
An Effective Iterated Greedy Algorithm for Online
Route Planning Problem

Xing Wang1, Shengyao Wang2, Ling Wang1,
Huanyu Zheng2, Jinghua Hao2, Renqing He2, Zhizhao Sun2
1Department of Automation, Tsinghua University, Beijing, China

2Meituan-Dianping Group, Beijing, China
wang-x17@mails.tsinghua.edu.cn, wangshengyao@meituan.com,

wangling@mail.tsinghua.edu.cn
{zhenghuanyu, haojinghua, herenqing, sunzhizhao}@meituan.com

Abstract—Route planning serves as the most fundamental part
in modern food ordering and delivery system, which is also a
classical combinatorial optimization problem. In this paper, we
study an online extension of traditional route planning problem
where a near-optimal solution has to be generated in a very short
time. A simple and effective iterated greedy algorithm is pre-
sented along with problem-specific initialization rules, destruction
procedure and construction procedure. We also propose a local
search method, consisting of two adjustment operators and two
neighborhood search operators. With experimental results, we
show that our algorithm outperforms the compared evolutionary
algorithms and has the capability of providing high-quality
solutions within milliseconds.

Index Terms—Food ordering and delivery, Route planning,
Iterated greedy, Evolutionary algorithms

I. INTRODUCTION

A. Background

With the fast development of internet and e-commerce,
food ordering and delivery is becoming an indispensable part
in modern life. Food ordering platforms such as Grubhub,
UberEats and Meituan-Dianping provide millions of cus-
tomers with convenient food delivery service. For instance,
on Meituan-Dianping food delivery platform, there are more
than 3.6 million restaurants available and over 24 million
daily orders generated and accomplished, according to the
statement of Meituan-Dianping Group [1]. An earlier research
by Morgan Stanley [2] also shows that online food delivery is
expected to grow by 16% annual compound rate in the next
5 years in the US, which indicates bright prospects of food
ordering and delivery service.

However, challenge comes together with opportunity. To run
a food delivery platform successfully, several key stakeholders
have to be considered, which are the customer, the restaurant
and the driver. Customers want their orders to be delivered
punctually and safely. Restaurants aim to maximize the profit.
As for drivers, completing the delivery tasks as many as
possible with the least driving cost is their primary goal in
order to get decent wages.

The process of food ordering and delivery is shown in
Fig. 1. Customers order via their mobile application and then
the orders are collected by the food delivery platform. The
food delivery platform pushes the order to the restaurants and

Fig. 1. The food ordering and delivery process.

dispatches the orders to the available drivers at the same time.
Meanwhile, feasible routes are also generated by the platform
for drivers so that they can complete the pickup and delivery
tasks on time. Under this situation, there are two vital problems
a dispatching system should consider. On the one hand, the
quality of final schemes for dispatching and route planning
have to be guaranteed. If an order is not picked up or delivered
on time, the food may be not fresh and the customer will
wait too long to be satisfied. Consequently, there will be a
decreasing possibility that the customer will use the delivery
service of the driver and patronize the restaurant again [3].
On the other hand, the process of finding a promising solution
has to be quick enough because large amount of orders come
into the food delivery platform continuously, which leaves
extremely little time for order dispatching and route planning.
For instance, at the peak hours of a day, there will be thousands
of orders generated every minute and a driver may have to
serve more than 10 orders simultaneously, which results in
a very large solution space. Therefore, how to find favorable
schemes within milliseconds is a challenging and urgent issue
for food delivery platforms.

Generally, route planning serves as the most fundamental

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

part of the food ordering and delivery process, deciding
the final route that the driver will execute. Therefore, the
performance of the whole dispatching system largely depends
on the quality of solutions to the route planning problem.
Meanwhile, as an online algorithm, route planning has to be
finished within milliseconds so as to be used millions of times
a day. However, finding an optimal solution is extremely time-
consuming, while a fast heuristic often results in solutions of
poor quality. Under this situation, our paper aims to design an
effective evolutionary algorithm to provide high-quality routes
for drivers, while consuming very short computational time.
The target we considered here is to minimize the total cost,
including the time delay of orders and the driving distance of
the driver, which take care of the feelings of customers and
restaurants, and the workload of the driver, respectively.

B. Literature Review

This section presents a review of literature related to the
online route planning problem (ORPP). The ORPP is most
similar to the single vehicle pickup and delivery problem
with time windows (SVPDPTW), which is a special case of
pickup and delivery problem with time windows (PDPTW)
[4]–[6]. SVPDPTW assumes one vehicle serving multiple
orders. Each order is associated with a pickup location and
delivery location, which have to be visited within a certain
time window.

