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Abstract—Considering the uncertainty in the real world online
food delivery applications, this paper addresses an online order
dispatching problem with fuzzy preparation times (FOODP).
According to the characteristics of the problem, the FOODP
is decomposed into two sub-problems, an order assignment
problem and a fuzzy traveling salesman problem with pickup
and delivery. To deal with the two sub-problems efficiently, a
two-stage algorithm is proposed by reasonably fusing a modified
greedy search (mGS) and the fruit fly optimization algorithm
(FOA). In the mGS phase, agreement index is employed in the
multi-stage decision to search for robust optimal solutions. In the
FOA-based search phase, a modified heuristic is used to generate
the initial route. To enhance the exploration of the algorithm,
an olfactory search is designed by the cooperation of several
problem-specific search operators. Moreover, a specific local
intensification is employed to further improve the performance
of solutions. Numerical tests and statistical analysis demonstrate
the effectiveness and efficiency of the proposed algorithm.

Index Terms—fuzzy online order dispatching problem, the
two-stage algorithm, modified greedy search heuristic, fruit fly
optimization algorithm, robustness

I. INTRODUCTION

With the development of rapid economic and internet, the
pace of life accelerates in recent years. To save time on dining,
online food-delivery platforms have penetrated into the lives
of young people, becoming an important choice for people’s
daily diet. The mode of online food delivery platforms has
a wide market space, good development prospect, and fierce
competition. Taking Meituan-Dianping (a major online food
delivery platform in China) for example, the third quarter
revenue was as high as $2.2 billion, with a growth rate of
39.4% and the number of transactions was 2.5 billion, with a
growth rate of 38.1% [1]. Since the online order dispatching
problem (OODP) is the key problem in real-time online food
delivery platform, it is important to solve the problem.

The mode of the online food delivery platforms is shown in
Fig. 1. When a customer orders food, the platform will push
the order to the corresponding restaurant and dispatch it to
a driver with a planned route at the same time. To improve
word of mouth and gain benefits, the platform needs to provide
customers with fast and reliable service experience.

Every day, millions of orders are generated across the whole
country, and each order should be delivered within a short

Fig. 1: The order dispatching process.

period of time (usually within 40 minutes). Therefore, it is
significant to study the OODP with fast and stable algorithms.
To the best of our knowledge, few research works have been
carried out on OODP. And the pickup and delivery problems
(PDP) and vehicle routing problems (VRP) are most relevant
to the OODP. The main difference is that the OODP considers
the complexity of real-world application scenario, and needs
to react and calculate new orders in real time.

During recent years, extensive research has been carried out
on the PDP and VRP. Lu and Dessouky [2] formulated the
multiple vehicle PDP as an integer-programming problem and
proposed a branch-and-cut algorithm to solve it. For the PDP
with time window (PDPTW), Dumas [3] presented an exact
algorithm based on column generation scheme. However, the
exact algorithms are not suitable for large-scale problems due
to explosive growth of computing time. Ropke and Pisinger D
[4] presented an adaptive large neighborhood search algorithm,
employing a number of competing sub-heuristics which are
used with a frequency corresponding to their historic per-
formance. As for dynamic VRP, Mavrovouniotis and Yang
[5] designed an ant colony optimization (ACO) with the
cooperation of three immigrants schemes, considering both
the diversity and the adaptation capabilities of the population.
Besides, Tchoupo et al. [6] also presented the ACO coupled
with dedicated local search algorithms to minimize the number
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of vehicles and the total distance travelled of PDPTW. For the
dynamic VRP with random customers, Guo et al. [7] designed
a multi-objective particle swarm optimization. Although these
evolutionary algorithms have good performs, the time con-
sumption is unbearable for online platforms. Therefore, it is
difficult but important to balance the solution quality and
running speed of the algorithm for the OODP.

In real life food delivery platforms, uncertainty is an in-
evitable and inherent characteristic. The solutions obtained
by the deterministic problem are usually not flexible and
robust enough in unexpected cases such as traffic jam, special
requests of customers, long food preparation time of restau-
rants and so on. Among them, the food preparation time of
restaurants is the most important factor affecting the efficiency
of food delivering, especially at peak hours. Ideally, the food
is ready when the driver arrives at the restaurant, and he can
leave for the customer immediately. Whereas, the preparation
time is usually uncertain and difficult to estimate. Once the
food is prepared slowly, the driver must wait in the restaurant
until it is finished, which may cause subsequent orders timeout
and make conflicts between the driver and the restaurant.

