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Abstract—Recent studies on resource allocation suggest that
some subproblems are more important than others in the context
of the MOEA/D, and that focusing on the most relevant ones
can consistently improve the performance of that algorithm.
These studies share the common characteristic of updating only a
fraction of the population at any given iteration of the algorithm.
In this work, we investigate a new, more straightforward partial
update strategy, in which a random subset of solutions is selected
at every iteration. The performance of the MOEA/D-DE using
this new resource allocation approach is compared experimen-
tally against that of the standard MOEA/D-DE and the MOEA/D-
DE with relative improvement-based resource allocation. The
results indicate that using MOEA/D with this new partial update
strategy results in improved HV and IGD values, and a much
higher proportion of non-dominated solutions, particularly as the
number of updated solutions at every iteration is reduced.

Index Terms—Multi-Objective Optimization, MOEA/D, Re-
source Allocation, Partial Update Strategy.

I. INTRODUCTION

Multi-objective Optimization Problems (MOPs) appear in
many application contexts in which several conflicting objec-
tive functions need to be simultaneously optimized. Finding
good sets of solutions for general continuous MOPs is gen-
erally considered a hard problem, mainly when convexity or
differentiability cannot be assumed, for which Evolutionary
Algorithms have been proposed as potential solvers [1]–[3].

The Multi-Objective Evolutionary Algorithm Based on De-
composition (MOEA/D) [4] is generally considered a practical
algorithm for solving MOPs. The key idea of the MOEA/D
is to decompose the multi-objective optimization problem
into a set of single-objective subproblems, which are solved
simultaneously by a population-based evolutionary approach.

While the original MOEA/D and some of its earlier vari-
ants did not discriminate between subproblems, it has since
become clear that focusing computational effort on specific
subsets of these subproblems can substantially improve the
performance of the algorithm [5]–[9]. Also, it has been noted
that the MOEA/D may sometimes waste computational effort
by trying to improve solutions that are not very promising [10].
This waste of computational effort can be a critical issue,
particularly in specific MOPs which require costly simulations
to evaluate solutions [11]. Several works have proposed to ad-
dress this issue and to investigate methods to allocate different

amounts of computational effort to subproblems, based on a
variety of priority functions [5], [6], [8], [12], [13]. These
approaches, which became collectively known as Resource
Allocation (RA) techniques, have been shown to result in
consistent performance improvements for the MOEA/D.

While different RA techniques have their particular char-
acteristics, all share the characteristic feature of limiting the
number of solutions from the population that is updated
at any iteration. In a previous work [12], we observed the
somewhat surprising result that is assigning random priority
values to subproblems performed better than not using RA
at all. In a similar result, Pruvost et. al [9] also found that
selecting a subset of subproblems at random on MOEA/D
performs well on the combinatorial domain. These results
suggest that increasing the inertia of the population dynamics
in the MOEA/D can be beneficial in itself, regardless of the
Resource Allocation strategy.

The question that consequently arises can be summarized
as: how much of the performance improvements observed in
MOEA/Ds with Resource Allocation is due to the RA strategy
itself, and how much can be attributed to the simple increase in
the inertia of the population dynamics of the MOEA/D, which
results from maintaining parts of the population unchanged
between iterations? This work focuses on investigating and
quantifying the extent of these effects. We also analyze which
proportion of the population should be updated at any given
iteration, to obtain improved performances for the MOEA/D.
To investigate this effect, we introduce a Partial Update
strategy, which allows us to control the proportion of the
subproblems selected for variation at any iteration. We perform
an experimental investigation of the impact of a proportion
parameter ps on the performance of the MOEA/D on standard
problem benchmarks.

The remainder of this paper is organized as follows: Section
II reviews the main concepts related to resource allocation in
the MOEA/D. Section III introduces the MOEA/D with Partial
Update strategy. Sections IV and V present experimental re-
sults related to the investigation of the effect of partial updates
on the performance of the algorithm, as well as comparisons
against a baseline algorithm and an existing MOEA/D with
resource allocation, using the Relative Improvement priority
function. Finally, section VI presents our concluding remarks.
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II. RESOURCE ALLOCATION

The key idea behind MOEA/D is to decompose a MOP
into a set of single-objective subproblems, which are then
solved simultaneously. While these subproblems are usually
considered equivalent, a growing body of work indicates that
prioritizing some subproblems at specific points of the search
can improve the performance of MOEA/D. This issue is com-
monly addressed using resource allocation (RA) techniques.