Studies on traditional SVPDPTW are extensive and most
of them focus on proposing effective heuristics and meta-
heuristics. Bruggen et al. [7]. proposed a two-phase heuristic,
which takes a variable depth arc exchange procedure as a
neighborhood move. In the first phase a feasible solution
is constructed while in the second phase the solution is
iteratively improved. Their approach is able to obtain near-
optimal solutions most of the time, despite that low-quality or
infeasible solution may occur when the algorithm is trapped
in a poor local optima. Later, Jih and Hsu [8] designed a
hybrid algorithm to solve SVPDPTW under static case and
dynamic case, respectively. Their approach tries to combine
the advantage of dynamic programming and genetic algorithm.
Experimental results show that genetic algorithm converges
better with the initial population passed from dynamic pro-
gramming, which improves the genetic algorithm in approx-
imating near-optimal solutions. Landrieu et al. [9] presented
two algorithms based on tabu search to solve the problem.
The first is the regular deterministic tabu search, where they
designed two classical node interchange procedures for the
neighborhood structure, which are a swap operation and an
insertion operation. Secondly, they proposed the probabilistic
tabu search, which can choose the next-best candidate with
probabilities at each iteration. Their computational results
show that feasible solutions can be reached in a reasonable
amount of time for instances under 40 customers. However,
for larger problem sizes, obtaining a feasible solution can
possibly take more than one hour. Hosny and Mumford [10]
studied the SVPDPTW with genetic algorithms, focusing on
investigating effective problem-specific genetic encoding and

operators. They used a duplicate gene encoding that guarantees
the satisfaction of the precedence constraint. Furthermore, they
compared four genetic operators, which are a modified 2-
child merge crossover (MX1), a new PDPX crossover operator,
a regular random swap mutation and a directed mutation.
They concluded from computational results that the directed
mutation operator seems to be useful in guiding the search
towards feasible solutions while PDPX crossover does not. In
the later work of Hosny and Mumford [11], they designed
an algorithm based on simulated annealing (SA), adopting
intelligent neighborhood moves that are guided by time win-
dows and a hill climbing heuristic similar to the 3-stage
SA. Simulation results show that the intelligent neighborhood
moves are successful in both SA and hill climbing heuristic,
although the improvement is more dramatic in the context of
SA. Recent researches mainly focus on different variants of
the pickup and delivery problems with time windows, which
can be found in the review by Braekers et al. [12].

Traditional evolutionary algorithms such as GA and SA,
often take large amount of time to converge to an acceptable
solution, which is not applicable to the setting of ORPP. In
this paper, we propose a fast iterated greedy (IG) algorithm
that can generate high-quality solutions within milliseconds.
Compared with other complicated evolutionary algorithms,
IG is remarkably simple with mainly two phases, which are
called the destruction phase and the construction phase. It
is first developed to solve the scheduling problem by Ruiz
and Stützle [13]. Later works on solving shop scheduling
problems by different kinds of IG can be seen in [14]–
[16]. As for problems related to route planning problem,
Karabulut and Tasgetiren [17] proposed a variable iterated
greedy algorithm with changing neighborhood for the traveling
salesman problem with time windows. Computational results
confirm that their approach is either competitive or even better
than the state-of-the-art methods. In the following section, we
elaborate our iterated greedy algorithm which is tailored for
solving the online route planning problem. To the best of
our knowledge, our paper is the first to employ the iterated
greedy algorithm to solve the ORPP. Through computational
experiments on different scales of instances and compared
with other evolutionary algorithms, we demonstrate that the
proposed IG algorithm is efficient and effective for solving
the ORPP.

The remainder of the paper is organized as follows. In
section II we describe the online route planning problem
and illustrate the constraints. The proposed IG algorithm is
presented in section III, where we elaborate on the design
of initialization, destruction phase, construction phase and
local search method. Computational results and comparison of
different algorithms are shown in section IV. Finally, section
V closes the paper with some conclusions and future research
ideas.

II. PROBLEM DESCRIPTION

The online route planning problem assumes a set of orders
O = {1, 2, . . . , n} to be served by one driver. Specifically,

the orders are classified into two categories. The first is the
orders that only have delivery locations. That is to say, this
kind of orders have already been fetched from the restaurant
by the driver. The second one is the ordinary orders that have
both pickup locations and delivery locations. Denote the set
of the first kind of orders as O1 = {1, . . . , n1}, the set of
the second kind of orders as O2 = {1, . . . , n2}. Then we have
O = O1

⋃
O2 and n = n1 +n2. Let i+ be the pickup location

of an order and i− be the corresponding delivery location
of the order i. The pickup location set of all orders can be
denoted as P = {i+|i ∈ O2}, and the delivery location set as
D = {i−|i ∈ O}. The current location of the driver is denoted
as l0, which is the starting point of every feasible route.

