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Abstract—In this work, an adaptive constraint-handling
approach is developed to improve the efficiency of surrogate-
based optimization (SBO). Similar to other SBO methods, the
proposed approach is a sequential updating process, whereas
two candidate points considering the significance of objective
and constraints are generated respectively in each cycle. In
detail, the candidate point of objective is obtained through the
penalized lower confidence bounding (PLCB) infill criterion.
Additionally, an infill criterion of the constraints (called MLCB)
which can accurately characterize the boundaries of the
constraints is developed to determine the candidate point of
constraints. Then, a selection algorithm is developed to select
one or two candidate point(s) as the new training point(s)
adaptively according to the current optimal value and the
accuracy of the constraint boundaries. The selection algorithm
is composed of three phases. In the first phase, the candidate
point of constraints is selected to find a feasible solution. Two
candidate points of objective and constraints are added to speed
up the convergence in the second phase. In the third phase, the
candidate point of objective is chosen to improve the quality of
the feasible optimal solution. The proposed approach is tested
on seven numerical functions and compared with state-of-the-
art methods. Results indicate that the proposed approach has
excellent global optimization ability, meanwhile, it reduces
significantly computational resources.

Keywords—Expensive optimization problems,
based optimization, Kriging model, Sequential process

Surrogate-

[. INTRODUCTION

The high fidelity simulation models are broadly employed
to improve the reliability and quality of engineering products.
However, these simulations (e.g. the Finite Elements Method
and Computational Fluid Dynamics analysis) take hours or
days to obtain the response of a design scheme [1]. In that case,
the simulation-based optimization is hardly practical because
tremendous samples are needed for most traditional
optimization algorithms to search the optimal solution. Hence,
surrogate-based optimization (SBO) has gained extensive
attention because it significantly reduces the resources
compared with simulation-based optimization approaches[2,
3].

The SBO methods refine the surrogates dynamically by
certain infill criteria to obtain the optimal solution in the
design space. Representatively, Jones et al. [4] proposed an
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efficient global optimization (EGO) method which updates
the Kriging model sequentially by the expected improvement
(EI) infill criterion. During the dynamic updating process, the
point with the maximum value of El is selected to supplement
the sample set, which can effectively balance the global
exploration and local exploitation. Recently, many related
articles are published to improve the efficiency of the EI
criterion through assigning different weights of the
exploration and exploitation terms [4]. Another popular infill
criterion of the EGO method is the lower confidence
bounding (LCB) criterion [5] which combines the predicted
value and variance of the Kriging model directly to search for
potential optimal value. However, the LCB criterion has a
large risk to fall into the local valley because of the constant
weights between exploration and exploitation terms. Many
works aim to get rid of this shortcoming by different weight
assigned strategies [6, 7]. Apart from the above approaches,
Gutmann [8] utilized the bumpiness of the radial basis
function (RBF) model to guide the sequential process based
on an RBF model. Dong et al. [9] proposed the multi-start
space reduction strategy to solve expensive black-box
objective optimization problems. These approaches have
appealing performances on handling the expensive
optimization problems without constraints, or the problems
with cheap constraints. In fact, most optimization problems
of engineering are subjected to a number of black-box
constraints which are also computationally expensive.
Without loss of generality, the optimization problem with
inequality constraints is defined by

min  f(x)
s.t. g_j(x)SO,j=1,2,...,J @))
Ib<x<ub

th

where f(x) is the objective function, g,(x) denotes the ;
constraint function, /b and ub are the lower and upper
bounds of the design variables, respectively. To save
computational resources, both the objective and constraints
need to be approximated by surrogates during the optimization
process on these issues with expensive objective and
constraints. In this situation. the commonly used approach, i.e.,
the penalty function method [10], may decrease the efficiency
of the sequential process to a large extent because of the
uncertainty of the constraint surrogates.

