
Simultaneous Scheduling Strategy: A Novel Method
for Flexible Job Shop Scheduling Problem

Bo Liu1, Siqi Qiu1,* and Ming Li1
[1] Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai 200240, China

lbws888@sjtu.edu.cn, siqiqiu@sjtu.edu.cn, nono-MAA@sjtu.edu.cn

Abstract—This paper discussed the contradictory between wait
time for computation and solution quality in solving flexible job
shop scheduling problems. In order to reconcile this contradic-
tory, a novel scheduling strategy called Simultaneous Scheduling
is proposed. At first, a fairly good solution is obtained in a short
time and the solution is set as the temporary processing plan
so that the machines can start to work as soon as possible.
Then while the machines are running, the temporary plan
is being improved with evolutionary algorithms continuously.
Experiments on both static and dynamic scheduling problems
are performed. The results show that simultaneous scheduling is
effective and efficient.

Index Terms—Flexible job shop scheduling, Scheduling strat-
egy, Evolutionary algorithms.

I. INTRODUCTION

Evolutionary algorithms (EAs) are currently among the most
commonly used methods for Flexible Job Shop Scheduling
Problem (FJSP) [1], and are also among the most popular
methods for Dynamic Flexible Job Shop Scheduling Problem
(DFJSP) [2]. EAs like Genetic Algorithm (GA) [3] and
Variable Neighborhood Search (VNS) [4] can perform well
in solving FJSP, but the cost of time for computing will
expand rapidly with the scale of the problem. In FJSP, the
increase in the number of the machines or tasks will cause
the time required for the convergence of EA to swell. If
the objective of scheduling is to save time, excessive cost
of time will make the scheduling computing meaningless,
especially for job shops with short processing time for each
operation. As for DFJSP, the time-consuming problem of EAs
is even more prominent, because each rescheduling takes long
time to compute. Bierwirth et al. [5,6] proposed a population
initialization method that can accelerate GA convergence in
DFJSP. This method generates the initial population of GA
in rescheduling based on the population of the last generation
of the previous scheduling or rescheduling, which is proved
to be able to improve the convergence speed and the solution
performance.

Besides, there are also some scheduling methods that cost
less time than EAs. Dispatch rules such as Shortest Imminent

B. Liu, S. Qiu, and M. Li are with the the School of Mechanical Engineering
and Department of Industrial Engineering & Management, Shanghai Jiao Tong
University, Shanghai, 200240 China.

Corresponding Address: siqiqiu@sjtu.edu.cn. (Siqi Qiu)

Processing Time (SPT) and First In First Out (FIFO) are
widely used in DFJSP [7], which generate schedules based
on simple priority rules. Due to their simplicity of strategies,
the cost of computing time can be considered as zero [8]. Ziaee
et al. [9] proposed a simple heuristic algorithm to solve FJSP
which can obtain scheduling solutions whose performances are
not much worse than those solutions of GA or VNS while the
computing time is several orders of magnitude shorter than
GA and VNS. The advantage of using those simple heuristic
methods is that they can obtain a fairly good scheduling
scheme as soon as possible. However, the gap between the
performance of simple heuristic algorithm and EA methods is
still significant.

Hence, the contradiction between the time consumption of
the scheduling computing and the solution performance is still
an important issue which need to be solved. To reconcile
this contradiction, this paper proposes a novel scheduling
strategy called Simultaneous Scheduling (SS), which focuses
on paralleling the runtime of scheduling computing with the
runtime of machines processing. In SS, an initial solution is
obtained in a short time with simple heuristic algorithms and
the solution is set as the temporary scheduling scheme. Then,
machines start to process according to the temporary scheme.
While the machines are running, the scheme is continuously
being improved with EA. This method takes almost no time
for computing before the machines start to process, and can
be applied to both static FJSP and DFJSP. For DFJSP, this
paper mainly concentrates on the dynamic factor of non-
deterministic job release times.

The core idea of SS is to utilize the duration of processing
to improve the schedule while the machines are running. In
most other strategies to solve FJSP and DFJSP [1,2], every
scheduling or rescheduling computing is completed at a time
before the scheduling scheme is in effect. The disadvantage
of these strategies is that the time during processing is wasted
and machines often need to wait for the scheduling computing.

The remainder of this paper is organized as follows. Section
II formulates the FJSP and DFJSP. Section III gives a detailed
introduction of SS as well as design of two algorithms based
on SS: GA-based Simultaneous Scheduling (GA-SS) and
VNS-based Simultaneous Scheduling (VNS-SS). Experimen-
tal studies are presented in Section IV. Section V describes

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

the conclusions and discusses about the applications of SS
and future works.