Priority functions are used in resource allocation to de-
termine preferences between subproblems. These functions
take information about the progress of the search and return
priority values that are then used to change the distribution
of computational resources among subproblems at any given
iteration [14]. They also allow the design of MOEA/D variants
that allocate more resources on any desired solution charac-
teristics [12], such as diversity or robustness [15].

Priority functions mediates the distribution of computational
resources using a thresholding operation. At any given iteration
t, let uti indicate the priority function value attributed to the
i-th subproblem, and υt be a threshold value. The subset of
solutions selected for variation on that iteration is then defined
as the subproblems for which uti ≥ υt.

The original work on resource allocation for the MOEA/D
[5] defined a priority function known as the Relative Improve-
ment (RI), defined as:

uti =
f
(
xt−∆t
i

)
− f (xt

i)

f
(
xt−∆t
i

) , (1)

where f (xt
i) represents the aggregation function value of

the incumbent solution to the i-th subproblem on iteration
t. ∆t is a parameter that controls how many generations to
wait for the relative improvement comparison (notice that this
definition assumes a minimization problem and an aggregation
function that always yields strictly positive values).

A. State of the art

Much of the research on resource allocation have used RI as
a priority function, with some modifications on other aspects
of the algorithm [6], [16]. Zhou et al. did expand the discussion
over resource allocation in their work [6]. However, few other
works have studied resource allocation in depth.

For example, both MOEA/D-GRA and MOEA/D-DRA use
the RI priority function. That said, MOEA/D-GRA [16] uses
a different replacement strategy to avoid newly generated
solutions from updating several neighboring subproblems at
any iteration. on the other hand, MOEA/D-DRA [5] performs a
more sophisticated procedure for selecting subproblems using
a 10-tournament selection based on the RI priority values.

Two works that attempted to investigate distinct priority
functions are the EAG-MOEA/D [14] and MOEA/D-CRA [7].
Both used priority functions which allocate resources accord-
ing to the possibility that subproblems may either be improved
or contribute to the improvement of other subproblems.

In previous works, we isolated the priority function as a
point of investigation [8], [12]. The goal in these works was

to improve the performance of MOEA/D based on the choice
of priority function and to understand further the behavior
of MOEA/D under different resource allocation approaches.
On these works, we introduced two new priority functions
(DS and iDS), based on the conjecture that MOEA/D would
benefit from a greater focus on diversity in the decision
space. Experimental comparisons were performed between the
MOEA/D-DE under three priority functions: (1) RI, (2) DS
and iDS; and under two methods used as a baseline: (1)
MOEA/D-DE using randomly assigned priority values and (2)
MOEA/D-DE without any resource allocation method.

These experiments revealed the somewhat surprising result
that is using a random resource allocation performed as well as
RI, and better than not using resource allocation at all. This
result suggests that MOEA/D may benefit simply from the
increased populational inertia (possibly due to slower diversity
loss) that results from holding portions of the population
constant during any given iteration.

To further investigate this question, we propose using an
update strategy for the MOEA/D based on randomly allocated
priority values. This strategy allows us to control the expected
number of subproblems modified at any given iteration and,
consequently, to (partially) regulate the population dynamics
of the MOEA/D. This approach is described in the next
section.

III. A NEW UPDATE STRATEGY FOR MOEA/D

To verify whether there is a positive effect in limiting
the number of solutions updated at each iteration, and to
investigate the extent of this effect, we introduce the Partial
Update strategy. This strategy defines the expected amount
of solutions updated at each iteration, regulated by a control
parameter, ps ∈ (0, 1]. This parameter represents the proba-
bility that a given subproblem will be selected for updating
at a given iteration. Notice that, under this definition, the
allocation of resources to subproblems is entirely random,
and any effects observed on the performance of the MOEA/D
under this allocation strategy will be due only to the impact
of maintaining portions of the population unchanged across
iterations and their influence with each other. Algorithm 1
details the pseudocode of the MOEA/D-DE using the Partial
Update Strategy.

Notice that the standard MOEA/D, as well as variants
such as MOEA/D-DE [5], can be instantiated from Algorithm
1 by setting ps = 1. The only difference that the partial
update strategy introduces in the base algorithm is that only a
few subproblems are updated (probabilistically) at any given
iteration, regulated by the value of ps.

