pi,4 are random numbers sampled from a
uniform distribution in [0, 1], ∆F = Fmax−Fmin and ∆Cr =
Cr,max − Cr,min. The hyper-parameter values suggested in
[19] are used in EOS: Fmin = 0.1, Fmax = 1, Cr,min = 0,
Cr,max = 1 and pτ = 0.1.

The population size Np, instead, is kept fixed along gener-
ations. Its value is predetermined by looking at the problem
dimension; a reasonable value for Np generally lies between
5D and 10D. For high-dimensional problems, e.g., D > 100,
Np is more often selected on the basis of the available
computational budget.

V. EPIDEMIC MECHANISM

A partial restart mechanism, named “epidemic”, is adopted
in EOS in order to promote diversity among the individuals of
the population over the generations. In fact, the use of (guided)

restart procedures in DE has demonstrated to be an effective
method to reduce the chances of stagnation in isolated local
minima [20], [21].

For this purpose, at each generation the population diversity
score d̄ is evaluated as the average Euclidean distance between
any pair of solutions in the current population:

d̄ =
2

Np(Np − 1)

Np∑
i=1

i∑
j=1
j 6=i

dij (13)

where:

dij =

√√√√√ D∑
k=1

x(k)
i − x

(k)
j

x
(k)
U − x

(k)
L

2

(14)

Thus, dij would represent the actual (Euclidean) distance
between the individuals xi and xj if the solution space
were a D-dimensional unitary hypercube. For this reason,
dij ∈ [0,

√
D].

When the diversity score d̄ falls under a given small
threshold dtol, an epidemic unleashes on the population. The
best ρeliteNp individuals are immune to the epidemic; instead,
a large portion ρill of the remaining individuals, randomly
selected, contracts the “fatal disease”, that is, is randomly
reinitialized in the whole search space. This mechanism is
illustrated in Fig. 1. The epidemic cannot happen twice within
a number NG,epid of consecutive generations, so as not to
compromise the search. Reasonable values for the newly
introduced hyper-parameters can be chosen in the following
ranges: NG,epid = 500 ÷ 2000, dtol = 10−4 ÷ 10−2,
ρelite = 0.05÷ 0.25, ρill = 0.75÷ 1.

= Best individuals = Best individuals

Population before the epidemic Population after the epidemic

Fig. 1: Effect of the epidemic mechanism on the population.

The epidemic mechanism has proven to be particularly
effective when an exploitative mutation rule (e.g., strategy 2
or 4) is chosen for DE. Figure 2 shows the effectiveness of
the mechanism on two standard benchmark functions, that is,
Rosenbrock function, with D = 100 and bounding intervals
[−50, 50]D, and Rastrigin function, with D = 30 and bound-
ing intervals [−5.12, 5.12]D. The plot reports the change in
fitness trend (averaged on 20 independent runs) obtained when
the epidemic mechanism is added to a single-population self-
adaptive DE algorithm, where a self-adaption rule analogous
to those in Eq. 12 was devised also to decide the mutation
strategy among the four ones reported in Sec. III-A. The results
were obtained with the following algorithm settings: Np = 64,

NG = 20000, NG,epid = 1000, dtol = 10−3, ρelite = 0.1,
ρill = 1.

0.1

1

10

100

1000

0 2 4 6 8 10 12 14 16 18 20
1

10

100

R
os
en
b
ro
ck

fu
n
ct
io
n

R
as
tr
ig
in

fu
n
ct
io
n

×103 generations

w/o epidemic
w/ epidemic

Fig. 2: Evolution plots, averaged on 20 independent runs,
obtained with and without the epidemic mechanism on two
benchmark functions.

VI. SPACE PRUNING BY CLUSTERING

The term “space pruning” refers to those techniques that
aim at reducing the solution space during the search, focusing
the optimization in a smaller area where, in accordance with
some criteria, good solutions are expected to be found.

Different solution methods have been proposed in the past
[22], [23] that combine branching, that is, the subdivision
of the feasible region into smaller subdomains (with some
convergence properties) and population-based stochastic algo-
rithms, to search in the subdomains in order to evaluate them,
showing higher average performance with respect to a number
of stochastic and deterministic methods on the same problems.