II. PROBLEM FORMULATION

The SS proposed in this paper is oriented to two types
of problems: static FJSP and DFJSP. The static FJSP are
deterministic while DFJSP are non-deterministic [6]. In other
words, the difference between them is that every condition is
assumed to be determined in advance in static FJSP while con-
ditions are changing during processing in DJFSP. The dynamic
factors of DFJSP include unexpected machine breakdown,
uncertain processing time, stochastic job releases and etc. In
this paper, we mainly consider jobs released at the different
points of time as the dynamic factor.

A. The static FJSP model

In flexible job shop with the scale of m × n, there
are a set of machines M1,M2, ...,Mm and a set of jobs
J1, J2, ..., Jn. Each job consists of a sequence of operations
Oi,1, Oi,2, ..., Oi,ni

. Each operation can be processed on any-
one of a subset of machines and the average size of the subset
indicates the flexibility of the FJSP. The assumptions and
constraints of FJSP in this paper are as follows [9].

• One machine can only process one operation at a time.
• One job can only be processed on one machine at a time.
• Any operation cannot be processed until all the preceding

operations of this job are finished.
• Machines have no setup time and the move time between

operations are not considered.
Denote the processing time of Oi,j on Mk as Ti,j,k, and

the completion time of job Ji is denoted as Ci. The makespan
refers to the final completion time of all jobs, which is denoted
as Cmax. The makespan is a common objective of FJSP [1].
Ci and Cmax are defined by Eq.1 and Eq.2.

Ci =

ni∑
j=1

Ti,j,k (1)

Cmax = max{Ci} (2)

These sets Mk, Ji, Oi,j and Ti,j,k are determined and
known in advance in static FJSP.

B. The DFJSP model

The assumptions and constraints of DFJSP are the same
as FJSP, except for that every job Ji has an earliest start
time called release time Ri. Any operation of Ji cannot be
processed before Ri. In DFJSP, the information of those jobs
with Ri later than the present time is non-deterministic and
cannot be the used for scheduling. The release time set {Ri} is
also non-deterministic and the scheduler does not know when
a new job will be released. The flow time Fi of job Ji refers
to the time duration from the release time to the completion
time of Ji. Mean flow time F is a common indicator in the
literature on DFJSP [10]. Fi and F are defined by Eq.3 and
Eq.4.

Fi = Ci −Ri (3)

F =

n∑
i=1

Fi/n (4)

C. Wait Time at Scheduling Computing

A scheduling scheme is called ’in effect’ if it is directly
used to schedule the processing. In DFJSP, when new jobs
are released, the previous scheduling scheme becomes non-
effective and a new scheme in effect should be obtained by
rescheduling. As is discussed in Section I, when new jobs are
released, the machines are unable to react instantly because it
takes a period of time for the scheduler to obtain an effective
scheduling scheme and set it to be in effect. The length of
that period of time depends on the algorithm adopted. The
longer the period is, the more time machines have to wait for
a scheduling scheme in effect.

To measure how long machines need to wait, Wait Time
at scheduling computing (WT) is introduced. WT is defined
by Eq.5. Ei stands for the point of time when the i-th event
happens, which changes the FJSP conditions, e.g. that some
new jobs are released at time Ei. In the context of static FJSP,
Ei refers to the time when all the jobs are determined and the
scheduling computing can start. Si stands for the point of time
when the first new scheduling scheme becomes in effect after
the event happens at Ei. WT indicates the total amount of
time when machines have no effective scheme to follow and
thus can not start to work.

WT =

n∑
i=1

Si − Ei (5)

III. PROPOSED STRATEGY

A. Overview of proposed SS

The SS makes full use of the duration of machine processing
time to perform time-consuming computing. There is almost
no wait time from receiving a task to starting processing. It is
worth noting that the EAs in SS has no termination, which is
different from mainstream methods for job shop scheduling.
The computing goes simultaneously with the job processing,
since the first operation starts till the last job is finished. After
every iteration of the computing, the temporary solution and
the best solution of the new EA iteration are compared and
the former is replaced if the latter is better.