Every location l ∈ P
⋃
D

⋃
{l0} has a customer demand

ql, such that ql > 0 for pickup locations, ql < 0 for delivery
locations, and for a pair of pickup and delivery locations of
an order i ∈ O2, qi+ + qi− = 0. Note that current location of
the driver also has a customer demand ql0 , which indicates the
initial load of the driver. The maximum capacity of the driver
is set to Q, which is a realistic constraint because the total load
carried by the driver cannot be infinite in real world. Moreover,
each order i ∈ O is associated with an earliest pickup time
PTi, before which the order cannot be fetched. Also, there is
an estimated time of arrival ETAi, around which the order
is promised to be delivered to customers. If the real delivery
time of an order is later than ETAi, then positive time delay
will occur, which dissatisfies the customers. For every possible
location k, l ∈ P

⋃
D

⋃
{l0}, the travel distance between them

is denoted as dk,l, and the travel time as tk,l.
To construct a feasible solution for the ORPP, there are

several requirements that need to be satisfied. First, a feasible
route is supposed to start from the current location of the
driver and end at one of the delivery locations, while each
location has to be visited exactly once. Second, all locations
must be served with the earliest pickup time and the estimated
time of arrival in consideration as mentioned above. The third
constraint is the capacity constraint, which prescribes the upper
limit of the load that the driver can carry. Last but significantly,
the pickup location has to be visited before the corresponding
delivery location, namely the precedence constraint. A typical
route is shown in Fig. 2, which contains three orders to be
served, including 1 pickup location and 3 delivery locations.

Fig. 2. A typical route for ORPP.

The objective function we considered in this paper is to
minimize the total cost (TC) of the route, consisting of two

parts that are the time delay (TD) of the route and the
distance (DIS) traveled by the driver, respectively. Equation
(1) gives the mathematical expression to calculate the objective
function,

minTC =

n∑
i=1

max(Di − ETAi, 0) +

n1+2n2∑
j=1

dj−1,j (1)

where the first item is TD and the second is DIS. Di

represents the real delivery time of order i, which is calculated
by the route evaluation module after the route is constructed.
dj−1,j represents the distance between the jth point and its
previous point in a candidate route.

III. PROPOSED APPROACH

In this section, we present our methodology for solving
the ORPP by designing an effective iterated greedy algorithm.
The outline of the proposed IG algorithm is shown in Fig. 3.
It starts from some initial solution and iterates through a
main loop which is composed of two kernel procedures
called destruction and construction. In the destruction phase,
a number of elements of the candidate solution are selected
and removed, resulting a temporary partial solution. After that,
the removed elements are reinserted into the partial solution
with a reinsertion heuristic in the construction phase. When a
new complete solution is constructed, an acceptance criterion
is applied to decide whether the new solution substitutes the
current solution. This process is repeated until some termina-
tion criterion is met, such as the maximum running time or
the maximum number of iterations. Usually a problem-specific
local search procedure is added to the iterated process in
order to enhance the quality of the solutions generated by the
construction operator, which will accelerate the convergence of
the algorithm and save considerable amount of computational
time. The steps of every segment of the proposed algorithm
will be detailed in the following contents.

A. Initialization

Initialization often plays an important role in evolutionary
algorithms, which can provide a promising starting point for
the search process. For ORPP, considering the fact that the first
kind of orders (that only have delivery locations) is normally
more possible to be served before the second kind of orders
(that have both pickup and delivery locations), we design
a problem-specific insertion heuristic for initialization whose
main steps are as follows:

Step 1: Classify the orders into two categories. The first
set contains orders that only have delivery locations and the
second set contains orders that have both pickup and delivery
locations;

Step 2: Sort the orders inside each set according to some
proposed sequencing rule and put the first set ahead of the
second set;

Step 3: Sequentially take out the orders from the set and
insert them into the partial route. For orders in the first set,
directly place them in the best position of the route; For orders

Fig. 3. The outline of the proposed IG algorithm.

in the second set, try all the possible pairs of positions of the
pickup location and delivery location, then choose the best pair
that does not violate the capacity constraint and precedence
constraint. This step is executed iteratively until a complete
solution is constructed.