Therefore, it is important to study the OODP with uncertain
preparation times. Fuzzy set theory is an important method
to handle uncertainty and vagueness. Recently, there has
been some research about the fuzzy VRP and fuzzy PDP.
For dynamic VRP with uncertain service time, Brito et al.
[8] proposed a fuzzy ant colony system combined with a
cluster insertion algorithm. For fuzzy green PDPTW, Majidi
et al. [9] presented an adaptive large neighborhood search
heuristic by applying new removal and insertion operators with
fuzzy credibility measure. Sifa et al. [10] simulated the fuzzy
velocity based on history data and designed a Tabu Search to
solve PDP with fuzzy velocity. For the VRP with fuzzy time
window, Tang et al. [11] proposed a two-stage algorithm with
different fuzzy membership functions.

This paper takes first attempt to address the online order
dispatching problem with fuzzy preparation times (FOODP).
To minimize the total assignment cost quickly and obtain a
robust solution, we decompose the problem into two sub-
problems: an order assignment problem and a fuzzy traveling
salesman problem with pickup and delivery (FTSPPD). To
solve the former sub-problem, a modified greedy search (mGS)
is proposed based on multi-stage decision. To solve the latter
one, a fruit fly optimization algorithm (FOA) is presented with
the cooperation of multiple problem-specific search operators.
Besides, an improved heuristic method is employed to ini-
tialize the route. And the local intensification is applied to
further improve the solution. By reasonably fusing the mGS
and FOA, a two-stage algorithm (TSA) is proposed to solving
the whole problem. Comparison of simulation results and
statistic analysis demonstrate the effectiveness of the proposed
algorithm.

The remainder of this paper is organized as follows. In Sec-
tion II, operations of fuzzy set and the FOODP are described.
In Section III, the two-stage algorithm is presented in details.
Simulation results and statistic analysis are provided in Section

IV. Finally, we end the paper with some conclusions and future
work in Section V.

II. THE FUZZY ONLINE ORDER DISPATCHING PROBLEM

A. Operations on fuzzy sets

To deal with fuzzy sets in FOODP, the arithmetic operations
of fuzzy numbers are used, including addition, maximum, and
ranking method. For two triangular fuzzy numbers (TFNs)
A = (a1, a2, a3), B = (b1, b2, b3) and a real number c, the
addition, subtraction and maximum operations [12], [13] are
shown as follows.

A+B = (a1 + b1, a2 + b2, a3 + b3); (1)
A+ c = (a1 + c, a2 + c, a3 + c); (2)
A− c = (a1 − c, a2 − c, a3 − c); (3)

max{A,B} ≈ (max{a1, b1},max{a2, b2},max{a3, b3});
(4)

max{A, c} = (max{a1, c},max{a2, c},max{a3, c}); (5)

The expected value of the TFN A is given as follows [14].

E(A) = (a1 + 2a2 + a3)/4; (6)

Besides, the following criterion is adopted to compare TFNs
[15].
Step 1: The greatest number Z1(A) = E(A) will be chosen
as the first criterion to rank two TFNs.
Step 2: If two TFNs have the same Z1, Z2(A) = a2 is used
as the second criterion.
Step 3: If two TFNs have identical Z1 and Z2, Z3(A) =
a3 − a1 will be chosen as the third criterion.

Fig. 2: Agreement Index

As shown in Fig. 2, the agreement index (AI) [16] of the
TFN A with respect to a due date d is defined as the coincident
area ratio of D and the membership function of A, where D
is the step function on d. To be more explicit,

D(x) =

{
1, x ≤ d
0, otherwise

(7)

AI = [area(D ∩A)]/area(A)) (8)

The AI can be seen as the percentage of A that completed
before the due date.