The pruning method adopted in EOS is based on the cluster
pruning algorithm developed by ESA’s Advanced Concept
Team [24] to solve Multiple Gravity-Assist (MGA) problems.
The key idea is that in problems like MGA and related space
trajectory optimization problems (as MGA-1DSM or multi-
rendezvous ones), which are the kind of problems addressed
by EOS, good solutions are often clustered in small regions
instead of being densely distributed over the whole search
space. So, during the optimization process, it is possible to
progressively focus the search around the promising regions
identified so far, increasing the quality of the solutions found,
but accepting the risk that some possibly better solution may
be potentially ruled out.

The pruning-by-clustering method implemented in EOS
makes use of Nr independent, separate, partial runs. Each
partial run corresponds to a run of the same DE algorithm
with a (different) random initial population.

At each pre-assigned generation N i
G,pr, the i-th pruning

event occurs. For each separate run, the best found solution
is collected in the set popbest = {x1, x2, . . . ,xNr

}, which
is sorted according to their fitness, so that f(x1) ≤ f(x2) ≤
. . .≤ f(xNr). A new (smaller) search space Ωipr is defined as
the convex hull containing the best N i

p,pr = bρiprNrc solutions
in popbest, up to some relaxation factor related to ρipr. More

precisely, for each design variable x(j), with j ∈ [1, D], the
new bounding interval

[
x

(j)
L,new, x

(j)
U,new

]
is defined as:

x
(j)
L,new = min

k∈[1,Ni
p,pr]

x
(j)
k − 0.5(1− ρipr)

(
x

(j)
U − x

(j)
L

)
(15)

x
(j)
U,new = max

k∈[1,Ni
p,pr]

x
(j)
k + 0.5(1− ρipr)

(
x

(j)
U − x

(j)
L

)
(16)

where ρipr = ρ0
pr − i∆ρpr is a tuning parameter that controls

the extent of the search space region to be removed. After
the pruning event, the Nr independent, partial optimization
runs are restarted, randomly initializing the population over
the pruned search space Ωipr. Nevertheless, the N i

p,pr best
individuals of popbest are copied into each new population,
substituting the (randomly generated) worst individuals.

If Npr pruning events are enforced, starting from genera-
tion N0

G,pr, the subsequent pruning events are spaced from
each other by (NG − N0

G,pr)/Npr generations. By choosing
N i
p,pr = bρiprNpc, one makes the pruned search space itera-

tively smaller, as the convex hull is created on less points.
The hyper-parameter values that showed the best perfor-

mance in EOS are the following: ρ0
pr = 0.3, ∆ρpr = 0.1,

Npr = 3 and N0
G,pr = 0.4NG.

VII. CONSTRAINT HANDLING

In order to tackle the constrained optimization problem
defined by Eqs. (2) and (4) with DE, it is necessary to modify
in some way the selection step (11) to take into account the
presence of inequality constraints.

The simple, but promising, min-max approach proposed by
Jimenez and Verdegay [25] is implemented in EOS to handle
constraints. The key idea is to adopt a lexicographic order
in the selection process, in which the constraint violation
precedes the objective function:

1) between two feasible individuals, select on the basis of
the minimum value of the cost function;

2) between a feasible and an infeasible individual, select
the feasible one;

3) between two infeasible individuals, select on the basis
of the lowest maximum constraint violation:

Ψmax = max
j∈[1,K]

Ψ(j)(x) (17)

However, as highlighted by Coello [12], this simple approach
pushes the search to focus first only on the constraint satisfac-
tion; so, if the feasible solution space is disjoint, the search
could get trapped in a part of the feasible region that, in
general, could be quite far from the global minimum of the
problem, and, from which, it is impossible to escape.

An efficient way to overcome such drawback has been
proposed by Takahama and Sakai [26], who applied an ε-
constrained method to Differential Evolution (“εDE”). They
suggested introducing a tolerance ε for constraint violation

Ψmax, to be decreased along generations. The following rule
has been adopted in EOS for evaluating ε at generation G:

εG =

ε0 for G ≤ N0

ε0
[
ε∞

ε0

] G−N0

N∞−N0

for N0 < G < N∞

ε∞ for G ≥ N∞
(18)

with ε0, ε∞ the initial and final values of the tolerance. As for
N0 and N∞, which define the interval in which ε decreases,
the following values showed the best overall results with EOS:
N0 = NG

6 , N∞ = NG.
By using Eq. (18), moves toward infeasible solutions are

allowed at the beginning of the search, when the tolerance ε
is maximum and the entire solution space must be explored
in order to identify promising regions. As the generation
number increases, such moves become forbidden, and the
search concentrates in the feasible part of the identified region,
which, thanks to the initial search space exploration, is more
likely to be closer to the optimum of the problem.