The sequencing rule in step 2 has to be carefully designed,
to which the quality of the initial solution is closely related.
Therefore, we design four different sequencing rules, aiming
at exploring different parts of the solution space.

1) Rule with Earliest-pickup-time (REPT): This sequencing
rule sorts orders in an ascending order of their pickup times,
which mainly considers that in real world, orders are only
ready to be fetched after their corresponding pickup times.
Hence, if the driver comes earlier than the earliest pickup time,
extra waiting time will occur, which increases the possibility of
customer dissatisfaction. In other words, orders that are ready
first are supposed to be served first.

2) Rule with Estimated-time-of-arrival (RETA): This se-
quencing rule takes the deadline of orders as the most im-
portant index, which sorts orders according to increasing
estimated time of arrival. RETA puts orders with a closer
deadline ahead so as to arrange the time spent at each location
reasonably and avoid large amount of time delay. To some
extent, ETA reflects the urgency of the order and the difficulty
of delivering the order punctually. Therefore, RETA is a
natural sequencing rule that we will conceive intuitively.

3) Rule with Urgency (RU): Note that RETA only measures
the urgency of orders in terms of time. Consequently, there are
cases that RETA cannot handle. Consider a simple example
in Fig. 4, where there are two orders to be delivered. The
ETA of order 1 is earlier than that of order 2. According
to RETA, order 1 is definitely more urgent than order 2.
However, order 2 is farther to the current location of the
driver, which means that it requires longer driving distance
and consumes more time on the road. That is to say, order 2
may have bigger risk of generating positive time delay. In order
to measure the urgency of orders more comprehensively, we
propose RU which takes information of both time and distance
of orders into consideration. Specifically, RU sorts orders in a
descending order of urgency, which is computed by (2),

δi =
di

ETAi − ct
(2)

where δi is the urgency of order i, ETAi is the estimated time
of arrival of order i, ct is the current time. For the first kind of
orders, di is the distance between the delivery location of order
i and the current location of the driver, while for the second
kind of orders, di is the distance between current location of
the driver and the pickup location of order i, plus the distance
between the pickup location and the delivery location of order
i. Therefore RU also distinguishes the orders that are not the
same kind.

Fig. 4. Explanation of Rule with Urgency.

4) Rule with Hybridization (RH): Recall that we have two
kind of orders and the sequencing rules mentioned above
do not treat them differently except for RU. Nevertheless,
different kinds of orders often require different sequencing
rules. For instance, orders of the first kind do not have pickup
locations but they are still sorted by the earliest pickup time
according to REPT, which is not reasonable enough. Hence,
we design RH as a hybrid sequencing rule which combines
the REPT and RETA. RH sorts the first kind of orders by
increasing estimated time of arrival and sorts the second by
increasing earliest pickup time.

The performance of the proposed rules is compared in
section IV, and the first two rules with the best performance
are chosen to be used in the initialization procedure, which are
RETA and RU. In other words, the insertion heuristic proposed
above is executed twice with two different sequencing rules in
initialization, and the solution with smaller objective function
is selected as the initial solution, with which the iterative
process of our IG algorithm starts.

B. Destruction, Construction and Acceptance Criterion

As mentioned before, after the initialization completes, the
initial solution enters the destruction phase, where d elements
are removed randomly according to Ruiz and Stützle [13].
However, in ORPP, a feasible solution must contain delivery
locations for the first kind of orders and both pickup and
delivery locations for the second kind of orders. Removing the
locations in the incumbent route may result in infeasible partial
solution that cannot be evaluated. Therefore, we propose an
order-based random destruction operator for ORPP. In the
destruction phase, we randomly choose d orders in the current
solution and remove the location points related to those orders
from the incumbent. This creates two partial sequences where
the first is called πR, containing the removed location points
and the second is denoted as πD, which is composed of the
remaining elements in the original solution after destruction.

In the construction phase, all location points in πR is
reinserted into the partial solution πD greedily. Firstly, πR
is classified and sorted in the way similar to step 1 and
step 2 in the initialization phase. The only difference is
that the sequencing rule used here is RETA, which is the
best one among REPT, RETA, RU, and RH according to
the comparison in section IV. During insertion, a candidate
pair of location points or a single delivery location point
is extracted sequentially from πR and then tested in each
feasible position of πD. The best position with the minimal
objective function is selected where the candidate elements
are reinserted. After that, the candidate elements are removed
from πR. This process is repeated until πR is empty.

