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Abstract—In recent years, the online food ordering (OFO)
platforms have arose fast and brought huge convenience to people
in daily life. Under the scenario of a realistic OFO platform, this
paper addresses an online meal delivery problem (OMDP). To
reduce the search space, the OMDP is decomposed into two sub-
problems, i.e., the pickup and delivery problem and the order
dispatching problem. To solve each sub-problem effectively, a
hybrid differential evolution algorithm is proposed, which is
fused by the DE-based phase to plan routes and the heuristic-
based phase to determine order dispatching schemes. In the
DE-based routing phase, a heuristic considering the urgency of
orders is designed to generate the initial population with certain
quality. Besides, a mutation operator is developed to enhance
the exploration and a crossover operator embedded with local
search is designed to enhance the exploitation. In the heuristic-
based dispatching phase, a regret heuristic is presented to
produce good dispatching solutions by introducing the influences
between delivery persons. Numerical tests have been carried out
and computational results demonstrate the effectiveness of the
proposed algorithm.

Index Terms—online meal delivery problem, pickup and de-
livery problem, differential evolution, regret heuristic

I. INTRODUCTION

A. Backgroud

On online food delivery platforms, diners are allowed to
order meals from a wide range of restaurants only with a tap of
smart phone. Take Meituan-Dianping, a Chinese food ordering
platform, for example, the overall procedure of delivering the
online meal orders is illustrated in Fig. 1. After the customers
make orders, the Meituan platform will push the orders to the
restaurants and dispatch the orders to delivery persons, also
called as riders. Then, the riders will pick up meals from the
corresponding restaurants after the meals have been prepared
and deliver them to the customers. Such convenience attracts
more and more customers and promotes the prosperity of
meal delivery operations. According to the revenue statement
[1] of Meituan-Dianping, for the third quarter of 2019, the
number of food delivery orders increased by 38.1% to 2.5
billion from 1.8 billion in the same period of 2018, and the
Gross Transaction Volume increased by 40.0% to RMB111.9
billion from RMB80.0 billion in the same period of 2018.
However, the huge amount and ongoing growth of orders
also pose a challenge for the online food delivery platforms

in last mile logistics. In Meituan-Dianping, online orders are
received almost every minute throughout the country so that
the platform needs to dispose the orders in a very short time.
Besides, it also should be considered that how to reduce the
traveling distance and serve more orders with a limited number
of riders to increase delivery efficiency. More importantly,
orders must be delivered on time to earn customer satisfaction
in competitive market. Therefore, the intrinsic nature of the
online meal delivery problem (OMDP) makes it a difficult
and primary issue for the online food delivery platforms.

Fig. 1: The procedure of delivering meals.

B. Literature Review

In the literature, it lacks of relative research works studying
the above scenario, and the research topic that most relates to
the OMDP is the pickup and delivery problem (PDP) or the
vehicle routing problem (VRP).

The PDP is a common problem in many fields, such as
logistics, ambulatory services, and robotics [2]. The typical
characteristic of PDP is to collect objects or people from
origin depots and transport them to the destinations. As a
generalization of the VRP, the PDP has attracted the interest
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TABLE I: Notations

Notation Description
T The current time to dispatch new orders.

i, j, k The index of orders, riders and route nodes respectively.
m The number of riders.
Q The set of riders Q = {q1, q2, ..., qm}.

nnew The number of new orders.
Onew The set of new orders. Onew = {onew(1), onew(2), . . . , onew(nnew)}.
nj The number of old orders that have been dispatched to rider qj .

Oold
j The set of old orders dispatched to rider qj . Oold

j = {ooldj (1), ooldj (2), . . . , ooldj (nj)}.
nold The number of old orders. nold = n1 + n2 + ...+ nm.