TABLE I: The notations of the FOODP

Notation Description
n the number of new orders
m the number of drivers

i, j, l the index of orders, drivers, and route points respectively
nwj(nw

′
j) the number of old (all) orders on the driver vj

numj(num
′
j) the number of route points of the old (new) route of vj

V the set of drivers, V = {v1, . . . , vm}
Wnew the set of new orders, Wnew = {wnew

1 , . . . , wnew
n }

W old
j the set of old orders on vj , W old

j = {wold
1 , . . . , wold

nwj
}

W old the set of all old orders, W old =
⋃m

j=1 W
old
j

W the set of all orders, W = Wnew ∪W old

(i+, i−) the node pair of order wi; i+ is the pickup node and i− is the delivery node
P+ the set of pickup nodes of the new orders P+ = {i+|wi ∈Wnew}
P− the set of delivery nodes of the new orders P− = {i−|wi ∈Wnew}
P the set of all nodes of the new orders P = P+ ∪ P−

U+ the set of pickup nodes of the old orders U+ = {i+|wi ∈W old}
U− the set of delivery nodes of the old orders U− = {i−|wi ∈W old}
U the set of all nodes of the old orders U = U+ ∪ U−

H the set of starting positions of all drivers, H = {hj |vj ∈ V }
PTi the TFN food preparation time of wi, PTi = (pti,1, pti,2, pti,3)
di the due date of wi

R0,j the original route of vj , R0,j = {r0,0,j , r0,1,j , r0,2,j , . . . , r0,numj ,j}, r0,0,j = hj

Ri,j the new route of dispatching wi to vj , Ri,j = {ri,0,j , ri,1,j , ri,2,j , . . . , ri,num′j ,j
}, ri,0,j = hj

tl1,l2 the travel time of point l1 and point l2
Dl1,l2 the travel distance of point l1 and point l2
V Ti− the visiting time of the delivery node of order wi ∈W
OTi the overtime of order wi ∈W
TCi,j the time cost of dispatching wi to vj
DCi,j the distance cost of dispatching wi to vj
ACi,j the assignment cost of dispatching wi to vj
AIi,j the agreement index of dispatching wi to vj

B. Description of FOODP

The notations of the FOODP are described in Table I.
The FOODP contains n new orders and m drivers, denoted

as Wnew = {wnew
1 , . . . , wnew

n }, V = {v1, . . . , vm} respec-
tively. In addition to the new orders, the drivers also works
on a number of old orders assigned previously, denoted as
W old =

⋃m
j=1W

old
j where W old

j = {wold
1 , . . . , wold

nwj
} is the

set of old orders assigned to vj , and nwj is the number of old
orders on vj . Let P+ = {i+|wi ∈Wnew} be the set of pickup
nodes of the new orders, and P− = {i−|wi ∈ Wnew} is the
set of delivery nodes of the new orders. |P+| = |P−| = n.
P = P+ ∪ P− represents the whole points associated to
the new orders. Similarly, U+ = {i+|wi ∈ W old} and
U− = {i−|wi ∈ W old} are the sets of pickup points and
delivery points of old orders, respectively. U = U+ ∪ U−
represents all the points associated to old orders. Because
some old orders have already been picked, |U+| <= |U−| =∑m

j=1 nwj . W = Wnew ∪ W old is the set of total orders.
Each order wi ∈ W is represented by (i+, i−) and has a
TFN food preparation time PTi = (pti,1, pti,2, pti,3) if it
is unpicked. If the old order has already been picked, it is
represented by (0, i−). Besides, each order wi ∈W has a due
date di which is a promise to customers when the order is
delivered. H = {hj |vj ∈ V } is the set of starting positions
of all drivers. Each driver vj has an original route, constituted
by hj and the pickup and delivery points of the old orders

on vj , denoted as R0,j = {hj , r0,1,j , r0,2,j , . . . , r0,numj ,j},
where r0,l,j (l = 1, . . . , numj) is the lth route point and
numj is the number of route points of the original route.
If order wi ∈ Wnew is dispatched to vj , a new route
Ri,j = {hj , ri,1,j , ri,2,j , . . . , ri,num′j ,j} will be planed for vj
where ri,l,j (l = 1, . . . , num′j) is the lth route point, and
num′j is the number of route points of the new route. For
convenience, hj is replaced by ri,0,j(i = 0, . . . , n) in the
equation. Every driver has a maximum capacity Q, which is
the maximum quantity that a driver can carry at a certain time.