To address this bottleneck, many works have been



developed to tackle the optimization problem with expensive
objective and constraints over the past years. For instance, the
EI criterion is extended to the constrained EI (CEI) by
multiplying the probability of feasibility (PoF) [11], where
the PoF is an index to measure the satisfaction degree of the
constraints. Due to its excellent ability to solve simple
problems, the CEI algorithm is regarded as the baseline
algorithm to verify the performance of other approaches [12].
Fonseca et al.[13] attempted to make a better trade-off
between exploration and exploitation by treating the EI and
PoF as two optimization targets. Then, it selects new training
points from the Pareto front. Li et al. [ 14] proposed a Kriging-
based bi-objective constrained optimization method where
the CEI and the uncertainties of surrogates are set to be the
optimization objectives. Parr et al. [15] reviewed the
distinctions of these approaches and developed a new
criterion to choose multiple points from the Pareto front. In
addition, Regis has promoted SBO methods to deal with
expensive constrained problems. Two of his representative
works, i.e., constrained optimization by radial basis function
interpolation (COBRA) [16] and constrained local stochastic
(constrLMSRB) [16], are composed of two phases.
Specifically, the feasible solution is the primary target in
phase one and the second phase aims to improve the quality
of the current optimal value. Liu et al. [17] developed the
DIRECT-type method which can handle the feasible and

infeasible cells separately without any user-defined parameter.

Dong et al. [18] proposed a new Kriging-based constrained
global optimization algorithm, which reduces the
computational resources through the space reduction
technology and local surrogate models. In general, the
constraints in the constrained optimization divide the design
space into feasible and infeasible regions. Therefore, for the
constraints, the constrained optimization concerns the
accuracy at the constraint boundaries instead of global
accuracy. However, some approaches concern the global
accuracy of constraint surrogates, which may waste
computational resources when the constraint boundaries have
been well approximated. Other methods only consider the
constraints in the first phase while ignore the objective, which
may influence the convergence speed.

To overcome this conflict, an adaptive constraint-
handling approach is developed to make full use of the
surrogate models and enhance the efficiency of the dynamic
updating process for finding the feasible optimal solution.
Besides, a ratio factor used to estimate the accuracy of the
Kriging models of constraints at constraint boundaries is
developed. The proposed approach can decide whether to
consider the influence of constraint surrogates through the
ratio factor or not. Specifically, two candidate points, which
are determined by considering the significance of objective
and constraints respectively, are generated in each cycle. The
candidate point determined by minimizing the penalized LCB
(PLCB) criterion is used to find the feasible optimal solution.
On the other hand, a modified LCB criterion (MLCB) is
developed to accurately characterize the constraint
boundaries. Meantime, the candidate point of constraints is
obtained by minimizing the MLCB criterion. A selection
algorithm is developed to select one or two candidate point(s)
as the new training point(s) to refine the Kriging models in a
cycle, which aims to balance the accuracy and the
convergence speed. The selection algorithm consists of three
phases combining the ratio factor and the current optimal
solution. In detail, only the candidate point determined by the
MLCB is selected when no feasible solution exists, two

candidate points are selected after a feasible solution is found
which speeds up the iterative process, only the candidate
point determined by the PLCB criterion is chosen when the
accuracy of Kriging models of constraints around constraint
boundary is at a high level. To verify the accuracy and
effectiveness of the proposed approach, seven numerical
problems with different complexities are tested. Results show
that the proposed approach has competitive performance
compared with both the classic and state-of-the-art methods,
especially in reducing computational resources.

The remainder of this work is organized as follows,
Section 2 reviews the basic theories of the Kriging model and
efficient global methods for constrained optimization
problems. The proposed approach is elaborated in Section 3.
In Section 4, the demonstrations are presented. Some
conclusions and future works are provided in Section 5.

II. BACKGROUND

A. Kriging model

Suppose that there is a sample set with » points
{x,,X,,...,x,} and their responses {y,,y,...,»,} , and the
dimension of the design variables is 4 . The Kriging model
proposed by Krige [19] approximates the input-output
relationship of the black-box system through the information
of these points. The Kriging model can be expressed as

J(xX)=p+Z(x) (€]

where 4 is the mean of the Gaussian process which
represents the overall tendency, Z(x) is a Gaussian process
which denotes the local deviation. Meanwhile, E[Z(x)]=0

and the covariance of two-points x; and x; is

cov = o’p(Z(x;), Z(x;)) , where

P(Z(x,), Z(x;)) =exp(-)_ 6 (xf =x))")  (3)

k=1

where 6=[6,.6,,....6,] and p=[p,p,,....p,] are two
modeling parameters that are utilized to control the smooth
of the Kriging model and adjust the correlation between
samples, respectively. Consequently, there are 2¢+2 unknown
modeling parameters, i.e. f,0,0,p , to decide a Kriging
model, which can be determined by the maximum likelihood
estimation. A detailed introduction of parameter estimation
can be found in [20].