Also, MOEA/D-PS maintains the ∆t parameter from RI.
Since MOEA/D-PS does not have an explicit priority function,
this parameter just makes the algorithm work in two phases
during the search progress. In the first phase, all subproblems
are updated at every iteration, i.e., with no difference from
the usual MOEA/D-DE approach. This initial phase lasts
for ∆t iterations. After that, the algorithm moves onto the



Algorithm 1 MOEA/D-PS (MOEA/D-DE with Partial Update
Strategy)

1: Input: ps, ∆t, Termination criteria, MOEA/D-DE param-
eters.

2: Initialize MOEA/D-DE variables (e.g. weight vectors, set
of solutions, etc.)

3: t← 0
4: ui ← 1
5: while Termination criteria do
6: t← t+ 1
7: if t ≥ ∆t then
8: ui ← ps . Allocation of update probability
9: end if

10: for i = 1 to N do . Number of subproblems
11: if rand() < ui then
12: Generate new candidate y for subproblem i.
13: end if
14: Update the set of solutions by y.
15: end for
16: Evaluate the set of solutions.
17: end while

second phase, during which MOEA/D-PS performs (randomly
selected) partial updates at every iteration.

With this structure, other resource allocation techniques
could also be expressed, by modifying the priority value
attribution function in Line 8 of the algorithm (and possibly
setting ∆t to zero, if the initial phase is not desired).

It is relevant to observe that subproblems that are not
selected by the partial update strategy at a given iteration
may still have their incumbent solutions updated. Resource
allocation in MOEA/D-PS affects only the variation step,
not the replacement one; thus, subproblems not selected for
variation may receive new candidate solutions, e.g., generated
for a neighboring subproblem.

IV. PARTIAL UPDATE STRATEGY PARAMETER STUDY

To isolate and examine the effects of updating only part of
the MOEA/D-DE population at any iteration, we performed a
comparative experiment using two known benchmark sets. Six
update levels were used, with ps ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1.0}
(the last of which simply selects all subproblems for updat-
ing at every iteration, and represents the standard algorithm
without any resource allocation strategy). The MOEA/D-DE
implementation from the MOEADr package [17], [18] was
used as a basis, with modifications included to enable the use
of the Partial Update technique as described in the previous
section. Note that when the ps parameter is is equal to 1.0, all
subproblems are selected to be updated; therefore, this case
simply reproduces the standard MOEA/D-DE.

A. Benchmark Problems

Two benchmark sets were used: the scalable DTLZ set [19],
with 2 objectives, and the UF set [20]. In both cases we used

the test functions with dimension D = 100. The implemen-
tation of the test problems available from the smoof package
[21] was used in all experiments.

The DTLZ Benchmark set is composed of seven uncon-
strained test problems, with distinct problem features [22]:

• DTLZ1: Linear Pareto Front - unimodal;
• DTLZ2: Concave Pareto Front - unimodal;
• DTLZ3: Concave Pareto Front - multimodal;
• DTLZ4: Concave Pareto Front - unimodal;
• DTLZ5: Degenerate Pareto Front - unimodal;
• DTLZ6: Degenerate Pareto Front - unimodal;
• DTLZ7: Disconnected Pareto Front with concave and

convex portions - multimodal.

The UF Benchmark set is composed of ten unconstrained
test problems with Pareto sets designed to be challenging to
existing algorithms [23]. Problems UF1-UF7 are two-objective
MOPs, while UF8-UF10 are three-objective problems [20].

• UF1: Convex Pareto Front - multimodal;
• UF2: Convex Pareto Front - multimodal;
• UF3: Convex Pareto Front - multimodal;
• UF4: Concave Pareto Front - multimodal;
• UF5: Linear Pareto Front - multimodal;
• UF6: Linear Pareto Front - multimodal;
• UF7: Linear Pareto Front - multimodal;
• UF8: Concave Pareto Front - multimodal;
• UF9: Linear and discontinuous Pareto Front - multi-

modal;
• UF10: Concave Pareto Front - multimodal;

B. Experimental Parameters

We used the MOEA/D-DE parameters as they were intro-
duced in the work of Li and Zhang [2] in all tests. Table I
summarizes the experimental parameters. Regarding the ∆t
parameter, we use the value suggested by Zhou et al. [6]. We
make this parameter choices to isolate the contribution of the
ps parameter, which controls the proportion of subproblems
updated, comparing this change directly with the original
algorithms.

Details of these parameters can be found in the docu-
mentation of package MOEADr, as well as in the original
MOEA/D-DE reference [5], [17], [18]. All objectives were
linearly scaled at every iteration to the interval [0, 1], and the
Weighted Tchebycheff scalarization function was used.