VIII. ISLAND-MODEL

During the search process, a proper balance between two
opposite needs, namely “Exploitation” and “Exploration”, is
paramount to the performance of any EA [15]. Here exploita-
tion refers to the capability of the evolutionary algorithm to
exploit the information already collected from the population
to focus the search toward the goal; exploration, instead, refers
to the ability to introduce new information about the solution
space into the population. In DE, different mutation strategies,
see Eq. (8) may privilege, to a certain degree, one tendency
over the other [27]. It goes without saying that certain mutation
strategies perform better on some optimization problems than
others, but the opposite may be true for different problems.
This leads to the idea of combining different strategies together
within a single search process, in order to obtain a more robust
and performing algorithm, capable of successfully tackling
a wider range of problems [28]. In the same fashion as
described in Sec. IV for the DE control parameters, a self-
adaptation of the mutation strategy could be devised [29];
unfortunately, this approach suffers from the fact that greedy
(i.e., exploitative) strategies tend to prevail over the others in
just a few generations.

EOS, instead, adopts a synchronous island-model paradigm
as a way to concurrently handle different mutation strategies
within one optimization run. An island-based EA relies on
the definition of several sub-populations, or “tribes”, each
one evolving independently of the others, according to its
own (preassigned) algorithm. Each tribe lives on a sepa-
rate “island”, and all the islands are arranged in a cluster,
or “archipelago”, of arbitrary topology. Information sharing
among the islands occurs only in sporadic events called
“migrations”, during which the best individuals move from
an island to the neighboring ones, in accordance with the pre-
defined archipelago topology [30]. Numerical tests of multi-
population DE-based algorithms on a broad range of low-to-
high dimensional optimization problems [31], [32] showed

an improvement in performance with respect to sequential
versions of the algorithm.

The island-model paradigm can be exploited to combine the
convergence and search properties of different DE algorithms.
The idea is to use heterogeneous mutation strategies among
different islands, so as to achieve a correct balance between the
search space exploration and exploitation, usually performing
better than the best of the strategies involved in that particular
problem [33]. As an example, in the radially-arranged 16-
island archipelago in Fig. 3, inner rings favor exploration,
featuring mutation strategies 1 and 3, while outer rings favor
exploitation, featuring strategies 1 and 4.

1

2

3
4

(a) Outward tide (b) Inward tide

1

2

3
4

Fig. 3: Migration tide: forward (a) and backward (b), for the
16-island case.

The island-model optimization process, with its alternat-
ing phases of extended, isolated computation and occasional
communications, also allows for an easy parallelization on
a message-passing multi-processor environment. The MPI
message-passing standard [34] is exploited in EOS for this
purpose: each of the Ni islands corresponds to a process,
and is assigned to a different node/CPU of a cluster. The
evolution phase proceeds in parallel, until communications
between processes are performed during migrations. More
precisely, a synchronous migration of the best Nb = ρmigNp
individuals occurs between the connected islands every Nmig
generations, with a probability φmig . The Nb best individuals
are copied in the destination islands, where they replace
the Nb worst individuals. Typical values of these parameters
are: ρmig = 0.05 ÷ 0.1, Nmig = 100, φmig = 0.5 ÷ 1.
Communications are easily handled through the point-to-point
send/receive functions of the MPI library. In addition, MPI
allows for handy implementation of Cartesian or graph pro-
cess topologies, which define the “neighbors” of any process
to/from which it can send/receive information; by exploiting
such capability, it is possible to arrange the archipelago in
any topology in a straightforward manner. Besides classical
topologies, such as the ring topology or the Von Neumann
grid topology [35], EOS implements as a default a peculiar
radial topology, where migration tides alternate their direction
at each event, as presented in Fig. 3.

This coarse-grained island-model, in which each tribe is
mapped to a CPU, can be combined with a fine-grained
parallelism, in which each individual (or group of individuals)
of the tribe is assigned to a different core of the CPU
[36]. The fine-grained parallelization of each sub-population is

realized in EOS through OpenMP, which is a set of compiler
directives and library routines used to perform shared-memory
parallelism, e.g., between the cores of a single, multi-core
CPU; so, if nc cores are available for each CPU of the
cluster, Np/nc individuals are mapped to each core through
an OpenMP directive.