Compared with other surrogates, the Kriging model can
provide both the predicted value and uncertainty. The
predicted value of an un-sampled point X' can be expressed
as

f()=a+1" @ (y-14) 4)
where
P(Z(x,).Z(x,)) x),Z(x,)]
b= : : 6)
P(Z(x,), Z(x,)) x).Z(x,) |



a=1"o"'y/1"®"1 (6)

The estimated variance is determined by minimizing the
root square error, which is expressed as

P(x)=6[1-p d'p+(1-1"@"p) /T @™1] (7)

where

o2 o Wl @ (p-1p)
n

®

o= p(Z(x,),Z(x") x).Z(x)]  ©)

B. The constrained expected improvement criterion
Because the nrediction of Kriging model obeys the normal
distribution y ~ ,$(x)), the improvement of a sample
is defined by
I(x) = max(y,;, = »,0) (10)

The expected improvement is the expected value of 7(x),
which can be obtained by

ELL(x)] = (3 —ﬁ)(D(m) + 5(x)¢(y“1‘"—‘fj ()
s(x) §(x)

where @ and ¢ are the cumulative density function and
probability density function of Gaussian distribution,
respectively.

The first term of E[/(x)] is utilized for local exploitation
and global exploration is realized by the second term.
However, the EI criterion cannot deal with constrained
optimization problems. To get out of this dilemma, the EI
criterion is modified combining the probability of feasibility
(PoF), defined by

84(%)

i=1

J O_ ".
PoF(x):]‘[[cp(ﬂH, i=1,2,..,J (12)
where g(x) and §,(x) denote the predicted value and
uncertainty of constraint Kriging models respectively, J is

the number of constraints. The values of PoF(x) range from
0 to 1, where a larger value indicates higher satisfaction of

constraints.
To this end, the CEI criterion is expressed as

CEI(x) = E(I(x))x PoF(x) (13)

C. The penalized lower confidence bounding criterion
The LCB criterion is utilized as the guideline for the

updating process of objective Kriging model. The LCB
criterion can be defined by

leb(x) = £(x)~1.965 ,(x) (14)

According to (13), the LCB criterion makes a trade-off
between exploration and exploitation by combining the
predicted value and variance simply. To guarantee the
feasibility of the new training point selected by LCB, the LCB
function is revised by adding a penalty. In this case, the
revised LCB function for constrained optimization can be
expressed as

pleb(x) = leb(x) + amax { g, (x) —as,, (x).0}
J=12....J

(15)

where ¢ is apenalty factor, a is the relaxation of constraints.
Usually, a=0 or a=1.96.

The PLCB criterion can search for a feasible optimal
solution in each cycle by minimizing (14).

[II. PROPOSED ADAPTIVE CONSTRAINT-HANDLING APPROACH

Generally, the constraints of the constrained optimization
problem provide the estimation of the feasibility, which
depends on the sign of the constraints. Therefore, it is not
mandatory to consider the influence of Kriging models of
constraints when the accuracies of constraint boundaries are
at a high degree. Because of this, an MLCB criterion for
constraint Kriging models, which can accurately characterize
the constraint boundaries, is proposed. Meanwhile, a ratio
factor is proposed to estimate the relative accuracy of Kriging
models of constraints at the constraint boundaries. The
proposed MLCB criterion, ratio factor, and original PLCB
criterion can be integrated into the proposed adaptive
updating process to find the feasible optimal solution while
reducing computational resources. The framework of the
proposed approach is shown in Fig.1, which mainly consists
of several essential parts including the construction of the
initial Kriging model, the determination of the candidate
points, the procedure of selecting new training points, and the
optimization process of searching the feasible optimal value.