C. Experimental Evaluation

We compare the results of the different strategies using the
Hypervolume (HV, higher is better) and Inverted Generational
Distance (IGD, lower is better) indicators. We also evaluate the
proportion of non-dominated solutions in the final population.
The differences among the techniques are analyzed using
Wilcoxon Rank Sum Tests (all-vs-all), with a significance
level of α = 0.05 and Hommel adjustment for multiple
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Fig. 1: Linear regression of IGD (lower is better, left) and HV (higher is better, right) against the ps parameter values. Each line
represents an individual problem. It is cleat that lower values of ps (smaller proportion of updated subproblems) are associated
with better performance.
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Fig. 2: Examples of distribution of IGD values (lower is better) and HV values (higher is better) for the final population,
according to ps. Problems UF6 on the left and DTLZ6 on the right.



TABLE I: Experimental parameter settings.

MOEA/D-DE parameters Value
DE mutation param. F = 0.25

Polynomial mutation params. ηm = 20
pm = 0.01

Restricted Update param. nr = 2
Locality parameter δp = 0.9
Neighborhood size T = 20

SLD decomposition param. h = 349 (2 obj)
h = 25 (3 obj)

Population size N = 350 (2 obj)
N = 351 (3 obj)

Resource Allocation Parameters Value
Generations before RA starts ∆t = 20

Experiment Parameters Value
Repeated runs 21
Computational budget 30000 evals.

comparisons. For reproducibility purposes, all the code and
experimental scripts are available online 1.

For the calculation of HV, the objective function was scaled
to the (0, 1) interval, with reference points set to (1, 1), for
two-objective problems; and (1, 1, 1), for three-objective ones.

D. Results

Figure 1 shows regression lines of performance on ps for
each test problem, both for log-IGD and HV (higher is better).2

These results suggest a clear association between lower values
of ps and improved performance on both indicators. Figure 2
provides a closer visualization of this effect in the case of two
test problems, UF6 and DTLZ6, respectively. Statistical tests
corroborate these observations, as summarised in Table II. The
final raw data and analysis scripts can be retrieved from the
project repository on Github.1

E. Anytime Performance of MOEA/D-DE with Partial Update
Strategy

Besides providing good final results, it is often desired that
an MOEA be capable of returning a set of reasonably good
solutions if interrupted at any time during the search [24], [25].
To investigate the impact of using distinct ps values on the
anytime performance of the MOEA/D-DE with Partial Update
we analyzed the effects in terms of both IGD and HV values.

Figures 3 illustrates the anytime performance of the
MOEA/D-DE with Partial Update Strategy in terms of hy-
pervolume (higher is better) for two specific problems while

1https://github.com/yclavinas/MOEADr/tree/cec2020
2The log transformation was used to account for the large differences of

scale in the IGD indicator due to DTLZ1 and DTLZ3, in which all configura-
tions failed to converge adequately. It is possible that the computational budget
of 30, 000 candidate solution evaluations may not be enough for solving these
two problems.

TABLE II: Statistical significance of differences in median
IGD and HV, associated with different ps values. Values are
Hommel-adjusted p-values of Wilcoxon Rank-sum tests. “↑”
indicates superiority of the column method, and “≈” indicates
differences not statistically significant (95% confidence level).

IGD
ps 10% 20% 40% 60% 80%
20% 0.098 ≈
40% 6.4e-4 ↑ 0.006 ↑
60% 1.8e-4 ↑ 7.6e-5 ↑ 7.6e-5 ↑
80% 7.6e-5 ↑ 7.6e-5 ↑ 7.6e-5 ↑ 7.6e-5 ↑
100% 7.6e-5 ↑ 7.6e-5 ↑ 7.6e-5 ↑ 7.6e-5 ↑ 7.6e-5 ↑

HV
ps 10% 20% 40% 60% 80%
20% 0.185 ≈
40% 0.002 ↑ 9.6e-4 ↑
60% 9.6e-4 ↑ 9.6e-4 ↑ 0.001 ↑
80% 9.6e-4 ↑ 9.6e-4 ↑ 9.6e-4 ↑ 9.6e-4 ↑
100% 9.6e-4 ↑ 9.6e-4 ↑ 9.6e-4 ↑ 9.6e-4 ↑ 9.6e-4 ↑

Figure 4 illustrates the anytime performance of the MOEA/D-
DE with Partial Update Strategy in terms of IGD (lower is
better). Please recall that all subproblems are selected regard-
less of ps until iteration ∆t = 20 (see Section III for details).
Consistently with the end-of-run results, Figures 3 and 4
indicate that changing smaller percentages of the population
at each iteration tends to result in better performance anytime
during the search. While this is only illustrated here for two
test problems, the same behavior is observed for almost all
other problems. We consider these results as an indication
that smaller values of the ps parameter result in faster and
better convergence for the MOEA/D-DE, at least for 2- and
3-objective problems with characteristics similar to the test
ones employed in these experiments.