At each iteration, a new solution is constructed after the
destruction, construction and local search steps. Whether to
accept the new solution as the incumbent solution or not has
to be decided. A simple and frequently used way is to accept
the new solution only when it is better than the incumbent
solution. However, such criterion is often too greedy and
myopic, which traps the searching process in some local
optima. In order to avoid the stagnation of the evolution
process, we accept the new solution with the probability of
1 if it is better than the incumbent and the probability of 0.5
if it is worse. This acceptance criterion gives an opportunity
to evolve for those solutions that are currently worse but may
be potential in the future while maintaining the priority of
solutions that are better than the incumbent.

C. Local Search Method

In order to further improve the performance of the general
algorithm, local search methods are often added. For ORPP,
we design two problem-specific adjustment operators as well
as two neighborhood search operators to enhance the quality
of solutions.

The first adjustment operator is called backward adjustment,
where the delivery location with the largest time ahead of
its ETA in the route is moved backward and relocated at the
best position. The process is executed for ls iterations, which
indicates the depth of adjustment. Correspondingly, the sec-
ond adjustment operator is forward adjustment, which moves

forward the delivery location with the largest time delay and
inserts it in the best position. These two adjustment operators
aim at balancing the priority of some abnormal orders in order
to avoid too much delay or advance of delivery. The pseudo-
code of backward adjustment and forward adjustment is shown
in Algorithm 1.

Algorithm 1 Pseudo-code of backward adjustment and for-
ward adjustment
Require: the set of orders O of current solution π and the

depth of adjustment ls;
1: Calculate ∆i = Di − ETAi for each order i ∈ O;
2: %Backward adjustment
3: Let cnt = 0, rank = 1;
4: while cnt < ls do
5: Find the order i? with the rankth smallest ∆i? ;
6: if ∆i? < 0 then
7: Move the delivery location of order i? backward to

the best position and denote the new solution as
πnew;

8: cnt++;
9: if TC(πnew) < TC(π) then

10: π = πnew;
11: Recalculate ∆i for each order i ∈ O;
12: rank = 1;
13: else
14: rank++;
15: end if
16: else
17: break;
18: end if
19: end while
20: %Forward adjustment
21: Let cnt = 0, rank = 1;
22: while cnt < ls do
23: Find the order i? with the rankth largest ∆i? ;
24: if ∆i? > 0 then
25: Move the delivery location of order i? forward to the

best position and denote the new solution as πnew;
26: cnt++;
27: if TC(πnew) < TC(π) then
28: π = πnew;
29: Recalculate ∆i for each order i ∈ O;
30: rank = 1;
31: else
32: rank++;
33: end if
34: else
35: break;
36: end if
37: end while

As for neighborhood search operators, we make use of the
insertion neighborhood and the swap neighborhood that are
commonly used in combinatorial problems. In the insertion
neighborhood, each location point in the solution is extracted

and inserted into every other possible position. If a smaller
objective function is obtained with a different position, then
the location point is relocated and the process is continued
with another different location point. The process terminates
when all the location points in the solution have been tested
in all possible positions without improvements. The swap
neighborhood selects each location point in the solution se-
quentially, and tries to swap the selected location point with
all the other location points if feasible. The acceptance and
termination criterion are same as the insertion neighborhood
stated above. The overall local search procedure starts with the
backward adjustment, then the forward adjustment, followed
by the insertion neighborhood search and swap neighborhood
search.

IV. EXPERIMENTAL RESULTS

In this section we evaluate the performance of our proposed
methods through numerical experiments. First, the experimen-
tal settings are described. Then we compare four sequencing
rules that are proposed for the initialization procedure to
find the most efficient two rules to be used ultimately. Then
we compare our proposed IG algorithm with some classical
and effective algorithms in SVPDPTW, such as the Genetic
algorithm (GA) and the Tabu Search (TS) algorithm, which are
adapted to the ORPP because previous research on ORPP is
scarce. Moreover, we test the performance of IG and compared
algorithms under different settings of termination criterion to
show the robustness of our algorithm.

A. Experimental Settings

We generated 1500 instances from the real food ordering
and delivery platform in China, which are equally partitioned
into three sets, the small scale (less than 10), the medium scale
(10 to 20) and the large scale (larger than 20), according to
the number of total pickup and delivery points.

The criteria we use to evaluate the performance of the
algorithm are the total cost (TC) defined in section II and
the average relative percentage deviation (ARPD), calculated
by (3),

ARPD =

∑num
ins=1

Algins−Bestins

Bestins

num
× 100 (3)

where ins represents some instance in the test set, num is the
total number of instances, Algins is the solution generated by
a certain algorithm and Bestins is the best solution among all
compared algorithms for the instance.