The FOODP can be defined on a graph G = (N,A) where
N = P ∪ U ∪ H is the set of all nodes. The set of arcs is
A = N ×N . Each arc (l1, l2) ∈ A is associated with a travel
time tl1,l2 and a travel distance Dl1,l2 . The visiting time of
the delivery node of order wi ∈ W is denoted as V Ti− . The
overtime OTi of order wi ∈W is calculated as follows.

OTi = max{0, V Ti− − di} (9)

A solution of FOODP includes the assignment of the new
orders to each driver and the routes of each driver in which
the sequence of the pickup and delivery points are determined.

The basic assumptions of the problem are as follows. a) Old
orders of each driver can not be transformed to other drivers. b)
Orders can only be picked up after the food being prepared by
the restaurant. c) A driver must pick up food before delivering
it, which means i− must be behind i+ in a feasible route. d)



A new order can only be assigned to one driver. e) Orders on
a driver cannot exceed capacity constraints all the time.

In conclusion, FOODP is a very complicated problem.
It takes into account the characteristics of the real-world
applications, including the variable position of drivers, old
orders on drivers, uncertain food preparation times, capacity
constraints and time limitation of the algorithm.

The cost of dispatching an order wi ∈Wnew to a driver vj
includes two aspects: time cost (TC) and distance cost (DC).
The TC is the difference of the expectation of total overtime
between the new route and original route, and the DC is the
difference of the distance between the two as follows.

TCi,j =

nw′j∑
l=1

E(OTl)−
nwj∑
l=1

E(OTl),∀i, j (10)

DCi,j =

num′j∑
k=0

Dr(i,k,j),r(i,k+1,j)
−

numj∑
k=0

Dr(0,k,j),r(0,k+1,j)
,∀i, j

(11)

The objective function is to minimize the total assignment
cost (AC), which is a weighted sum of TC and DC.

ACi,j = λ1TCi,j + λ2DCi,j ,∀i, j (12)

AC =

n∑
i=1

m∑
j=1

(ACi,jIi,j) (13)

Ii,j =

{
0, if wi ∈Wnew is dispatched to driver vj

1, else

(14)

where λ1 and λ2 are the weights of TC and DC respectively.

III. TWO-STAGE ALGORITHM

To solve the FOODP, we decompose the original problem
into two sub-problems. The upper-level sub-problem is to
determine the assignment of each order to drivers. The lower-
level one is a fuzzy traveling salesman problem with pickup
and delivery.

A modified greedy search heuristic (mGS) is designed for
solving the upper-level sub-problem quickly. By considering
both the assignment cost and route robustness simultaneously,
the multi-stage decision is employed in mGS. To solve the
lower-level sub-problem, a FOA-based evolutionary algorithm
is presented with the cooperation of several problem-specific
operators. By reasonably fusing the mGS and the FOA-
based search, a two-stage algorithm (TSA) is proposed. The
framework of the TSA is shown in Fig. 3.

A. modified greedy search phase

To determine the assignment of each new orders to drivers,
a modified greedy search heuristic is presented. As a simple
heuristic, the greedy search (GS) can get an approximation
optimal solution for the scheduling quickly. The main idea of
the GS is to assign the new order to the driver with lowest
ACi,j at each iteration. However, it may be myopic and easy

Fig. 3: The framework of the TSA.

to be trapped in a local minimum. Therefore, we propose a
modified GS, considering the robustness of the new routes by
the multi-stage decision. The agreement index can reflect the
possibility of order timeout with fuzzy preparation times. A
route with AI = 0 means that no matter what the preparation
time is, the order on this route will definitely time out. On the
contrary, if AI = 1, it means that the order of this route will
never time out. Therefore, AI can reflect the robustness of a
route to some extent. AIi,j of the route Ri,j is calculated as
follows.

AIi,j = [area(V Ti−max
∩Dimax

)]/area(V Ti−max
) (15)

where imax is the order with maximum overtime in the new
route Ri,j , and Dimax

is the step function on dimax
. AIi,j

reflects the timeout level of the order on Ri,j which is most
likely to be overtime.