V. COMPARISON STUDY

In the previous section, we investigated the influence of
different values of the control parameter ps on the performance
of the MOEA/D-PS. The results indicate that low ps values
are associated with (anytime) improvements in IGD and HV
values. In this section, we compare the MOEA/D-PS (using
ps = 0.1) against the original MOEA/D-DE and an MOEA/D-
DE with resource allocation based on RI [5], [6]. The same
test problems described in the previous section were used.

Table III tabulates the mean results obtained by the
MOEA/D-PS with ps = 0.1, the pure MOEA/D-DE and
the MOEA/D-DE with RI-based resource allocation, for all
test problems. It is clear that the MOEA/D-PS results are
considerably better when compared to the other methods, not
only in terms of IGD and HV but also on the mean proportion
of nondominated solutions (NDOM) that it returns in the
final population. Table IV presents the results of statistical
pairwise comparisons using the same methodology described
in subsection IV-C, corroborating the results observed in Table
III.

https://github.com/yclavinas/MOEADr/tree/cec2020


(a) UF6. (b) DTLZ6.

Fig. 3: Anytime HV (higher is better) performance of MOEA/D-PS for different values of ps on two functions.

(a) UF6. (b) DTLZ6.

Fig. 4: Anytime IGD (lower is better) performance of MOEA/D-PS for different values of ps on two functions.

Looking at the proportion of non-dominated solutions
(NDOM) in Table III, we see that randomly updating a small
fraction of the subproblems at each iteration resulted in the
highest value on all functions, often with a substantial lead.

In our view, a higher proportion of non-dominated solutions
suggests a better, more diverse set of solutions in the objective
space. This suggestion would indicate the use of the partial
update strategy (under a low ps value) as a compelling strategy
for improving convergence (subsection IV-E) and diversity in
the MOEA/D.

VI. CONCLUSION

In this work, we presented a random partial update strategy
for the MOEA/D-DE, which was incorporated into a simple
algorithm (MOEA/D-PS). The partial update strategy adds one
control parameter (ps), which regulates the proportion of the
population that is selected for variation at any iteration.

Six ps values were investigated experimentally, revealing a
strong association between more conservative updating of the
MOEA/D-DE population (i.e., lower ps values) and improved
performance. Based on these experiments, we suggest using
small ps values, such as ps = 0.1. However, more thorough
sensitivity analyses should be conducted to refine our under-
standing of these effects.

Besides, we showed that the MOEA/D-PS with ps = 0.1
values was able to outperform the pure MOEA/D-DE as well
as a resource allocation MOEA/D-DE based on the well-know
RI priority function. This result suggests that the MOEA/D-
DE benefits more from having slower population dynamics
than from a specific prioritization of subproblems based on
the relative improvement criteria.

This study raises two issues that we consider essential for
further explaining the effect of Partial Update strategies. The
first is whether MOEA/D-PS would benefit from adapting the



TABLE III: Means and standard errors for IGD, HV and
proportion of nondominated solutions (NDOM), for each
algorithm-problem pair. The best point estimate for each
problem is highlighted.

IGD
MOEA/D-PS MOEA/D-DE RI

UF1 0.26± 0.002 0.55± 0.003 0.37± 0.002
UF2 0.1± 0.001 0.12± 0.001 0.096± 0.001
UF3 0.28± 0.001 0.31± 0.001 0.29± 0.001
UF4 0.11± 0.001 0.11± 0.001 0.11± 0.001
UF5 1.1± 0.005 1.7± 0.003 1.3± 0.004
UF6 0.29± 0.003 0.56± 0.003 0.38± 0.003
UF7 0.26± 0.002 0.53± 0.003 0.36± 0.003
UF8 0.27± 0.001 0.31± 0.001 0.3± 0.001
UF9 0.42± 0.001 0.47± 0.001 0.46± 0.001
UF10 2.1± 0.023 3.4± 0.008 2.3± 0.012
DTLZ1 230± 5.5 440± 6.3 260± 5.7
DTLZ2 0.11± 0.001 0.18± 0.001 0.13± 0.001
DTLZ3 610± 16 970± 19 660± 17
DTLZ4 0.12± 0.002 0.23± 0.002 0.18± 0.006
DTLZ5 0.11± 0.001 0.19± 0.001 0.13± 0.001
DTLZ6 0.37± 0.03 24± 0.11 13± 0.14
DTLZ7 0.4± 0.013 3.9± 0.013 1.9± 0.034