During the comparison, the initialization methods that use
different sequencing rules are denoted by the name of their
corresponding sequencing rules, which is REPT, RETA, RU
and RH, respectively. The destruction parameter of our IG
algorithm is set to n

2 , where n is the total number of the pickup
and delivery points, to balance the exploration and exploitation
for different instances. The depth of local search ls is set to
5.

As for the compared evolutionary algorithms, the TS algo-
rithm is implemented according to Landrieu et al. [9]. The

tabu list size is set to 5. GA is implemented with the MX1
crossover operator and the random swap mutation operator
[11]. The population size, crossover rate and mutation rate are
set to 10, 1.0 and 0.1, respectively.

Each instance is run 30 times for every algorithm. Finally,
considering the characteristic of ORPP, we set the maximum
elapsed CPU time as the termination criterion, which is set
to 2n milliseconds equally. All the experiments are run on a
MacBook Pro with 2.2 GHz processors and 16 GB of RAM
under Mac OS. Moreover, all the algorithms are coded in Java
using Eclipse.

B. Comparison of Initialization Methods

To compare different sequencing rules in initialization and
select the best two rules, we run four initialization methods on
all the 1500 instances. Table I shows the average performance
of initialization methods. As can be seen from the results, the
CPU time consumed by each method is similar while RETA
defeats the other three methods in terms of TC and ARPD.
RU is the second best with a very close TC to RETA and an
acceptable ARPD which is 1.24% larger than that of RETA.
Note that REPT and RH have a very large time delay compared
with RETA and RU. This is probably due to the reason that
RETA and RU attach more weight on delivering orders on
time, on which REPT and RH consider less. In addition, RH
is slightly better than REPT in terms of time delay, which
demonstrates the importance of considering the urgency of
order while sequencing. Table II details the performance of
four initialization methods under different instance sets, from
which similar conclusions can be obtained. From the results
presented above, it is obviously reasonable to select RETA and
RU as the best two rules to be used in the initialization of our
proposed IG algorithm.

TABLE I
THE AVERAGE PERFORMANCE OF INITIALIZATION

Initialization TC TD ARPD (%) CPU Elapse (ms)
REPT 10.96 6.61 24.17 0.50
RETA 9.84 5.69 10.59 0.48

RU 9.86 5.64 11.83 0.52
RH 10.84 6.39 22.58 0.52

C. Comparison of our IG Algorithm and other Evolutionary
Algorithms

In this subsection, we compare the proposed IG algorithm
with the adapted evolutionary algorithms, including Genetic
algorithm and Tabu Search algorithm. The comparative results
are listed in table III. As can be observed, our IG algorithm
outperforms the other two algorithms on all the three scales
of instances, given the same CPU time of 2n milliseconds.
Moreover, the advantage of IG is enlarging with the increase
of the number of the points of instances. For small scale
instances, the ARPDs of TS and GA are 1.71% and 1.08%
larger than IG, while for large scale instances, the differences
increase to 12.83% and 12.88%, respectively. This is because
the solution space will enlarge in an exponential way with

TABLE II
THE PERFORMANCE OF INITIALIZATION METHODS ON DIFFERENT INSTANCE SETS

Instance Set Initialization TC TD DIS ARPD (%) CPU Elapse (ms)

Small

REPT 5.92 2.60 3.32 16.78 0.10
RETA 5.51 2.29 3.22 5.41 0.12

RU 5.60 2.38 3.22 5.57 0.10
RH 5.97 2.61 3.36 15.13 0.11

Medium

REPT 8.29 4.47 3.81 22.59 0.20
RETA 7.36 3.80 3.56 8.53 0.19

RU 7.54 4.02 3.52 9.49 0.22
RH 8.24 4.50 3.74 21.89 0.20

Large

REPT 18.67 12.36 6.30 32.71 1.20
RETA 16.34 10.61 5.73 14.41 1.28

RU 16.59 10.75 5.84 17.36 1.12
RH 18.50 12.22 6.27 30.03 1.20

TABLE III
THE PERFORMANCE OF IG, TS AND GA WITH 2n MS

Instance Set Algorithm TC TD DIS ARPD (%) 1% Worst

Small
IG 4.83 1.68 3.15 0.47 28.08
TS 4.98 1.81 3.17 2.18 30.48
GA 4.90 1.72 3.18 1.55 29.24