In detail, a cost matrix C = {ci,j} is built in the mGS to
describe the performance of order assignment. Each element
ci,j = {ACi,j , AIi,j} in C represents the assignment cost
and agreement index of dispatching new order wi to driver
vj , obtained by solving the lower-level sub-problem. In each
iteration, the assignment with lowest AC in C is selected to
build up a α-min set S, in which the difference of the AC
between any element is less than α. Then new order will be



assigned to the driver with largest AI in the S. The procedure
of mGS is as Algorithm 1.

Algorithm 1 Pseudo-codes of mGS

Require: the set of unassigned orders Wnew and the set of
drivers V with old orders;

1: Calculate ACi,j and AIi,j , ∀i, j;
2: while the cost matrix C! = Ø do
3: Find the minimum ACi,j in C;
4: Let α-min set S = Ø;
5: for l = 1 : n do
6: if ACl,j −ACi,j <= α then
7: Add pair (wl, vj) into S;
8: end if
9: end for

10: Find the pair (w′i, vj) with minimum AI in S;
11: Assign the order w′i to driver vj ;
12: Delete the i′th column of C;
13: Update the jth row of C;
14: end while

For example, suppose the score matrix is shown as TABLE
II and α = 2. Firstly, we choose the pair (w2, v2) which has
the minimum AC=1.5 to build the α-min set S. Since |3.0−
1.5| < α = 2 and |4− 1.5| > α, the S is consisted of the pair
(w2, v2) and (w1, v2). Then the pair (w2, v2) will be selected
at this iteration because it has the maximum AI in the S. That
is, the new order w2 will be dispatched to driver v2 at this
iteration. Afterwards, the cost value of v2 should be updated
and the 2nd column of C should be deleted since w2 has
already been assigned.

TABLE II: An example of the cost matrix C

ci,j v1 v2 v3
w1 (4.0, 0.1) (3.0, 0.5) (2.0, 0.7)
w2 (2.6, 0.8) (1.5, 0.6) (5.0, 1.0)
w3 (3.0, 0.7) (4.0, 1.0) (8.0, 0.5)

By introducing AI into the mGS, we will choose the most
robust new route (less likely to be timeout) with satisfying
assignment cost at each iteration, and assign the order to the
corresponding driver. By this way, a solution of good quality
will be obtained quickly.

B. FOA-based search phase

The fruit fly optimization algorithm [17] is a relatively
novel swarm intelligence optimization algorithm inspired by
the foraging behavior of fruit flies. In recent years, the FOA
has been used to solve complex optimization problems in many
fields, including prediction, logistics, scheduling problems,
power system and so on [18].

In this section, we design the FOA-based search according
to the characteristics of the FTSPPD. The core of the FOA-
based search includes encoding, decoding, route initialization,
olfactory search based on operator cooperation, vision search

based on greedy iteration and problem-specific local intensifi-
cation.

1) Encoding and decoding: A solution in the FTSPPD is
represented by (1+qp+qd) permutation sequence Π, including
a starting point 0, qp pickup points and qd delivery points. i+

and i− means the pickup point and the delivery point of wi, re-
spectively. According to the constrains, i− must be placed after
i+ if wi is an unpicked order. If wi is already picked, i+ = 0.
For an example with 2 unpicked orders (qp = 2, qd = 2),
a feasible solution is encoded as 0 − 1+ − 2+ − 1− − 2−.
The solution is shown in the Fig. 4, where (a) demonstrates
the original route of the driver and (b) shows the new route
obtained by dispatching w2 to the driver. The fuzzy preparation
times, due dates and travel times are also on the figures. For
the old route, OT1 = max(0, [9, 11, 16]− 15) = [0, 0, 1]. For
the new route, OT1 = max(0, [11, 13, 18] − 15) = [0, 0, 3],
OT2 = max(0, [13, 15, 20] − 15) = [0, 0, 5]. Therefore,
TC = E([0, 0, 3]) + E([0, 0, 5]) − E([0, 0, 1]) = 1.75,
DC = (10 + 18 + 20 + 15) − (10 + 32) = 21, AC =
λ1TC + λ2DC = 5.95 (if λ1 = 1, λ2 = 0.2), AI =
area(V T2− ∩D2)/area(V T2−) = 2/7.