Oold The set of old orders. Oold = {oold(1), oold(2), . . . , oold(nold)}.
n The number of all orders to be served. n = nnew + nold

O The set of all orders. O = {o(1), o(2), . . . , o(n)} = Onew ∪Oold

i+ The pickup node of order o(i).
i− The delivery node of order o(i).
P old The pickup nodes set of old orders. P old = {i+|o(i) ∈ Oold}.
Pnew The pickup nodes set of new orders. Pnew = {i+|o(i) ∈ Onew}.
Dold The delivery nodes set of old orders. Dold = {i−|o(i) ∈ Oold}.
Dnew The delivery nodes set of new orders. Dnew = {i−|o(i) ∈ Onew}.
P The set of all pickup nodes. P = P old ∪ Pnew .
D The set of all delivery nodes. D = Dold ∪Dnew .
L The site nodes set of riders. L = {l1, l2, ..., lm}.

R0,j The old route of rider qj . R0,j = {r0,j(0), r0,j(1), r0,j(2), . . . , r0,j(n0,j)}.
Ri,j The new route of rider qj after dispatching o(i) to qj . Ri,j = {ri,j(0), ri,j(1), ri,j(2), . . . , ri,j(ni,j)}, i > 0.
DTi The due time of o(i).

t(i1, i2) The travel time between node i1 and node i2.
d(i1, i2) The travel distance between node i1 and node i2.
PTi Preparation time, i.e., the time when the meal of o(i) is prepared by the restaurant.
TTi,j The total tardiness of route Ri,j .
TDi,j The travel distance of route Ri,j .
RCi,j The route cost of route Ri,j .
Ci,j The cost of dispatching o(i) to qj .
CM The cost matrix. CM = (Ci,j)nnew×m.
Xi,j A binary variable for dispatching. If o(i) is dispatched to qj , then Xi,j = 1;otherwise, Xi,j = 0.
TC The total cost of dispatching all new orders.

of numerous researchers. Consequently, various algorithms
have been developed in the past years. Ruland and Rodin [3]
formulated the PDP into an integer program and presented a
branch-and-cut algorithm by exploring its polyhedral struc-
ture. Dumas et al. [4] developed a dynamic programming
algorithm with a column generation scheme to solve the
PDP with time windows (PDPTW). Ropke and Cordeau [5]
proposed a branch-and-cut-and-price algorithm by solving two
sub-problems in column generation to obtain lower bounds.
Besides the exact algorithms, a number of effective heuristics
and metaheuristics have been presented as well. To solve
the multi-vehicle PDPTW, Lu and Dessouky [6] proposed an
insertion-based construction heuristic considering the classical
incremental distance measure and the cost of reducing the time
window slack. Şahin et al. [7] combined the mechanism of tabu
search and simulated annealing to deal with the multi-vehicle
PDP with split loads. Pankratz [8] proposed a grouping genetic
algorithm with a group-oriented genetic encoding for solving
the PDPTW. Ai and Kachitvichyanukul [9] developed a par-
ticle swarm optimization algorithm with random key-based
encoding and decoding method for VRP with simultaneous
pickup and delivery (VRPSPD). Besides, other population-
based evolutionary algorithms, such as memetic algorithm

[10], ant colony algorithm [11], particle swarm optimization
[12] and so on, have also been developed for solving the PDP
and its variant problems.

Differential evolution (DE) is first proposed by Storn and
Price [13] in 1995 to solve the complex continuous nonlinear
problems. Due to its simplicity, ease of implementation, fast
convergence and robustness, DE has been widely applied to
various fields [14] including the PDP. Berhan et al. [15]
utilized DE to deal with the stochastic VRPSPD for a bus
service enterprise. Teoh et al. [16] proposed a DE algorithm
with local search to further modify the solutions for the
capacitated VRP. Dechampai et al. [17] embedded DE into
a two-phase heuristic to solve a complicated variant of the
capacitated VRP with pickup and delivery services in poultry
industry. Lai and Cao [18] improved DE with different coding
methods for VRPSPD. They utilized a novel decimal coding in
initialization, employed an integer order criterion in mutation
and designed a self-adapting crossover probability. The good
performance and successful applications make DE a popular
and promising evolutionary algorithm to solve complicated
combinatorial optimization problems in real life.