Medium
IG 5.88 2.45 3.43 0.52 35.08
TS 6.23 2.78 3.45 5.10 37.56
GA 6.04 2.60 3.44 2.96 36.11

Large
IG 12.53 7.28 5.25 2.38 93.43
TS 13.75 8.29 5.47 15.21 97.54
GA 13.73 8.25 5.48 15.26 97.68

the increase of problem scale in combinatorial problems.
However, the ARPD of IG is slightly changed compared
with the drastic increase of TS and GA, which proves the
excellent performance of IG under different problem scales.
Furthermore, we calculate the average total cost of the worst
1% solutions for every algorithm, which is shown in the
column named ’1% Worst’, to show how bad an algorithm can
be under some extreme instances. The result shows that IG still
provides satisfying solutions under those worst cases. Note that
GA has similar performance as IG in small scale instances, but
keeps worsening as the problem scale grows. This is possibly
because very little computational time is provided for GA to
evolve and converge.

Moreover, it is of our interest to shorten or lengthen the
termination criterion, to fully validate the superiority of the
proposed IG algorithm. On the one hand, we shorten the
termination criterion to 10 ms to see how algorithms will
perform under extremely little computational time. On the
other hand, we lengthen the termination criterion to 100
ms to fully understand the capability of algorithms because
evolutionary algorithms normally need a relatively long time
to converge to a near-optimal solution. The results are shown
in table IV and V, respectively. From Table IV, we can see
that the performance of three algorithms all becomes worse
in this situation but IG still dominates the other two. Note
that for large scale instances, the performance of GA declines
very fast if little computational time is provided, while IG and
TS are barely influenced. Additionally, as can be seen from
table V, GA benefits the most from longer computational time,

resulting in great improvement of the quality of solutions, al-
though still worse than IG. This indicates that our IG algorithm
is robust enough to be used under different situations. GA is
probably more suitable for offline problems and TS requires
better design of operators to improve its performance. With the
analysis above, we conclude that our proposed IG algorithm
is more suitable and effective for solving the ORPP, compared
with other evolutionary algorithms.

V. CONCLUSION AND FUTURE WORKS

In this article, we design an iterated greedy (IG) algorithm
for the online route planning problem (ORPP). Firstly, four
initialization methods are proposed with different order se-
quencing rules, among which the best two rules are selected
to be used for generating the initial solution of our algo-
rithm. Secondly, the order-based destruction operators and
the greedy construction operators are designed according to
the characteristics of ORPP. Moreover, two problem-specific
adjustment operators and two neighborhood search operators
are designed for the local search procedure. Experimental
results on 1500 instances from real world show that our IG
algorithm outperforms the compared evolutionary algorithms,
suggesting that IG is more suitable and efficient for solving
the ORPP. Further experiments have also proved that IG is
robust enough to provide high-quality solutions under different
settings of termination criterion.

Our future work will mainly focus on two aspects, which
are the extension of problems and approaches, respectively.
On the extension of problems, it will be interesting to extend
the single vehicle situation to the multiple case, which will

TABLE IV
THE PERFORMANCE OF IG, TS AND GA WITH 10 MS

Instance Set Algorithm TC TD DIS ARPD (%) 1% Worst

Small
IG 4.85 1.71 3.14 0.53 29.34
TS 4.98 1.81 3.17 2.18 30.48
GA 4.92 1.77 3.15 1.88 30.01

Medium
IG 5.92 2.50 3.42 0.92 35.35
TS 6.23 2.78 3.45 5.08 37.56
GA 6.10 2.64 3.46 3.16 36.74

Large
IG 12.83 7.54 5.30 3.01 95.67
TS 13.84 8.37 5.47 14.95 97.54
GA 15.18 9.51 5.67 31.82 100.61

TABLE V
THE PERFORMANCE OF IG, TS AND GA WITH 100 MS

Instance Set Algorithm TC TD DIS ARPD (%) 1% Worst

Small
IG 4.82 1.67 3.15 0.45 28.01
TS 4.98 1.81 3.17 2.18 30.46
GA 4.87 1.70 3.17 1.39 29.23

Medium
IG 5.87 2.44 3.43 0.36 34.15
TS 6.23 2.78 3.45 5.10 37.55
GA 5.98 2.54 3.44 2.43 35.23

Large
IG 12.38 7.15 5.23 2.34 92.22
TS 13.75 8.29 5.47 15.57 97.54
GA 12.74 7.42 5.32 5.64 95.62

complicate the problem with the complexity of order assign-
ment. Moreover, considering more realistic constraints, such as
introducing the uncertainty and dynamism, is also promising
[18]. On the extension of approaches, we will further inves-
tigate other methods, including heuristics, meta-heuristics, or
emerging methods such as reinforcement learning, attempting
to bring some insights for the methodology of online route
planning problem.