Fig. 4: An example of a fuzzy route

2) Route initialization: Considering the quality of initial
solution to well guide the search, a modified Nawaz-Enscore-
Ham [19] (mNEH) method is used to initialize the position
of fruit fly population. The procedure of the heuristic is as
follows.

Step 1: Calculate the capacity of all orders assigned to the
driver vj . If it is larger than Q, return NULL and set the AI



and AC as ∞. Otherwise, let initial route Π = Ø. Sort all the
orders of driver vj in a descending order according to their
due dates (including the new order wi, totally nw′j orders),
Ω′ = (w(1), w(2), . . . , w(nw′j)

). Let l = 1;
Step 2: Insert the pickup point (if exists) and delivery point

of w(l) into all possible position of Π sequentially due to
precedence constraint and capacity constraints and calculate
the AIi,j and ACi,j of the partial route. The one with lower
ACi,j will be select to replace Π. If there exist ties, then
choose the one with maximum AIi,j as Π.

Step 3: If l < n, l = l + 1, go to step 2; Otherwise output
Π.

By applying this method, we formulate a feasible route with
certain quality.

3) Olfactory search and vision search: Olfactory search is
the core part of the FOA, having a great influence on the
performance. In this paper, the olfactory search is designed
by the cooperation of three neighborhood search operators as
follows.
Insert: Randomly select a route point from Π and insert

it into all possible position. The best route will be chosen as
new route Π∗.
Swap N : Randomly select a route point pi from Π and

swap the position of pi and the nearest feasible route point.
Swap C: Regarding continuous pickup points or continu-

ous delivery points as an aggregation point. Randomly swap a
pair of adjacent aggregation points and check feasibility, then
choose the better route as Π∗.

The route with lower cost is regarded as the better route. If
there exist ties, then the one with maximum AI is better.

With the cooperation of the above three operators, the fruit
flies will fly to three different positions. Afterwards, the vision
search based on greedy iteration will choose the best position
of the three and all the fruit flies will gather to the that position.

4) Local intensification: To further improve the perfor-
mance of the route, a local intensification is designed with
the following two kinds of problem-specific neighborhood
searches.
• Backward search: Find the delivery points with largest

OT and move them backward to an optimal position.
• Forward search: Find the points with most sufficient time

and move them forward to an optimal position
Once a better solution is found, the best solution will be
replaced.

IV. EXPERIMENTAL RESULT

In this section, numerical experiments will be conducted
to evaluate the performance of the proposed algorithm. The
testing instances are sampled from real data in Shenzhen of
Meituan-Dianping platform, and are grouped by the number
of new orders n. Each group contains 10 different instances,
so there are 100 instances in total. The preparation times of
the orders are learned from extensive history data. That is,
PTi = (pti,1, pti,2, pti,3) where pti,1 and pti,3 are the mini-
mum and maximum preparation times of the same food in the
same restaurant, while pti,2 is the most frequent preparation

time of the history data. λ1 and λ2 are set as 1/60, 1/10000
respectively according to the experience. All the algorithms are
coded in Java SE8 and experiments are run on a MacBook Pro
with 2.2 GHz processors / 16 GB RAM under Mac OS.

The TSA contains one key parameters: the value of α in α-
min set S, and is set as 2. To the best of our knowledge, there
is no published work addressing the FOODP. Therefore, we
combine the GS-based order assignment with variable-depth
search (VDS) [21], simulated annealing (SA) [20] and genetic
algorithm (GA) [22]. In the SA, exponential descent method
is used where the initial temperature is 1500 and the annealing
rate is 0.9. As for the GA, the size of the population is set
as 10, and probabilities of crossover and mutation are 0.5
and 0.6, respectively. To compare the TSA with the above
three state-of-art algorithms, we run each algorithm 5 times
independently for each instance with 0.01×nw′j seconds CPU
time as the terminal condition for the FTSPPD. To demonstrate
the effectiveness of the TSA without fuzzy theory (TSA-
nF), we compare the TSA-nF with other three algorithms
on deterministic instances, where the preparation times of
unpicked orders are set as the expectation times according
to history data. The following relative percentage deviation
(RPD) is adopted as indicator to evaluate the results.

RPD = (alg − opt)/opt× 100 (16)

where alg is the AC obtained by the algorithm, and opt
is the best AC obtained by the four algorithms. Obviously,
a smaller value of RPD means better performance of the
corresponding algorithm.