HV
MOEA/D-PS MOEA/D-DE RI

UF1 0.86± 0.001 0.74± 0.001 0.82± 0.001
UF2 0.79± 0.001 0.76± 0.001 0.81± 0.001
UF3 0.57± 0.003 0.52± 0.001 0.55± 0.002
UF4 0.37± 0.001 0.37± 0.001 0.37± 0.001
UF5 0.72± 0.002 0.57± 0.001 0.69± 0.001
UF6 0.81± 0.001 0.7± 0.002 0.78± 0.001
UF7 0.83± 0.001 0.71± 0.001 0.79± 0.001
UF8 0.85± 0.001 0.81± 0.001 0.85± 0.001
UF9 0.78± 0.002 0.73± 0.001 0.74± 0.001
UF10 0.81± 0.003 0.67± 0.001 0.8± 0.002
DTLZ1 1± 6.5e− 5 0.99± 9.2e− 5 1± 6.9e− 5
DTLZ2 0.92± 0.001 0.91± 0.001 0.92± 0.001
DTLZ3 0.98± 0.001 0.96± 0.001 0.98± 0.001
DTLZ4 0.98± 5.6e− 5 0.97± 7.2e− 5 0.97± 0.001
DTLZ5 0.92± 0.001 0.91± 0.001 0.92± 0.001
DTLZ6 1± 5.8e− 5 0.68± 0.002 0.89± 0.001
DTLZ7 0.88± 0.001 0.56± 0.001 0.75± 0.002

NDOM
MOEA/D-PS MOEA/D-DE RI

UF1 0.89± 0.003 0.27± 0.002 0.45± 0.005
UF2 0.96± 0.002 0.42± 0.003 0.7± 0.008
UF3 0.92± 0.002 0.23± 0.002 0.43± 0.005
UF4 0.9± 0.003 0.68± 0.003 0.81± 0.004
UF5 0.85± 0.005 0.19± 0.001 0.43± 0.005
UF6 0.86± 0.003 0.29± 0.002 0.44± 0.004
UF7 0.92± 0.002 0.31± 0.002 0.5± 0.004
UF8 0.99± 0.001 0.54± 0.004 0.94± 0.002
UF9 0.99± 0.001 0.55± 0.003 0.88± 0.004
UF10 0.94± 0.003 0.44± 0.004 0.87± 0.004
DTLZ1 0.93± 0.004 0.1± 0.002 0.51± 0.01
DTLZ2 0.96± 0.002 0.3± 0.002 0.69± 0.01
DTLZ3 0.75± 0.01 0.046± 0.001 0.19± 0.006
DTLZ4 0.74± 0.006 0.18± 0.002 0.51± 0.009
DTLZ5 0.96± 0.002 0.3± 0.002 0.69± 0.009
DTLZ6 0.91± 0.009 0.063± 0.002 0.15± 0.004
DTLZ7 0.84± 0.005 0.22± 0.003 0.45± 0.012

TABLE IV: Statistical significance of differences in median
IGD, HV and NDOM, for the three algorithms tested in this
section. Values are Hommel-adjusted p-values of Wilcoxon
Rank-sum tests. “↑” indicates superiority of the column
method, and “≈” indicates differences not statistically signif-
icant (95% confidence level).

IGD
MOEA/D-PS MOEA/D-RI

MOEA/D-RI 2.1e-4 ↑
MOEA/D-DE 3.1e-5 ↑ 3.1e-5 ↑

HV
MOEA/D-PS MOEA/D-RI

MOEA/D-RI 6.4e-4 ↑
MOEA/D-DE 0.0025 ↑ 6.4e-4 ↑

NDOM
MOEA/D-PS MOEA/D-RI

MOEA/D-RI 3.2e-4 ↑
MOEA/D-DE 3.2e-4 ↑ 3.2e-4 ↑

ps value throughout the search, either using a fixed schedule or
through online adaptation. The second is the interaction effects
between the ps value and other components of MOEA/D,
such as decomposition strategy, neighborhood strategies, and
other parameters of the algorithm. These would be interesting
questions for further investigation.
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