In order to achieve SS, scheduling solution should keep
updated with the real-time situations in the flexible job shop.
As is shown in Fig.1, the SS has six main steps:

1) A fixed number of solutions are generated randomly or
based on simple heuristic rules quickly;

2) After the initial solutions are obtained, the best one
among these solutions is selected as the Temporary Plan (TP);

3) Machines start to work according to the TP;
4) Optimize TP with EA. Every time a new solution that is

better than TP is found, replace TP with the better solution;

5) The length of the solutions are continuously updated
during processing. Every time an operation starts, the corre-
sponding part is deleted from the solution vectors; every time
a new job is released, new operations are inserted into the
solution vectors based on certain rules.

6) When all the jobs are finished, the scheduling computing
stops.

B. Encoding Scheme

The solutions are encoded based on the scheme in [11,12]
which uses two vectors to present a solution. The first
one presents the machine assignment (MA), which as-
signs a machine available for each operation. The MA
vector consist of discrete machine indices, which stand
for the assigned machines for all the operations in or-
der of (O1,1, O1,2, ..., O1,n1

, O2,1, ..., On,nn
). The second one

presents the operation sequence (OS), which determines prior-
ity order of the operations. The OS vector consists of discrete
job indices, and each index Ji appears in the vector for ni
times. The first Ji in OS vector stands for Oi,1, the second Ji
stands for Oi,2, and etc.

Fig.2 shows an example of the encoding scheme. This FJSP
has 3 machines and 2 jobs containing 3 operations respectively.
The first 3 indices of MA present the corresponding assigned
machines for the 3 operations of Job J1 and the last 3
indices correspond to J2. Fig.3 is the Gantt chart showing
the scheduling result of MA and OS in Fig.2. It is worth
noting that OS is not always the real processing sequence of
the operations but the priority order of them. For instance,
O2,3 precedes O1,3 in OS, but as is shown in the Gantt chart,
O2,3 starts after O1,3.

C. Algorithm design based on SS

Scheduling techniques using SS can be designed based on
any EAs. In order to apply EA to SS, some modification of
the EA is necessary.

1) Termination criteria are omitted and the EA keeps
running until all the jobs are finished.

2) The output of the EA is the manipulation of TP after
each iteration. If the best solution in one iteration is better
than TP, the solution becomes the new TP and otherwise TP
is kept unchanged.

3) To update the solution vectors when new jobs are
released, new operation insertion rules should be determined.
The insertion methods may use random insertion or heuristic
rule-oriented insertion [8].

4) In the computation of fitness functions such as makespan,
the start time of different jobs and machines should be
considered. At time T , the start time of machines (which is
denoted as SMk

) and of job Ji (which is denoted as SJi) are
defined by Eq.6 and Eq.7 [13]. Ci,j stands for the completion
time of Oi,j .

SMk
=

{
T , Mk is idle at T
Ci,j , Mk is processing Oi,j at T

(6)

SJi
=

{
T , No operation of Ji is being processed at T
Ci,j , Oi,j is being processed at T

(7)
1) GA-SS: GA-SS is designed based on GA in [3], and

the encoding scheme introduced above is adopted. The initial
TP is selected from the initial population of GA. In order to
minimize WT, the initial population should be generated in a
short time. Hence, the population initialization method should
be studied. In this paper two initialization approaches for GA-
SS are adopted:
(1) Random Approach: The initial population is entirely

generated based on the initialization method in [3].
(2) Dispatch Rule-Oriented Approach: s% of the initial pop-

ulation are generated based on the random approach and
the rest t% are generated by dispatch rules SPT, FIFO
and Arrival Time (AT).

GA-SS using the random approach and the dispatch Rule-
Oriented approach are denoted as GA-SS(rand) and GA-
SS(RO) respectively. After every generation of evolution, the
best solution among the population is compared with TP to
decide whether TP should be updated.

When new jobs are released, the new operations should
be inserted into the solution vectors. The operation insertion
phase is described as follows.
(1) Random Insertion: p% individuals of the population are

selected from the population based on binary tournament
selection. The new operations are inserted randomly into
the OS vectors and random machine assignment is added
to the MA vectors of the selected individuals.

(2) Appending Insertion: The best q% individuals of the
population are selected. The new operations are appended
to the OS vectors and random machine assignment is
added to the MA vectors of the selected individuals.

(3) Dispatch Rule Insertion: The rest r% are generated based
on three dispatch rules: SPT, FIFO and AT.