ACKNOWLEDGMENT

This research is supported by the National Science Fund
for Distinguished Young Scholars of China [No. 61525304],
the National Natural Science Foundation of China [No.
61873328], and Meituan-Dianping Group.

REFERENCES

[1] M.-D. Group. (2019, Jan.) Meituan to invest rmb11
billion to support merchant development. [Online]. Avail-
able: https://www.prnewswire.com/news-releases/meituan-to-invest-r
mb11-billion-to-support-merchant-development-300782802.html

[2] M. Stanley. (2017, Jun.) Is online food delivery about to get
’amazoned’? [Online]. Available: https://www.morganstanley.com/idea
s/online-food-delivery-market-expands/

[3] Maze. (2016, Jul.) Not everything delivers: Saying no to delivery.
[Online]. Available: http://nrn.com/operations/not-everything-deliver
s-saying-no-delivery/

[4] S. Ropke and D. Pisinger, “An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows,”
Transportation Science, vol. 40, no. 4, pp. 455–472, 2006.

[5] Ropke, Stefan and Cordeau, Jean-François, “Branch and cut and price
for the pickup and delivery problem with time windows,” Transportation
Science, vol. 43, no. 3, pp. 267–286, 2009.

[6] S. Ropke, J.-F. Cordeau, and G. Laporte, “Models and branch-and-
cut algorithms for pickup and delivery problems with time windows,”
Networks: An International Journal, vol. 49, no. 4, pp. 258–272, 2007.

[7] L. Van der Bruggen, J. K. Lenstra, and P. Schuur, “Variable-depth search
for the single-vehicle pickup and delivery problem with time windows,”
Transportation Science, vol. 27, no. 3, pp. 298–311, 1993.

[8] W.-R. Jih and J. Y.-J. Hsu, “Dynamic vehicle routing using hybrid
genetic algorithms,” in Proceedings 1999 IEEE International Conference
on Robotics and Automation (Cat. No. 99CH36288C), vol. 1. IEEE,
1999, pp. 453–458.

[9] A. Landrieu, Y. Mati, and Z. Binder, “A tabu search heuristic for the
single vehicle pickup and delivery problem with time windows,” Journal
of Intelligent Manufacturing, vol. 12, no. 5-6, pp. 497–508, 2001.

[10] M. I. Hosny and C. L. Mumford, “Single vehicle pickup and delivery
with time windows: made to measure genetic encoding and operators,”
in Proceedings of the 9th annual conference companion on Genetic and
evolutionary computation. ACM, 2007, pp. 2489–2496.

[11] M. I. Hosny and C. L. Mumford, “The single vehicle pickup and
delivery problem with time windows: intelligent operators for heuristic
and metaheuristic algorithms,” Journal of Heuristics, vol. 16, no. 3, pp.
417–439, 2010.

[12] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse, “The vehicle
routing problem: State of the art classification and review,” Computers
& Industrial Engineering, vol. 99, pp. 300–313, 2016.

[13] R. Ruiz and T. Stützle, “A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem,” European Journal of
Operational Research, vol. 177, no. 3, pp. 2033–2049, 2007.

[14] R. Ruiz and T. Stützle, “An iterated greedy heuristic for the sequence
dependent setup times flowshop problem with makespan and weighted
tardiness objectives,” European Journal of Operational Research, vol.
187, no. 3, pp. 1143–1159, 2008.

[15] M. Pranzo and D. Pacciarelli, “An iterated greedy metaheuristic for the
blocking job shop scheduling problem,” Journal of Heuristics, vol. 22,
no. 4, pp. 587–611, 2016.

[16] R. Ruiz, Q.-K. Pan, and B. Naderi, “Iterated greedy methods for the
distributed permutation flowshop scheduling problem,” Omega, vol. 83,
pp. 213–222, 2019.

[17] K. Karabulut and M. F. Tasgetiren, “A variable iterated greedy algorithm
for the traveling salesman problem with time windows,” Information
Sciences, vol. 279, pp. 383–395, 2014.

[18] Y.-N. Guo, J. Cheng, S. Luo, D. Gong, and Y. Xue, “Robust dynamic
multi-objective vehicle routing optimization method,” IEEE/ACM trans-
actions on computational biology and bioinformatics, vol. 15, no. 6, pp.
1891–1903, 2017.