‘ Step 1: Generate the initial sample sets |

Step 2: Construct the initial Kriging models of
objective and constraints

|
v v

Search the

Step 3:
candidate point of
objective through the
pleb(x)

Step 4: Construct the
mich (x) and search the
candidate point of
constraints

[ ]

i

Step 5: Determine the new training points
through the proposed selection algorithm

l

Step 6: Update the Kriging models of objective
and constraints

[ Step 8:  Output the best feasible optimal solution |

>

Fig. 1. The flowchart of the proposed adaptive constraint-handling
approach




A. The infill criterion of the constraint Kriging models

The goal of the infill criterion for the constraint Kriging
models is to provide an accurate feasibility estimation. In that
case, the constraint Kriging models are expected to be
accurate around the constraint boundaries. Therefore, the LCB
criterion is modified to identify the boundary of a constraint,
which can be expressed as

mlch,(x) =|2,(x)—=z,|-1.965, (x), j=12,...J
(16)

where z, is the threshold for each constraint, which equals 0

in this research.

The proposed criterion of constraints can make a trade-off
between exploration and exploitation, because the point near
the boundary of a constraint or with larger uncertainty is
selected by minimizing (16). Theoretically, a new point can
be determined for each constraint according to (16). Ifall these
points are evaluated by the expensive model to update the
Kriging models in each cycle, it may waste the computational
burden. In fact, the feasibility of a solution in the current
iteration is dominated by the activated constraints, which is
defined by

g'(x)=max{g,(x) } j=12,...J 17)

According to (17), a design scheme is feasible when
g'(x) <0, vice versa. Therefore, the MLCB criterion can be
applied to select a new point for the activated constraints
which can improve the efficiency of the iterative process.

To fabricate the MLCB criterion more suitable for the
dynamic optimization process, an index associating with the
repetitions of the current optimal solution is used to further
revise (17). The final version of the MLCB criterion is defined
by

mleb'(x) =|g'(x)| —(1.96 +In(flag))s, (x)  (18)

where ¢'(x) and §;(x) are the predicted value and variance

of'the activated constraint, respectively. flag is an index that
represents the repetitions of the current optimal solution.
When the value of flag enlarges, it means that the iterative

process has a large risk of falling in a local valley. In that case,
the mlcb'(x) is dominated by the §!(x) so that it can get rid

of the local valley by searching a new feasible region.

B. The selection algorithm for selecting new training points

In steps 3 and 4 of the procedure, two candidate points are
ascertained by minimizing the PLCB and MLCB infill
criteria respectively. To reduce the computational resources,
a selection algorithm is developed to determine the new
training points for the sequential process of SBO. Therein, a
ratio factor used to estimate the accuracy of Kriging models
of constraints at the constraint boundaries is developed. The
derivation of the ratio factor is elaborated as follows:

The points in the design space can be divided into two
situations due to the prediction uncertainty. One situation is
that the points would not change their feasibility even though
considering their uncertainties. The other is that their
feasibility would change due to the uncertainties. The points

in the latter situation should be concerned during the
sequential process. Because the prediction of Kriging obeys
the normal distribution, the points with the probabilities of
wrong sign prediction larger than 95% for can be expressed
as

X, = {x] &' (x) < 0; 8" (x) +1.96§'(x) > 0} 19)
X, = {x|&'(x) > 0;8' (x) +1.965"(x) < 0}
where X, and X, are sample sets of two situations for

wrong sign prediction under the active constraints. Generally,
the accuracy of the activated constraints is higher when the
number of points in X, and X, is less. In order to quantify

the relative accuracy of the active constraints, the ratio is
defined by

N, +N
R= Xl XZ
N

test

(20)

where N

ltest

Latin Hypercube sampling (LHS) [21] method, N, and N

is the number of tested points generated by the

are the numbers of points in X, and X, among the tested

points, respectively. Considering that the value of R is
extremely small when the size of the feasible region is small
in the design space, the (19) can be revised by

N, +N
R=_% "% 1)
N

Xy

where N, is the number of infeasible points. The value of

R indicates the relative accuracy of the constraint boundaries,
where a smaller value represents higher accuracy. If the value
of R equals 0, it means that there is no wrong sign prediction
of the constraint Kriging models under the uncertainties.

Combining R and the current feasible optimal solution, a
selection algorithm used to select new training points is
developed as listed in Algorithm I.

TABLE L. ALGORITHM [: SELECTION ALGORITHM OF CHOOSING NEW

TRAINING POINTS

Input: candidate point of objective x;,, , candidate point of constraints

x! ., ratio factor R , trained sample set (x, y, 2)

cons >

1: Begin
2: If summax{ g,O}:tO <The initial phase to find a
3: then x,  =x/ feasible solution
4: elseif R<0.05 <The final phase where the
. then ...~ accurficy of the constraints
" at a high level.
6 elseif Euclidean distance | <To avoid the cluster of new
(X} X000 ) S 7 training points
7 then x/ =x/
8 else &The accelerating phase, two
, , , candidate points are selected
9: Koo = (xobj Y xm) as the new training points
10: End

Output: the new training points x;ﬂ.