This paper proposes a hybrid DE (HDE) for solving the
OMDP. To find good solutions in a very limited time, the



search space of OMDP is reduced by decomposing it into
two sub-problems, which are PDP and order dispatching
problem. Accordingly, the HDE is composed of the DE-based
routing phase and the heuristic-based dispatching phase to
deal with the two sub-problems respectively. In the DE-based
routing phase, a heuristic based on the urgency of the orders
is designed to ensure the quality of the initial population.
Besides, a discrete mutation operator is presented to enhance
the exploration capability. Furthermore, we develop a discrete
crossover operator embedded with insertion-based local search
to improve the exploitation capability. In the heuristic-based
phase, the orders are dispatched in the light of their regret
values, which can reflect the long-term cost of dispatching
each order. The two phases of HDE collaborate to produce
good dispatching schemes with minimum cost and maximum
efficiency.

The remainder of this paper is structured as follows. Section
II gives the notations and describes the OMDP. Section III
introduces the design of the proposed HDE. Computational
results and analysis are provided in Section IV. Section V
ends this paper with conclusions and future work.

II. PROBLEM DESCRIPTION

With the notations listed in Table I, the
OMDP can be described as follows. At time
T, there are nnew new online orders Onew =
{onew(1), onew(2), . . . , onew(nnew)} to be dispatched to
m riders Q = {q1, q2, ..., qm}. Each rider qj possesses
nj old orders Oold

j = {ooldj (1), ooldj (2), . . . , ooldj (nj)} ⊆
Oold = {oold(1), oold(2), . . . , oold(nold)}, which have been
dispatched previously. Each order o(i) has a due time DTi

that is either appointed by the customers or committed to
the customers by the platform. Besides, each order o(i) is
associated with a single node i− or a pair of nodes (i+, i−),
where i+ is the pickup node and i− is the delivery node.
To be specific, some of the old orders will not be associated
with a pickup node if the meals have been picked up before
the current time, while the rest old orders and all new orders
contain both pickup node and delivery node. Therefore, it
holds that |P old| <= |Dold| and |Pnew| = |Dnew|, where
P old = {i+|o(i) ∈ Oold} and Pnew = {i+|o(i) ∈ Onew}
is the set of all pickup nodes of old orders and new
orders respectively, and Dold = {i−|o(i) ∈ Onew} and
Dnew = {i−|o(i) ∈ Onew} is the set of all delivery
nodes of old orders and new orders respectively. Let
L = {l1, l2, ..., lm} be the set of the site nodes that riders
locate in at time T. Then the OMDP can be defined on a graph
G = (N,A), where N = P old ∪ Pnew ∪ Dold ∪ Dnew ∪ L
is the set of nodes and A is the set of arcs. Each arc
(i1, i2) ∈ A (i1, i2 ∈ N, i1 6= i2) is related to a travel time
t(i1, i2) and a travel distance d(i1, i2). Each rider has an old
route R0,j = {r0,j(0), r0,j(1), r0,j(2), . . . , r0,j(n0,j)}, where
r0,j(0) is the site node lj , r0,j(k) (k = 1, . . . , n0,j , r0,j(k) ∈
P old∪Dold) is the kth route node and n0,j is the number of old
route nodes. If order o(i) ∈ Onew is assigned to rider qj , a new
route Ri,j = {ri,j(0), ri,j(1), ri,j(2), . . . , ri,j(ni,j)}(i > 1)

will be scheduled for qj , where ri,j(0) is the site node lj ,
ri,j(k) (k = 1, . . . , ni,j ; ri,j(k) ∈ P old∪Pnew∪Dold∪Dnew)
is the kth route node of the new route and ni,j is the number
of new route nodes. There is a capacity Q which is the
maximum weight of meals that can be carried by each rider.
The basic constraints are as follows.
• For each order, the meal must be picked up before being

delivered if it has a pickup node. (precedence constraint)
• Meals cannot be picked up before it has been prepared

by the restaurant.
• A new order can only be dispatched to one rider.
• Old orders cannot be reassigned to other riders.
• The total weight of orders that a rider carries cannot

exceed Q. (capacity constraint)
In OMDP, custom satisfaction and delivery efficiency are

both considered to construct the objective function.
To measure the custom satisfaction, one of the most direct

ways is to calculate the tardiness of each order. The tardiness
TAi,j(i

′−) of order o(i′) in route Ri,j (i = 0, 1, ..., nnew, j =
1, 2, ...,m) can be computed as follows.