IX. APPLICATION TO REAL-WORLD SPACE TRAJECTORY
OPTIMIZATION PROBLEMS

This section presents the main results attained by EOS when
applied to challenging, real-world space trajectory optimiza-
tion problems. More detailed information about how the three
optimization problems that follow have been formulated (that
is, their objective function, design variables, bounding boxes
and constraints) are reported in the corresponding references
[2], [3], [6].

A. Europa Tomography Probe Mission Design

In 2015, a scientific and engineering team at Sapienza
University of Rome, in collaboration with the Imperial College
of London, carried out a feasibility study for a probe that
could be launched as a piggyback payload for the NASA
Europa Clipper mission, to enhance its scientific return [37].
An innovative mission concept was proposed, where a small
Europa’s orbiter, named Europa Tomography Probe (ETP),
hosting just one magnetometer and a transponder required for
the Inter-Satellite Link (ISL) with the mother spacecraft, is
proved to be capable of providing crucial information on the
moon’s interior structure, such as depth and conductivity of the
subsurface ocean. Also, ISL supports the reconstruction of the
mother spacecraft orbit, significantly improving the accuracy
of the topographic reconstruction of Europa’s surface [38].

The optimization of ETP capture trajectory was crucial for
the validity of the overall proposal, as a tight requirement on
the available propellant mass was enforced by the need to
stay within a total probe mass specified by NASA. A mission
strategy based on the v∞ leveraging concept [39] and the
use of resonant orbits to exploit multiple gravity-assist from
Europa was thus proposed [2]. Under the assumption of a
patched-conic model, with radius of the sphere of influence
of the secondary bodies and travel time inside these regions
negligible, and an impulsive-thrust model, the problem can be
posed as an unconstrained optimization problem, also known
as Multiple Gravity-Assist with One Deep Space Maneuver
(MGA-1DSM) [40], where the objective is to minimize the
overall ∆V , which is the cumulative velocity variation per-
formed by means of the on-board propulsive system.

A velocity formulation [41] of the problem was exploited:
the overall capture trajectory is made up of a series of body-
to-body legs, each starting with a flyby and composed of two
ballistic arcs, a propagation arc and a Lambert arc, joined
by an impulsive maneuver. The k-th leg of the trajectory is
parameterized by using four parameters: {rπ,k, βk,∆Tk, ηk}
which represent, respectively, the flyby radius, the flyby plane
orientation, the leg flight-time, and the fraction of the leg
flight-time at which DSM occurs. By properly selecting the

bounds for variables ∆Tk and ηk it is possible to enforce
a given resonance of the probe with a Jovian moon on the
k-th leg. An initial Lambert arc, which moves the probe from
the assigned initial condition (Jovian orbit in 4:1 resonance
with Europa) to the first encounter with Europa, completes the
formulation. This initial leg is described by three variables: the
probe release epoch t0, flight time ∆T0 and flight angle ∆θ.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 1 2 3 4 5 6 7 8 9 10

∆
V

(k
m

s−
1
)

×103 generations

w/o pruning
w/ pruning

Fig. 4: Best fitness trend obtained with and without the use of
the pruning procedure.

MGA-1DSM problems are typically characterized by a huge
number of local optima [42]; in this respect, either the pruning-
by-clustering method (Sec. VI) or the island-model (Sec. VIII)
are paramount to the success of the optimization procedure
through EOS. In particular, Figure 4 compares the results
obtained on Mission C of Ref. [2] by performing 50 runs
of a mono-population, self-adaptive DE algorithm with and
without the pruning procedure. The evolution plots reported
are obtained by considering, at any generation number, the
best fitness among those found by the separate runs. The
following algorithm settings were used: Ni = 1, Np = 64,
NG = 10000, Nr = 50, ρ0

pr = 0.3, ∆ρpr = 0.1, Npr = 3 and
N0
G,pr = 0.4NG.

Fig. 5: ETP capture trajectory.

The overall-best capture trajectory obtained for ETP is re-
ported in Fig. 5, and allows saving approximately 1900 m s−1

of ∆V with respect to a direct insertion maneuver. The
trajectory exploits eight flybys of Europa and a flyby of
Ganymede, for a total of 39 design variables. The result
was obtained with the following algorithm settings: Ni = 8,
Np = 512, NG = 10000.