According to Algorithm I, the proposed approach can
balance the objective and constraints simultaneously by



considering the current optimal solution, the relative
accuracy at the boundary of the constraint, and the
distribution of samples.

IV. DEMONSTRATIONS

To validate the effectiveness and accuracy of the adaptive
constraint-handling approach, twofold demonstrations are
devised: (1) comparison with the typical methods, (2)
comparison with the state-of-the-art methods.

A. Comparison with the typical approaches

In this section, the proposed approach is compared with
the CEI infill criterion, the PLCB criteria on two toy
examples to show the details of the proposed approach. The
tested functions are the Brainin functions which can be
expressed in (22) and (23), respectively.

The Branin functions are representative benchmark test
functions in constrained optimization problems. In detail, the
Branin 1 function is simple with only one huge continuous
feasible region while the Branin 2 function is complex with
three discontinuous feasible subregions. To show the
dynamic process of the proposed approach intuitively, the
sampling processes of the two functions are shown in Fig. 2
and Fig. 3 respectively.

Branin 1 function

f(x) =(15x2 —5—'12(15)cl -5) +£(15x1 —5)—6)
4z T

+10((1 —E%)cos(15x1 -5+ 1) +5(15x, -5)
Vs

g(x)=—xx,+02<0
0<x,x, <1

(22)

Branin 2 function

f(x) =(15x2 —5—'12(15xl -5) +i(15xl —5)—6]
Ar V4

+1o((1 —gi)cos(ls;c1 -5) +1j+5(15x1 -5)
T

2

g(x)=6—(4-2.1x; +%xl4)x12 —x,%, —(—4+4x3)x;
~3sin(6 - 6x,)— 2sin(6—6x,) <0

0<x,x,<1
(23)

According to Fig. 2, the zero contour of the constraint
function divides the design space into the feasible and
infeasible regions. Meanwhile, the feasible region is a
continuous area and has a larger feasible size among the
design space. The boundary of the constraint is smooth so only
one new training point is added in iteration 1 through the
mlcb'(x) to update the Kriging model among the 8 iterations.
In the last 7 iterations, only the candidate points of objective
are selected by Algorithm I. However, the Branin 2 function
has 3 discontinuous feasible regions and the best feasible

solution is in the lower-right corner of the design space. The
constraint boundaries is hard to be well approximated so the
traditional methods have large risks to fall into the local
optimal region. As shown in Fig. 3, there is a feasible solution
in the initial samples, therefore, the algorithm goes to the
accelerating phase and adds new training points considering
the objective and constraint simultaneously. Specifically, the
pleb(x) exploits the existing feasible region during the
iterations and the mlcb'(x) explores the design space for new
possible regions. As shown in Fig. 3, the mich'(x) has
identified two feasible regions and the red new training point
in iteration 8 is in the vicinity of the final un-identified feasible
region. It indicates the excellent global exploration ability of
the mlchb'(x) . To this end, the proposed adaptive constraint-
handling approach is efficient combining the two infill criteria
and the proposed algorithm I for determining the new training
points adaptively.
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Fig. 2. The sequential process of proposed approach of the Branin 1
function
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Table II lists the means of the approximated optimal value
( fuwin ) and the number of function evaluations ( NFE ) of
different methods over 30 independent runs. The maximum
evaluations of the two tested functions are set to be 50, the real
optimal solution and predetermined values to reach are the
values beside and in the parentheses below the function names
in Table II. The symbols of "-", "+ ", and "=" indicate the
results of the T-tests at a significant level of 0=0.05, which
represent the performance of the proposed approach on NFE
is worse than, better than and similar to that of other
approaches.