WTi,j(k) = max{0, PTi′ −ATi,j(k)}, ri,j(k) ∈ P (1)

ATi,j(ki′−) = T +

ki′−∑
k=1

t(ri,j(k − 1), ri,j(k))

+
∑

1≤k<ki′−
ri,j(k)∈P

WTi,j(k)
(2)

TAi,j(i
′−) = max{0, ATi,j(ki′−)−DTi′} (3)

where WTi,j(k) is the waiting time before rider qj can take
away the meal at pickup node ri,j(k), ATi,j(k) is the time
when rider qj arrives at node ri,j(k) and ki′− is the index of
the delivery node of order o(i′) in route Ri,j .

Then, the calculation of total tardiness TTi,j for route Ri,j

is in (4).

TTi,j =
∑

ri,j(k)∈D

TAi,j(ri,j(k)), (4)

The delivery efficiency of each rider qj can be reflected by
the total travel distance TDi,j of route Ri,j in (5). The larger
the travel distance, the lower the delivery efficiency.

TDi,j =

ni,j∑
k=1

d(ri,j(k − 1), ri,j(k)), (5)

The route cost RCi,j of Ri,j can be calculated as (6).

RCi,j = TTi,j + TDi,j , (6)

The goal of the DE-based routing phase is to minimize the
route cost RCi,j . However, from the perspective of riders, they
are unwilling to alter their routes too much when dispatching



new orders to them. In this case, the variation of the routes
is considered in the heuristic-based dispatching phase to meet
the riders’ demand. Consequently, we define the route cost
difference Ci,j (i = 1, 2, ..., nnew, j = 1, 2, ...,m) between
the new route and the old route as (7) when dispatching order
o(i) to rider qj .

Ci,j = RCi,j −RC0,j (7)

The goal of the heuristic-based dispatching phase, also the
final goal of HDE, is to minimize the total cost TC in (8)
after dispatching all the new orders.

TC =

nnew∑
i=1

m∑
j=1

Ci,jXi,j (8)

III. THE PROPOSED HDE

To solve the OMDP effectively, the problem is decomposed
into two sub-problems. The upper level problem is a matching
problem between new orders and riders, while the lower level
problem is a PDP. Accordingly, a hybrid differential evolution
algorithm is proposed with two phases to deal with each sub-
problem respectively. For the lower level problem, a discrete
DE is designed as the routing phase to schedule the new routes.
For the upper level problem, a dispatching heuristic based on
the regret heuristic is designed as the dispatching phase to
determine the dispatching scheme. The framework of HDE is
illustrated in Fig. 2.

Fig. 2: The framework of HDE.

A. Solution Representation

In HDE, a solution is represented by a permutation sequence
with a starting node 0 representing the site node of the rider,
pickup nodes and delivery nodes. The length of the sequence
depends on the number of the orders that are dispatched to
the rider and whether the orders have been picked up or not.
Specifically, a pickup node and a delivery node are associated
with an order if it has not been picked up, while only a delivery
node is associated with an order if it has been picked up. Each
node is numbered in an ascending order.

Suppose 3 orders to be served by a rider and the states
of the orders are listed in Table II. Since o1 has not been
picked up, the pickup node and delivery node of o1 are
numbered as 1 and 2 respectively. o2 has been picked up
so only a delivery node needs to be numbered, which is 3.
Finally, the pickup and delivery nodes are numbered as 4 and
5 respectively according to the state of o3. A feasible solution
must start at 0 and cannot violate the precedence constraint and
the capacity constraint. For example, if maximum capacity is
6kg, then [0,3,1,2,4,5] is a feasible solution while [1,0,2,3,4,5]
(starting at 1), [0,1,4,2,3,5] (violating capacity constraint) and
[0,3,2,1,4,5] (violating precedence constraint) are infeasible
solutions.