B. Ascent Trajectory Optimization of VEGA Launch Vehicles

Since 2017, EOS is adopted as a solver for the optimization
of the ascent trajectory of VEGA Launch Vehicle (LV) and its
evolution VEGA-C in the framework of independent support
and cross-check activity for ESA-ESRIN [43]. By applying
a control discretization approach, the problem of optimizing
the ascent trajectory of a LV from the launch pad to a
target orbit can be posed as a global constrained optimization
problem. This problem is highly sensitive to the value of
the optimization variables and often the trajectory cannot
be evaluated over the whole search space. Therefore, the
use of a derivative-free optimization algorithm is mandatory.
With respect to the previous application, here the constraint
handling plays a major role in determining the success or
failure of the optimization process. In particular, both the
terminal constraints on the final LV orbital parameters and the
path constraints limiting the dynamic pressure, the bending
and axial loads experienced by the rocket, and the heat flux
on the payload during the flight after the fairing jettisoning
must be considered. As a result, the admissible portion of
the search space is quite small. Traditional approaches of
constraint handling for EAs based on penalty functions [44]
are not very effective in this case, because they tend to
create, and get the search trapped into, a number of spurious
sub-optimal solutions. Moreover, they are strongly reliant on
a proper choice of the constraint weighting factors. Barrier
methods are not of any help too, as the feasible set in the
search domain is quite limited and disconnected.

On the other hand, the ε-constrained method adopted in
EOS is really effective on this kind of problems, since starting
from a value of the tolerance ε sufficiently high, ε-feasible
solutions (i.e., which meet the imposed constraints with a
tolerance ε) can be obtained very soon during the search. Then,
by decreasing in a slow and monotone way the parameter ε,
the EA is able to maintain the solution feasible and, at the
same time, attain better values of the fitness. As a result, at
the end of the search, when ε is close to zero, a feasible, good
quality solution is returned by the algorithm. This process is
shown in Fig. 6 for VEGA LV, by using as objective function
(to maximize) the payload mass Mu.

A typical run for a low/medium-fidelity ascent trajectory
optimization with 22 variables and 9 nonlinear inequality
constraints (Ni = 1, Np = 128, NG = 3000) requires about 5
minutes on a workstation with Intel Core i9-9900K @3.60
GHz, using a single MPI process and up to 16 OpenMP
threads.

An integrated optimization of the ascent trajectory and first
stage Solid Rocket Motor (SRM) design of a VEGA-like

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 500 1000 1500 2000 2500 3000
1 × 10−12

1 × 10−10

1 × 10−8

1 × 10−6

0.0001

0.01

1

P
ay

lo
ad

m
as

s
(t

)

C
on

st
ra

in
v
io

la
ti

on

N. of generations

f
Ψmax

ε

Fig. 6: Typical trend of fitness f , constraint violation Ψmax

and ε level during a run of EOS for an ascent trajectory
optimization problem.

multi-stage launch vehicle was also carried out through EOS,
where the objective was to determine the optimal internal
pressure law during the first stage SRM operation, together
with the optimal thrust direction and other relevant flight pa-
rameters of the entire ascent trajectory, so as to maximize the
payload injected into a target orbit. Multiple design constraints
involving the solid rocket motor or dependent on the actual
flight trajectory were also enforced. Here the problem was
even more complex, because of the large number of constraints
and its multi-disciplinarity (the design variables represent very
distant physical quantities); nevertheless, EOS was still able to
attain competitive results [3].

In this case, a typical high-fidelity optimization (Ni = 8,
Np = 136, NG = 10000), with 22 variables and 12 nonlin-
ear inequality constraints, has a run time of about 30 min-
utes on KNL partition of CINECA’s supercomputer Marconi
(3600 compute nodes with 68-core Intel(R) Knights Landing
@1.40GHz and 16 GBMCDRAM + 96 GB RAM each,
connected through an IntelOmniPath network @100Gb/s), by
using 8 nodes and 68 CPU cores per node.

C. Active Debris Removal Missions

An Active Debris Removal (ADR) mission can be seen as
a peculiar instance of a multi-rendezvous (MRR) trajectory,
where an active (chaser) spacecraft is asked to visit (that is, to
perform a rendezvous with) a certain number of targets (space
debris), making the best use of the on-board propellant.