TABLE III: The RPD on deterministic instances

n TSA-nF GA-nF VDS-nF SA-nF
0<n ≤ 10 0.00 1.69 1.42 1.53
10<n ≤ 20 2.61 2.47 2.81 2.84
20<n ≤ 30 0.95 1.73 5.46 5.97
30<n ≤ 40 1.46 1.99 11.44 13.09
40<n ≤ 50 1.11 3.23 14.91 15.63
50<n ≤ 60 0.65 2.36 10.23 10.56
60<n ≤ 70 1.08 2.83 7.52 7.84
70<n ≤ 80 0.75 2.05 10.26 10.40
80<n ≤ 90 1.16 2.55 7.92 7.93
90<n ≤ 100 1.31 2.94 9.13 9.93

Average 1.11 2.38 8.11 8.57

As shown in Table III, the TSA-nF has smaller values
of RPD in all groups of instances than the VDS-nF and
SA-nF and is better than GA in most groups. Therefore, It
can be concluded that TSA-nF performs significantly better
than other algorithms, especially with large n. Besides, the
standard deviations of the normalized AC obtained by the four
algorithms is shown in Table IV. It can be seen that, the TSA-
nF performs most steadily on average.

Table V-VI show the RPD and standard deviations on fuzzy
instances respectively. From the Table V, we can see that
the ACs of TSA are smallest in all groups of instances. And
Table VI indicates that the robustness of the four algorithms
is similar on average.



TABLE IV: The standard deviations on deterministic instances

n TSA-nF GA-nF VDS-nF SA-nF
0<n ≤ 10 0.00 0.32 0.34 0.38
10<n ≤ 20 0.41 0.47 0.43 0.40
20<n ≤ 30 0.29 0.34 0.38 0.35
30<n ≤ 40 0.29 0.24 0.28 0.26
40<n ≤ 50 0.14 0.19 0.19 0.20
50<n ≤ 60 0.13 0.20 0.20 0.17
60<n ≤ 70 0.20 0.21 0.23 0.24
70<n ≤ 80 0.07 0.13 0.17 0.19
80<n ≤ 90 0.18 0.21 0.20 0.21
90<n ≤ 100 0.18 0.17 0.18 0.15

Average 0.19 0.25 0.26 0.26

TABLE V: The RPD on fuzzy instances

n TSA GA VDS SA
0<n ≤ 10 0.20 0.21 0.70 1.56
10<n ≤ 20 0.17 0.23 0.22 1.13
20<n ≤ 30 2.24 3.79 3.19 4.15
30<n ≤ 40 2.32 2.64 5.01 5.00
40<n ≤ 50 1.58 1.87 5.14 5.67
50<n ≤ 60 1.79 1.81 2.93 2.71
60<n ≤ 70 1.98 2.08 3.58 3.39
70<n ≤ 80 1.32 1.48 3.36 3.47
80<n ≤ 90 1.78 2.13 3.39 3.42
90<n ≤ 100 1.64 1.79 2.36 2.09

Average 1.50 1.80 2.99 3.26

To show the effectiveness of fuzzy theory on robustness, we
compare the four algorithms with and without fuzzy method
respectively. For the assignment solutions and route planning
obtained by the four algorithms, we generate 100 scenarios for
each instance by randomly set preparation times for unpicked
orders according to history data. Then, the average overtime
(AOT) of the solutions can be calculated as follows. Obviously,
an algorithm is of better robustness with smaller AOT.

AOT = 1/Snum

Snum∑
si=1

m∑
j=1

num′j∑
k=1

OTk,si/num
′
j (17)

where Snum = 100 is the number of scenarios for each
instance, and OTk,si is the OTk of sith scenario. The AOT
indicates the average timeout caused by random preparation

TABLE VI: The standard deviations on fuzzy instances

n TSA GA VDS SA
0<n ≤ 10 0.30 0.27 0.39 0.40
10<n ≤ 20 0.41 0.39 0.33 0.30
20<n ≤ 30 0.35 0.34 0.35 0.33
30<n ≤ 40 0.30 0.29 0.31 0.32
40<n ≤ 50 0.30 0.20 0.26 0.27
50<n ≤ 60 0.39 0.36 0.31 0.34
60<n ≤ 70 0.40 0.28 0.26 0.28
70<n ≤ 80 0.24 0.28 0.31 0.30
80<n ≤ 90 0.29 0.33 0.31 0.30
90<n ≤ 100 0.32 0.29 0.29 0.30