TABLE II: Data of the example

order o1 o2 o3
state to be picked up picked up to be picked up

pickup node 1 null 4
delivery node 2 3 5

weight 2kg 3kg 2kg

B. Initialization

In HDE, two methods are used to generate the initial
population. To improve the population quality, an individual
is generated by a designed heuristic called as urgency-based
insertion heuristic (UIH). Besides, the rest individuals are
generated randomly to maintain the population diversity. The
procedure of UIH is shown in Algorithm 1.

C. Discrete Mutation Operator

Mutation is a critical component in DE because the differ-
entiation information is inherited by the mutant vector. For
the traditional DE, the float-point encoding scheme is usually
adopted to solve the continuous optimization problems. The
mutant vector can be generated via arithmetical calculation on
the float-point numbers. However, in HDE, the solutions are
encoded in permutation so the traditional way of generating
mutant vector in continuous domain cannot be introduced
directly. Thus, a discrete mutation operator is designed as
follows by extracting the differentiation information from
two individuals to generate the mutant individual Vx =
[V 1

x , V
2
x , ..., V

N
x ], where N is the length of the individual, i.e.,

the number of the nodes in the permutation sequence.

Vx = Xa ⊕ F ⊗ (Xb −Xc) (9)



Algorithm 1 Pseudo-codes of the UIH

Require: old orders Oold
j = {ooldj (1), ooldj (2), . . . , ooldj (nj)}

of rider qj , new order o(i);
1: Let Oj = Oj ∪ {o(i)} = {oj(1), oj(2), . . . , oj(nj + 1)};
2: Let Ô = ∅, Ō = ∅,n̂ = 0,n̄ = 0;
3: for k = 1 : nj + 1 do
4: if oj(k) has been picked up then
5: Ô = Ô ∪ {oj(k)}, n̂ = n̂ + 1;
6: else
7: Ō = Ō ∪ {oj(k)}, n̄ = n̄ + 1;
8: end if
9: end for

10: Sort Ô and Ō in ascending order of due time and obtain
Ô′ = {ôj(1), ..., ôj(n̂)} and Ō′ = {ōj(1), ..., ōj(n̄)};

11: Let Oj = {ôj(1), ..., ôj(n̂), ōj(1), ..., ōj(n̄)};
12: Encode Oj according to the method in III-A and obtain a

permutation sequence (0, 1, 2, ..., n̂ + 2n̄);
13: Let newP = (0);
14: for k = 1 : n̂ + 2n̄ do
15: Insert k into the position in newP with the minimum

route cost without violating the constraints;
16: end for

In (9), Xa = [X1
a , X

2
a , .., X

N
a ], Xb = [X1

b , X
2
b , .., X

N
b ]

and Xc = [X1
c , X

2
c , .., X

N
c ] are three randomly selected

individuals in population (a, b and c are mutually different)
and F is a mutation scale factor to control the amplification of
the differential variation. The mutation operator is composed
of two components. One component is the weighted difference
∆x = [∆1

x,∆
2
x, ..,∆

N
x ] between two individuals Xb and Xc,

which can be calculated as follows.

∆x = F ⊗ (Xb −Xc)

⇔ ∆h
x =

{
Xh

b −Xh
c , if rand(h) ≤ F

0, otherwise
h = 1, ..., N

(10)

The other component is to produce the mutant individual
by adding the target individual and the weighted difference,
which can be calculated as follows.

Vx = Xa ⊕∆x

⇔ V h
x = (Xh

a + ∆h
x + N)%N, h = 1, ..., N

(11)

where % denotes the modulus operator to ensure that each
node V h

x ranges from 0 to N −1. An example is given in Fig.
3 to illustrate the procedure of mutation.