TABLE II. RESULTS OF DIFFERENT APPROACHES ON THE BRANIN
FUNCTIONS
Functions Braninl Branin2
5.5757 (5.6318) 12.001 (12.1210)
Mean Joiin NFE T-test Sonin NFE T-test
CEI 5.5899 17.77 =~ 12.0718 34.67 +
PLCBI1 55.4904
5.5855 21.40 + 35.79 +
(a=0) @1
PLCB2 15.8176
(a=1.96) 5.6714 41.33 + 3) 32.93 +
Proposed 5.5840 17.07 12.0660 29.77

As we know, the CEI has high efficiency on the simple
functions, however, the proposed approach is better than the
CEI on both the fmin and NFE. It indicates the effectiveness of
the proposed approach. In general, the performance of the
proposed approach on the NFE is better than other approaches
according to the T-test results. Concerning the PLCB infill
criteria with a=0 and «=1.96 , they have evident
shortcomings when dealing with the constraint optimization
problems directly. When a =0, the PLCB is tended to exploit
the local region during the optimization process, therefore, the
PLCB is prone to fall into the local optimal. Meanwhile, the
Jmin of the Branin 2 function is 55.4904 which is larger than
those of the other approaches and there is one trail that has
even not found a feasible solution as listed in the parentheses
beside the fmin. On the other hand, in the case a =1.96, the
ability to allocate the optimal solution is influenced by
relaxing the constraints because the NFE is 41.33 on Branin 1
function. Meanwhile, three trials have not found a feasible
solution for the Branin 2 function. However, it has a better
global exploration ability to some extent, where the value fmin
is significantly smaller than that of the case a=0.

To show the effectiveness of different approaches
intuitively, Fig. 4 and Fig. 5 plot the box chart of results of
different approaches of the Branin functions respectively.

As shown in Fig. 4 and Fig. 5, the black boxes represent
the range of NFE, the blue boxes denote the range of the fin.
It is noting that the infeasible cases of PLCB are not included.
The case of PLCBI1 cannot get out of the valley because most
of its cases in Fig. 5 find the other two local optimal values.
On the contrary, the case of PLCB2 has a poor ability to
converge to the optimal value under limited resources. The
CEI has a better performance than the cases of PLCB both on
the NFE and approximated fmin. However, in general, the
proposed approach has better stability on the NFE and fiin
compared with the listed methods.
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B. Comparison with the state-of-the-art approaches

To further test the merits of the proposed adaptive
constraint-handling  approach, several state-of-the-art
approaches including the KBCO [14], SCGOSR [7], and
BOAEF [15] are utilized. The tested functions are G2, G4, G6,
G7, G8, and G24 from the CEC 2006 test function set [23] and
a speed reducer design problem [18]. Because of the lack of
the original codes of these approaches, the results reported in
these researches are cited. The initial number of sample points
is 2(d +3), the detailed information of these tested functions
are illustrated in Table III, where d denotes the dimension of
the test function, Cons is the number of constraints, PV is the
predetermined value to reach, ME denotes the maximum
evaluations of the real function, R is the ratio of the feasible
region. Besides, the results of these tested functions are listed
in Table IV.

TABLE IIL. TERMINATION CONDITIONS OF THE TESTED FUNCTIONS
Case d Cons  Optimum PV ME R (%)
-30665 52:123
G4 5 6 539 -30665 60 0
-6961
G6 2 8139 -6961.5 50 0.0067
G7 10 8 24.3062 25 150  0.0003
G8 2 2 -0.095825  -0.0957 50 0.8560
SR7 7 11 2994.42 2995 100 0.0978
G24 2 2 -5.5080 -5.5080 50 44212
G2 10 2 -0.67 -0.20 150  99.687

As illustrated in Table IV, the proposed approach can save
remarkable computational resources compared with the other
methods on most of these test functions. Specifically, the
reduction of the resource is proportional to the complexity of
the problem in the cases of G4, G6, G8, SR7. Concerning the
accuracy, the proposed approach obtains smaller value both
on the mean and standard deviation of f,, inthe cases of G4,

SR7. In these cases, there is no feasible solution in the initial
sample set, however, the proposed approach can find a
feasible solution through the MLCB criterion with several
iterations. The mean and standard deviation of f . s

competitive to those of other approaches in the cases of G6
and G8. In the case of G7, the proposed approach costs
slightly higher resources with a larger value. The complexity
of G7 is higher than other tested functions because the
dimension and number of constraints are 10 and 8§
respectively. Besides, the ratio of the feasible region is only
0.0001%. It is noting that the proposed approach only uses an

min



average of 16.6 iterations to find the feasible region, in this
situation convergence speed is influenced by the PLCB
criterion. Therefore, the proposed approach has a large
potential to further improve the efficiency with another
efficient global optimization algorithm. Meanwhile, the best,
the median, and the worst optimal values of G4, G6, G8, SR7,

and G24 have little difference, while that of G2 and G7
remain apparently due to the high complexity. Finally, the
results of the T-tests on the NFE show that the computational
burden of the proposed approach is significantly small than
other approaches on most test functions.