Average 0.33 0.30 0.31 0.31

times. Table VII shows the RPD of the AOT grouped by n.
It can be seen that, for each algorithm, the solutions are of
better robustness with fuzzy method, which implies that the
fuzzy method is useful to obtain robust solutions. For the four
Algorithm−nFs, the AOT of the TSA-nF is less than other
three algorithms on average. Similarly, the solutions obtained
by TSA are more robust than GA, SA and VDS on average.
Therefore, it can be concluded that the TSA is able to obtain
solutions with better robustness than other three algorithms.

In addition, we assume that the preparation times of each
unpicked order are {2,4,6,8,10} minutes later than the excep-
tion time, the average overtimes of the algorithms are shown in
Fig. 5. It can be seen that the AOT of the solutions obtained by
an algorithm with fuzzy method is less than the one without.
That is, the fuzzy set theory can handle unexpected cases such
as delayed preparation times and obtain a robust solution. And
the AOT of the TSA is lowest in all the algorithms. As the
delay time increases, the advantage of the TSA becomes more
apparently. In general, we can conclude that the TSA is more
effective than the state-of-art algorithms, and is more suitable
for real world online food delivery platforms.

Fig. 5: The ROTs of the four algorithms with time delay.

V. CONCLUSION AND FUTURE WORKS

In this paper, we addressed the fuzzy online food dispatch-
ing problem with fuzzy food preparation times for the first
time. To optimize the assignment cost and find a robust so-
lution, the original problem is decomposed into two subprob-
lems: an order assignment problem and a fuzzy traveling sales-
man problem with pickup and delivery. A two-stage algorithm
is proposed to solve the problem quickly by reasonably fusing
the fruit fly algorithm into the framework of the modified
greedy search heuristic. Comparative results and statistical
analysis demonstrate the effectiveness and robustness of the
proposed algorithm. The superiority of our algorithm mainly
owes to the follows.

• Fusion of the modified greedy search heuristic and the
fruit fly optimization algorithm to solve the problem
effectively and efficiently.



TABLE VII: The RPD of the overtime

n TSA-nF GA-nF VDS-nF SA-nF TSA GA VDS SA
0<n ≤ 10 2.18 5.15 3.34 4.02 0.52 1.20 0.61 0.48
10<n ≤ 20 1.22 2.30 2.57 2.45 0.19 0.21 0.23 0.18
20<n ≤ 30 1.21 2.27 2.29 2.13 0.06 0.12 0.16 0.18
30<n ≤ 40 1.09 1.99 1.96 1.94 0.01 0.16 0.22 0.21
40<n ≤ 50 1.82 2.82 2.82 2.74 0.02 0.12 0.24 0.22
50<n ≤ 60 1.49 2.80 2.88 2.73 0.01 0.19 0.14 0.18
60<n ≤ 70 1.70 3.09 3.08 3.05 0.02 0.17 0.16 0.17
70<n ≤ 80 2.83 4.61 4.68 4.65 0.01 0.15 0.14 0.19
80<n ≤ 90 2.88 4.70 4.29 4.57 0.04 0.20 0.15 0.12
90<n ≤ 100 2.47 3.86 4.10 4.06 0.04 0.14 0.20 0.21

Average 1.90 3.37 3.23 3.27 0.09 0.26 0.22 0.22

• Utilization of multi-stage decision in mGS to search for
robust optimal solutions.

• Utilization of the modified heuristic to produce a popu-
lation with good quality.

• Design of the olfactory search based on the cooperation
of several problem-specific search operators to enhance
exploitation capability.

• Utilization of the specific local intensification to further
improve the performance of solutions.

Since the real-world online food delivery applications re-
quire the algorithm to process a large number of orders in
a short time, we will focus on the speed-up methods in our
future work. Besides, it is interesting to solve the fuzzy online
food dispatching problem with other types of uncertainties.
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