D. Discrete Crossover Operator

After executing the discrete mutation operator, the mutant
individual may be illegal because some nodes are lost or re-
peated. Therefore, a discrete crossover operator is presented to
produce a legal individual by combining the target individual
with the mutant individual. Besides, to further improve the
solution quality, an insertion-based local search is embedded in

(a) Calculate the difference

(b) Calculate the weighted difference

(c) Add the weighted difference to the target individual

Fig. 3: An example of the mutation

the crossover operator. The procedure of the discrete crossover
operator is shown in Algorithm 2 and an example is given
in Fig. 4. CR is the crossover scale factor to control the
amplification of the crossover operator. The larger CR is, the
less information will be inherited from the target individual.

E. Dispatching Heuristics

In HDE, two dispatching heuristics are presented for solving
the order dispatching sub-problem. To determine the best rider
for each order, the costs of dispatching each order to each
rider are calculated according to (7) so that a cost matrix CM
between all riders and all new orders is generated. Based on
the cost matrix, we design two heuristics to dispatch the orders,
which are inspired by the insertion heuristics for VRP in [19].
The first is the greedy dispatching heuristic (GDH), which
selects the order with minimum cost in the cost matrix and
dispatches it to the corresponding rider. Afterwards, the row
of the dispatched order in the cost matrix is eliminated and the
old route of the selected rider is replaced by the corresponding
new route. Accordingly, the new routes of dispatching the
remaining orders to this rider should be rescheduled by the
proposed DE and then the cost matrix is updated as well.



Algorithm 2 Pseudo-codes of crossover

Require: mutant individual Vx = [V 1
x , V

2
x , ..., V

N
x ], target

individual Xt = [X1
t , X

2
t , ..., X

N
t ];

1: Let Ṽx = ∅, ñx = 0;
2: for k = 1 : N do
3: if V k

x = 0||V k
x ∈ Ṽx then

4: continue;
5: end if
6: if rand() < CR then
7: Ṽx = Ṽx ∪ {V k

x }, ñx = ñx + 1;
8: end if
9: end for

10: if Ṽx = ∅ then
11: k = 1 + rand()%(N − 1);
12: Ṽx = Ṽx ∪ {V k

x };
13: ñx = ñx + 1;
14: else
15: Move the pickup node to the previous adjacent position

of its delivery node if Ṽx violating the precedence
constraint; //repair the crossover vector

16: end if
17: Remove the nodes of Xt that Xt and Ṽx share;
18: for k = 1 : ñx do
19: Insert Ṽ k

x ∈ Ṽx into the position in Xt with minimum
route cost without violating the constraints;

20: end for

Repeat the steps and all new orders can be dispatched. The
second is the regret dispatching heuristic (RDH). Different
from the GHD, the RDH dispatches orders by considering the
regret value [19], which is defined as the cost difference of the
second-best rider and the best rider in this paper. In RDH, the
order with maximum regret value will be dispatched to its best
rider. Similar to the GDH, the old route, new routes and the
cost matrix will be updated. Then, repeat dispatching the order
with maximum regret value and updating until all the new
orders are dispatched. The mechanism of RDH incorporates a
kind of look ahead information [19] in case the rest orders will
be assigned to a rider with relative large value of total cost.
The pseudo codes of the two heuristics are shown in algorithm
3 and algorithm 4. In this paper, two hybrid algorithms, i.e.,
DE-GDH and HDE, are presented by embedding the proposed
DE into GDH and RDH, respectively.