TABLE IV. RESULTS OF THE TESTED FUNCTIONS ON DIFFERENT APPROACHES
Cases Methods NFEnean fmin [mean £+ std] Best Median Worst T-test
Proposed 34.0 -30665.51 + 0.055 -30665.539 -30665.539 -30665.067 /
G4 KBCO 435 -30665.47 £ 0.063 N/A N/A N/A +
SCRGOSR 53.9 -30665.46 + 0.064 N/A N/A N/A +
BOAEF 47.1 -30665.47 + 0.045 N/A N/A N/A +
Proposed 27.2 -6961.80 + 0.006 -6961.81 -6961.80 -6961.80 /
G6 KBCO 41.7 -6961.81 +0.012 N/A N/A N/A +
SCRGOSR 75.1 -6961.80+0.016 N/A N/A N/A +
BOAEF 423 -6961.80 +0.015 N/A N/A N/A +
Proposed 134.8 24.8409+ 0.386 243215 24.8059 25.9336 /
KBCO 121.6 24.5047 £ 0.183 N/A N/A N/A -
G7 SCRGOSR 178.2 24.6559+0.314 N/A N/A N/A +
BOAEF 1334 24.5883 +£0.321 N/A N/A N/A ~
Proposed 38.8 -0.0958 + 0.000057 -0.09582 -0.09580 -0.09561 /
G8 KBCO 45.8 -0.0958 + 0.000021 N/A N/A N/A +
SCRGOSR 51.8 -0.0958 + 0.000013 N/A N/A N/A +
BOAEF 46.2 -0.0958 + 0.000014 N/A N/A N/A +
Proposed 53.1 2994.47 + 0.0005 2994 .47 2994 47 2994 48 /
KBCO 76.3 2995.24 +0.89 N/A N/A N/A +
SR7  SCRGOSR ~ 88.1 299621+ 1.73 N/A N/A N/A +
BOAEF 81.9 2996.18 £ 1.16 N/A N/A N/A +
G24 Proposed 16.37 -5.5079 + 0.0002 -5.5080 -5.5080 -5.5073 /
G2 Proposed 144.33 -0.2006 +£0.0633 -0.3367 -0.1928 -0.1175 /

* N/A: the results are not available in their researches

V. CONCLUSIONS

In this work, an adaptive constraint-handling approach is
proposed to solve the optimization problem with expensive
objective and constraints with high efficiency. The proposed
approach follows a sequential process where two candidate
points are generated in each iteration. The candidate points of
the PLCB criterion is utilized to exploit the feasible region.
Meanwhile, the candidate point generated by the developed
MLCB criterion, which can accurately characterize the
constraint boundaries, is regarded as the exploration
component. To devise the sequential process efficiently and
make full use of the computational resources, a selection
algorithm used to determine the new training points is
proposed. The proposed algorithm is composed of three
phases which can be recognized automatically. In detail, the
MLCB criterion is used to find a feasible solution in the first
phase. In the second phase, two candidate points of objective
and constraints are selected to accelerate the sequential
process. In the final phase, the LCB criterion is used to
improve the quality of the current feasible optimal solution.

To verify the performance of the proposed approach,
twofold comparisons are devised. First, the proposed
approach is compared with the traditional constraint-handling
approach under the Branin functions, results show the
proposed approach has compensated for the exploration
ability of the PLCB criterion. Concerning the computational
burden, the proposed approach is less than the CEI, which
indicates the high effectiveness of the proposed approach on
the simple functions. Second, in comparison with the recently
reported approaches, the proposed approach can converge to
the real optimal solution with fewer NFEs in most cases.
Simultaneously, the quality of the approximated optimal
solutions is better than that of the compared approaches.
Consequently, the proposed approach is a promising

approach for the computationally expensive constrained
optimization problem.

As for future works, the proposed approach can be
extended to update the Kriging models in a parallel way.
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