The optimization of a multi-target rendezvous trajectory
can be posed as a mixed-integer NLP problem, involving the
simultaneous optimization of both integer variables (defining
the debris encounter sequence) and real-valued variables (de-
scribing the spacecraft trajectory from a debris to the next one
and the encounter epochs). A bi-level approach can be pursued
for solving this NP-hard problem, by isolating i) an outer-
level, which concerns the definition of the encounter sequence
based on a rough, but fast, evaluation of the encounter epochs
(an heuristic), and ii) an inner-level, which deals with the

optimization of each body-to-body transfer with full details,
assuming that departure and arrival bodies are assigned; en-
counter epochs are also adjusted.

Given a proper heuristic to estimate the cost of each transfer
leg (without solving the full optimization problem), the two
levels can be solved sequentially: the outer-level combinatorial
problem is isolated and solved first, for example using either a
Genetic Algorithm [5] or Simulated Annealing [6]; its solution
is then used as initial guess for the inner-level NLP problem,
that is the actual trajectory optimization problem.

If a Keplerian dynamical model is assumed for both the
targets and the chaser, the inner-level problem results in an
unconstrained problem of real-valued design variables with the
total ∆V as cost function, which can be tackled by EOS. When
the N targets to remove are supposed on circular and coplanar
orbits, each debris-to-debris trajectory can be parameterized by
7 variables, one being the final encounter time and the other
6 identifying the trajectory arcs making up the transfer. So, to
optimize the whole chaser trajectory, EOS must deal with a
7N -variable problem. Because of the high problem dimensions
(for typical values of N) the island-model parallelization of
EOS is decisive to attain good quality results is a limited
amount of time.

TABLE I: Results of the application of EOS to the 15-target
ADR mission by varying the number of islands.

Algorithm parameters Fitness stats, [km/s]
Ni Np NG mean std best
1 512 20000 0.8400 0.0755 0.7310
4 256 10000 0.8165 0.0842 0.7173
8 128 10000 0.7577 0.0444 0.6779
12 85 10000 0.7575 0.0408 0.6900
16 64 10000 0.7475 0.0343 0.6957
20 51 10000 0.7369 0.0458 0.6668
24 43 10000 0.7231 0.0228 0.6935
28 37 10000 0.7389 0.0437 0.6816
32 32 10000 0.7381 0.0318 0.6768

Fig. 7 shows a few results for a 15-debris ADR mission (105
variables) as a function of the number of islands Ni, always
considering approximately the same maximum number of
FES. Population size and number of generations are reported
in Table I. A migration probability φmig = 0.5 was used in
these tests. For the sake of comparison, the results obtained
through a single-island version of EOS, with self-adaptive
mutation strategy, are also reported. All computations were
performed on KNL partition of CINECA’s supercomputer
Marconi, whose characteristics are reported in Sec. IX-B. The
reduction of the user run-time is apparent. The quality of the
attained solutions improves with the number of islands, up to
Ni = 24; from that point on, the population size of each island
probably becomes too small for the problem at hand.

X. CONCLUSION

This paper presents the evolutionary optimization code EOS
developed at Sapienza University of Rome, which represents
a state-of-the-art DE-based algorithm. After recalling the tra-
ditional DE algorithm, the main features added to EOS to

(a) Fitness (total ∆V) vs number of islands. (b) Run time (logarithmic scale) vs number of islands.

Fig. 7: Boxplots of run time and solution quality as a function of the number of islands Ni for a 15-target ADR mission.
Statistics are averaged over 20 independent runs, with a maximum FES NF = 10240000.

enhance the performance of DE were described in detail. These
features include: the self-adaptation scheme for the DE control
parameters, to avoid a manual tuning of such quantities and
let them automatically evolve along the search; a partial restart
(“epidemic”) mechanism, to enhance population diversity and
evade the danger to get the search trapped in local optima;
a pruning technique based on clustering, to focus the search
on the most promising regions of the solution space; a ε-
constrained method to make the algorithm capable of effi-
ciently tackling constrained problems; a parallel synchronous
island-model paradigm, to properly balance the “explorative”
and “exploitative” tendencies of the algorithm and, at the same
time, being able to distribute the computational load on a
highly parallel environment, with a reduction of computational
times and an increase in performance as immediate results.
EOS demonstrated to be successful when applied to hard,
real-world (unconstrained and constrained) problems of space
trajectory design, characterized by many variables and the
presence of several local minima, such as multiple gravity-
assist trajectories, the ascent trajectory of a rocket, and multi-
target rendezvous missions.