IV. COMPUTATIONAL RESULTS

To test the performance of the proposed algorithm, numer-
ical experiments are conducted and the results are shown in
this section. The benchmark instances are generated from the
real data of Meituan-Dianping platform. The instances are
classified into 10 groups by the number of new orders. Each
group contains 10 different instances so there are 100 instances
in total. Table III gives the ranges of the number of new orders,
the number of riders and the number of old orders for each
rider. Limited by the article space, the preparation time of each
order, the travel distance and travel time between each pair of

Algorithm 3 Pseudo-codes of GDH

Require: The set of new orders Onew, the set of riders Q and
the old route R0,j of each rider qj ;

1: for i = 1 : nnew do
2: for j = 1 : m do
3: Schedule the new route Ri,j of dispatching order

onew(i) to rider qj using the proposed DE;
4: Calculate the cost Ci,j according to Ri,j ;
5: end for
6: end for
7: Let N = nnew;
8: Let I = {1, 2, ..., nnew};
9: while N > 0 do

10: Find the minimum cost Ci′,j′ in CM ;
11: Dispatch order o(i′) to rider qj′ ;
12: Delete the i′th row of CM ;
13: Let N = N − 1;
14: Let I = I\{i′};
15: Let R0,j′ = Ri′,j′ ;
16: Reschedule the route of qj′ using the proposed DE and

obtain the new route Ri,j′ , ∀i ∈ I;
17: Update cost Ci,j′ according to Ri,j′ , ∀i ∈ I;
18: end while

Algorithm 4 Pseudo-codes of RDH

Require: The set of new orders Onew, the set of riders Q and
the old route R0,j of each rider qj ;

1: for i = 1 : nnew do
2: for j = 1 : m do
3: Schedule the new route Ri,j of dispatching order

onew(i) to rider qj by using the proposed DE;
4: Calculate the cost Ci,j according to Ri,j ;
5: end for
6: end for
7: Let N = nnew;
8: Let I = {1, 2, ..., nnew};
9: while N > 0 do

10: for each i ∈ I do
11: Find the minimum cost Ci,j′ and the second mini-

mum cost Ci,j′′ ;
12: Let RVi = Ci,j′′ − Ci,j′ ;
13: end for
14: Find the maximum regret value RVi′ ;
15: Dispatch order o(i′) to rider qj′ ;
16: Delete the i′th row of CM ;
17: Let N = N − 1;
18: Let I = I\{i′};
19: Let R0,j′ = Ri′,j′ ;
20: Reschedule the route of qj′ using the proposed DE and

obtain the new route Ri,j′ , ∀i ∈ I;
21: Update cost Ci,j′ according to Ri,j′ , ∀i ∈ I;
22: end while



(a) Remove 0 and repeated nodes

(b) Determine the crossover vector

(c) Repair the crossover vector if violating precedence constraint

(d) Remove the nodes that Xt and Ṽx share

(e) Insert the nodes into best positions

Fig. 4: An example of the crossover

nodes, the maximum capacity of each rider and other needed
data are not given in this paper but known in the instances.

To the best of our knowledge, there are few published
works addressing the OMDP under our scenario. In this case,
the improved differential evolution (IDE) proposed in [18]
is adopted as comparative algorithm due to the similarity
in the problem characteristics. To make fair comparison, the
IDE shares the same way of initialization and is combined
with both of the dispatching heuristics to implement the order
dispatching, which produces two variants of IDE, i.e., IDE-
GDH and IDE-RDH. For DE-GDH and HDE, the population

TABLE III: The scale of the instances

Group Range
nnew nj m

1 [1,10] [0,4] [63,200]
2 [11,20] [0,3] [318,407]
3 [21,30] [0,4] [313,413]
4 [31,40] [0,5] [382,411]
5 [41,50] [0,5] [328,410]
6 [51,60] [0,5] [347,407]
7 [61,70] [0,5] [348,409]
8 [71,80] [0,5] [361,400]
9 [81,90] [0,5] [382,402]

10 [91,100] [0,5] [380,408]

size, mutation scale factor and crossover scale factor are
set as 20, 0.5 and 0.5, respectively. The parameters of IDE
are set according to [18]. The terminal criterion of the the
lower level sub-problem relates to the number of route nodes
ni,j , which is set as 0.5×ni,j milliseconds CPU time. Each
algorithm stops when all the new orders have been dispatched.
Besides, each algorithm is run TS = 30 times independently
on each instance. All the algorithms are coded in Java and
the experiments are run on a MacBook Pro @ 2.2 GHz
processors / 16 GB RAM in Mac OS. The average relative
percentage deviation (aRPD) and standard deviation (SD)
of the normalized TC (nTC) are adopted as the indicators to
evaluate the performances of the algorithms, which are defined
as follows.

aRPD =

TS∑
i=1

(algi − opt)/opt/TS × 100 (12)

where algi is the TC obtained by a certain algorithm in ith
run and opt is the best TC obtained by the four algorithms
in all independent runs on a certain instance. It is clearly that
a smaller value of aRPD indicates better performance of the
corresponding algorithm.

nTCi = (algi −min)/(max−min) (13)

SD =

√√√√ 1

TS

TS∑
i=1

(nTCi −
1

TS

TS∑
j=1

(nTCj))2 (14)

where nTCi is the nTC of a certain algorithm in ith run
and min and max is the minimum TC and maximum TC
obtained by the four algorithms in all independent runs on
a certain instance. It is clearly that a smaller value of SD
indicates a better stability.

The aRPDs and SDs on the instances from the same group
are averaged and listed in Table IV and Table V respectively. In
Table IV, the results show that the average aRPDs of HDE are
smaller that those of the other three algorithms on all instances.
Therefore, it can be concluded that HDE performs better than
the other algorithms. Besides, in Table V, it can be seen that
the average SDs of HDE are smaller than those of the other
algorithms on a majority of instances, which reveals better
stability of HDE.



TABLE IV: The results on aRPD

Group Algorithm
IDE-GDH IDE-RDH DE-GDH HDE

1 4.4441 2.4297 1.6234 0.0851
2 9.3658 1.9551 7.1207 0.2902
3 6.0511 3.1223 5.3036 1.1767
4 7.5903 3.5221 5.7566 1.3512
5 16.1437 4.4737 10.5985 0.4272
6 9.2301 2.1849 6.5424 1.2771
7 12.7024 3.3795 9.6139 0.5379
8 13.0374 3.1608 11.6333 0.7053
9 19.0265 3.4714 15.6612 0.6576

10 19.2685 3.2873 17.2687 0.7326
Average 11.6860 3.0987 9.1122 0.7241

TABLE V: The results on SD

Group Algorithm
IDE-GDH IDE-RDH DE-GDH HDE

1 0.1224 0.0948 0.0752 0.0318
2 0.1859 0.1071 0.0026 0.0087
3 0.1098 0.0786 0.0180 0.0013
4 0.1021 0.0697 0.0131 0.0175
5 0.0730 0.0601 0.0216 0.0124
6 0.0802 0.0867 0.0360 0.0558
7 0.0723 0.0583 0.0495 0.0282
8 0.0739 0.0792 0.0310 0.0272
9 0.0624 0.0308 0.0310 0.0227

10 0.0590 0.0388 0.0327 0.0161
Average 0.0941 0.0704 0.0311 0.0222

V. CONCLUSIONS AND FUTURE WORKS

In this paper, an online meal delivery problem is addressed.
To reduce the search space, the problem is decomposed into
two sub-problems: the order dispatching problem and the
pickup and delivery problem. A hybrid differential evolution
algorithm with two phases is proposed to solve the two sub-
problem respectively. Computational results demonstrate the
effectiveness of the proposed algorithm. The superiority of
our algorithm mainly owes to the following aspects.

• Utilization of the heuristic to produce a population with
good quality by considering the urgency of the orders.

• Design of the discrete mutation operator to enhance the
exploration ability.

• Design of the discrete crossover operator embedded with
an insertion-based local search to enhance the exploita-
tion ability.

• Design of the dispatching heuristic based on the regret
value to produce good dispatching schemes.

In future work, more complexities will be considered in the
formulation of PDP under our online meal delivery scenario.
Besides, it is interesting to develop more efficient and effec-
tive dispatching methods by improving the regret dispatching
heuristic or introducing the machine learning.
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