REFERENCES

[1] L. Casalino, G. Colasurdo, A. Zavoli, and M. Berga, “Gtoc8: Results
and methods of team 22,” Advances in the Astronautical Sciences, vol.
158, pp. 4291–4300, 2016.

[2] L. Federici, A. Zavoli, and G. Colasurdo, “Preliminary capture tra-
jectory design for europa tomography probe,” International Journal of
Aerospace Engineering, vol. 2018, 2018.

[3] L. Federici, A. Zavoli, G. Colasurdo, L. Mancini, and A. Neri, “Inte-
grated optimization of ascent trajectory and srm design of multistage
launch vehicles,” Advances in the Astronautical Sciences, vol. 168, pp.
733–752, 2019.

[4] B. Benedikter, A. Zavoli, and G. Colasurdo, “A convex approach to
rocket ascent trajectory optimization,” in 8th European Conference for
Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1-4 July
2019.

[5] L. Federici, A. Zavoli, and G. Colasurdo, “Impulsive multi-rendezvous
trajectory design an optimization,” in 8th European Conference for
Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1-4 July
2019.

[6] L. Federici, Z. Alessandro, and G. Colasurdo, “A time-dependent TSP
formulation for the design of an active debris removal mission using
simulated annealing,” in Astrodynamics Specialist Conference, vol. AAS
19-701, Portland, Maine, 11-15 Aug. 2019.

[7] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[8] J. Vesterstrom and R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,” in Proceedings of the 2004 Congress
on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 2. IEEE,
2004, pp. 1980–1987.

[9] S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in
differential evolution–an updated survey,” Swarm and Evolutionary
Computation, vol. 27, pp. 1–30, 2016.

[10] M. Locatelli and M. Vasile, “(non) convergence results for the differen-
tial evolution method,” Optimization Letters, vol. 9, no. 3, pp. 413–425,
2015.

[11] S. Das and P. N. Suganthan, “Differential evolution: a survey of the state-
of-the-art,” IEEE transactions on evolutionary computation, vol. 15,
no. 1, pp. 4–31, 2011.

[12] C. A. C. Coello and A. Carlos, “A survey of constraint handling tech-
niques used with evolutionary algorithms,” Lania-RI-99-04, Laboratorio
Nacional de Informática Avanzada, 1999.

[13] Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in
evolutionary algorithms,” IEEE Transactions on evolutionary computa-
tion, vol. 3, no. 2, pp. 124–141, 1999.

[14] J. Lampinen, I. Zelinka et al., “On stagnation of the differential evolution
algorithm,” in Proceedings of MENDEL, 2000, pp. 76–83.

[15] A. E. Eiben and C. A. Schippers, “On evolutionary exploration and
exploitation,” Fundamenta Informaticae, vol. 35, no. 1-4, pp. 35–50,
1998.

[16] M. Ali, “Differential evolution with generalized differentials,” Journal
of Computational and Applied Mathematics, vol. 235, no. 8, pp. 2205–
2216, 2011.

[17] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello, “A
comparative study of differential evolution variants for global optimiza-
tion,” in Proceedings of the 8th annual conference on Genetic and
evolutionary computation. ACM, 2006, pp. 485–492.

[18] J. Liu, “On setting the control parameter of the differential evolution
method,” in Proceedings of the 8th international conference on soft
computing (MENDEL 2002), 2002, pp. 11–18.

[19] J. Brest, B. Bošković, S. Greiner, V. Žumer, and M. S. Maučec, “Per-
formance comparison of self-adaptive and adaptive differential evolution
algorithms,” Soft Computing, vol. 11, no. 7, pp. 617–629, 2007.

[20] F. Peng, K. Tang, G. Chen, and X. Yao, “Multi-start jade with knowl-
edge transfer for numerical optimization,” in 2009 IEEE Congress on
Evolutionary Computation. IEEE, 2009, pp. 1889–1895.

[21] M. Vasile, E. Minisci, and M. Locatelli, “An inflationary differential evo-
lution algorithm for space trajectory optimization,” IEEE Transactions
on Evolutionary Computation, vol. 15, no. 2, pp. 267–281, 2011.

[22] M. Vasile and M. Locatelli, “A hybrid multiagent approach for global
trajectory optimization,” Journal of Global Optimization, vol. 44, no. 4,
pp. 461–479, 2009.

[23] B. Ghojogh, S. Sharifian, and H. Mohammadzade, “Tree-based optimiza-
tion: A meta-algorithm for metaheuristic optimization,” arXiv preprint
arXiv:1809.09284, 2018.

[24] B. A. Conway, Spacecraft trajectory optimization. Cambridge Univer-
sity Press, 2010, vol. 29.

[25] F. Jiménez and J. L. Verdegay, “Evolutionary techniques for constrained
optimization problems,” 1999.

[26] T. Takahama and S. Sakai, “Constrained optimization by the ε con-
strained differential evolution with an archive and gradient-based mu-
tation,” in Evolutionary Computation (CEC), 2010 IEEE Congress on.
IEEE, 2010, pp. 1–9.

[27] V. Feoktistov, Differential evolution. Springer, 2006.
[28] M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis, “Balancing

the exploration and exploitation capabilities of the differential evolution
algorithm,” in 2008 IEEE Congress on Evolutionary Computation (IEEE
World Congress on Computational Intelligence). IEEE, 2008, pp. 2686–
2693.

[29] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE transactions on Evolutionary Computation, vol. 13, no. 2, pp.
398–417, 2008.

[30] W. Martin, J. Lienig, and J. P. Cohoon, “C6. 3 island (migration) models:
evolutionary algorithms based on punctuated equilibria,” B ack et al.
BFM97], Seiten C, vol. 6, pp. 101–124, 1997.

[31] D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis,
“Parallel differential evolution,” in Proceedings of the 2004 congress on
evolutionary computation (IEEE Cat. No. 04TH8753), vol. 2. IEEE,
2004, pp. 2023–2029.

[32] M. Di Carlo, M. Vasile, and E. Minisci, “Adaptive multi-population
inflationary differential evolution,” Soft Computing, pp. 1–31, 2019.

[33] D. Izzo, M. Rucinski, and C. Ampatzis, “Parallel global optimisation
meta-heuristics using an asynchronous island-model,” in 2009 IEEE
Congress on Evolutionary Computation. IEEE, 2009, pp. 2301–2308.

[34] L. Clarke, I. Glendinning, and R. Hempel, “The mpi message passing
interface standard,” in Programming environments for massively parallel
distributed systems. Springer, 1994, pp. 213–218.

[35] N. Lynn, M. Z. Ali, and P. N. Suganthan, “Population topologies for
particle swarm optimization and differential evolution,” Swarm and
evolutionary computation, vol. 39, pp. 24–35, 2018.

[36] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 5, pp. 443–
462, Oct 2002.

[37] V. Notaro, M. Di Benedetto, G. Colasurdo, D. Durante, P. Gaudenzi,
L. Imperi, M. Mariani, A. Marotta, G. Palermo, L. Pollice, P. Racioppa,
A. Zavoli, and L. Iess, “Europa tomography probe (ETP) mission
feasibility - spacecraft design,” 2016.

[38] M. Di Benedetto, L. Imperi, D. Durante, M. Dougherty, L. Iess,
V. Notaro, and P. Racioppa, “Augmenting nasa europa clipper by a
small probe: Europa tomography probe (etp) mission concept,” Acta
Astronautica, vol. 165, pp. 211–218, 2019.

[39] J. A. Sims and J. M. Longuski, “Analysis of v∞ leveraging for interplan-
etary missions,” in AIAA/AAS Astrodynamics Conference, Scottsdale, AZ,
1994, pp. 505–513.

[40] M. Vasile and P. D. Pascale, “Preliminary design of multiple gravity-
assist trajectories,” Journal of Spacecraft and Rockets, vol. 43, no. 4,
pp. 794–805, 2006.

[41] M. Ceriotti, “Global optimisation of multiple gravity assist trajectories,”
Ph.D. dissertation, 2010.

[42] D. Myatt, V. M. Becerra, S. J. Nasuto, and J. Bishop, “Advanced global
optimisation for mission analysis and design,” Final Report. Ariadna id,
vol. 3, p. 4101, 2004.

[43] Statement of Work for Support and Cross-check of VEGA LEAP and
VEGA-C Solid Propulsion and System Activities (Period Q2 2015 - Q2
2017) Addendum, VG-SOW-0-D-30005-ESA.

[44] J. T. Richardson, M. R. Palmer, G. E. Liepins, and M. R. Hilliard, “Some
guidelines for genetic algorithms with penalty functions,” in Proceedings
of the 3rd international conference on genetic algorithms. Morgan
Kaufmann Publishers Inc., 1989, pp. 191–197.