2) VNS-SS: VNS-SS is designed based on the VNS in [4].
After each iteration, the current solution is compared with TP.
As GA-SS does, VNS-SS has two initialization approaches.
In initialization, a set of candidate solutions, similar to the
initial population in GA-SS, is generated and the best solution
in the set is selected as the initial solution of VNS. The
selected initial solution is also TP. VNS-SS using the random
initialization approach and the dispatch rule-oriented approach
are denoted as VNS-SS(rand) and VNS-SS(RO) respectively.

When new operations are to be inserted, a new set of
candidate solutions is generated. p% of the set are generated
by randomly inserting the new operations into TP; q% are
generated by appending the new operations to TP; r% are
generated based on SPT, FIFO and AT, similar to the three
insertion phases in GA-SS.

IV. EXPERIMENTAL STUDIES

To test the performance of GA-SS and VNS-SS on static
FJSP and DFJSP with different scales of processing time

Fig. 1. The main flowchart of SS.

Fig. 2. An example of the encoding scheme.

Ti,j,k, two sets of scheduling and processing simulation ex-
periments are performed. Four SS algorithms (GA-SS(RO),
GA-SS(rand), VNS-SS(RO) and VNS-SS(rand)) and real-time
static and dynamic job shop simulation programs were coded
in Python 3 to perform these experiments. The static FJSP
experiments are run on a PC with Intel Core i5-5257U CPU/8

Fig. 3. Gantt chart corresponding to the solution in Fig.2.

GB RAM and the DFJSP experiments are run on another PC
with Intel Core i7-8750H CPU/16 GB RAM. The parameters
of GA-SS and VNS-SS in the two sets of experiments are

shown in Table I.

A. Scale of Processing Time

Because SS utilizes the time duration of processing to com-
pute, the scale of the processing time significantly influence
the amount of time the computing could last. Because the
complexity of FJSP is only determined by m, n, {ni} and
the flexibility, not by the processing times {Ti,j,k}, larger
scale of processing time leads to better performance of SS.
In the following experiments, problem instances themselves
have no unit of time. Integer numbers are used to indicate
Ti,j,k. In order to simulate environments where operations of
jobs have different scale of processing times, different units
of time including 1sec, 2sec, 4sec and 8sec are adopted.

B. Experiment 1: Static FJSP Simulation

The Brandimarte dataset [14], which contains 10 FJSP
problems of various scales, is used in experiment 1. The
Brandimarte dataset is commonly used in the literature on
FJSP [3,4,9,11]. As is mentioned above, problem instances in
Brandimarte dataset have no unit of time in its original setting
but the experiments adopt 4 different ones to simulate 4 levels
of scales of Ti,j,k. As is commonly the case in the literature
on FJSP[3,4], best makespan and average makespan are the
objectives. Each algorithm has been run for 5 times to solve
each problem in experiment 1.

Table II presents the information of the problem instances
of Brandimarte dataset and the performance of four algorithms
in literature used to compare with SS, including GA [3],
VNS [4], Simple Heuristics [9] and Dispatch Rule-Oriented
Algorithm (ROA) combining SPT and FIFO. The performance
data of GA, VNS and Heuristic in Table II are from [3,4,9]
and the data of ROA are acquired through experiments. The
first two columns show the number of the problem instances
and their scales. In the third column, LB denotes the best-
known makespan. The fourth to the seventh columns show
the results of the four algorithms. BCmax and ACmax stand
for the best makespan and the average makespan respectively.
It should be noted that Table II do not present ACmax for
GA and Heuristic because the corresponding source papers
did not report the data. Those data are not important and have
no impact on the experiments of this paper.

Table III and Table IV present the average performance
of GA-SS and VNS-SS under each scale of time. The re-
sults show that VNS-SS outperforms GA-SS. The difference
of performance between VNS-SS(RO) and VNS-SS(rand) is
insignificant, but GA-SS(RO) outperforms GA-SS(rand) espe-
cially under small scales of time. The average performance of
VNS-SS is not much worse than VNS and in the majority of
the problems the result are close (except for Mk04, Mk06 and
Mk10). The average performance of VNS-SS is near to the
best performce of Heuristic in [9] and is even better than the
best performance of Heuristic in Mk04, Mk05, Mk07 (when
Unit = 4s or 8s), Mk08, Mk09 and Mk10 (when Unit = 2s,
4s or 8s).

For SS, average performance is more important than best
performance but [3, 9] only present the best performance. In
order to perform a more comprehensive comparison with the
algorithms in literature, the best performance of GA-SS and
VNS-SS under all scales of time (5 runs for each scale of time
and each algorithm) is presented in Table V. The results show
that VNS-SS performs better and outperforms Heuristic and
ROA. The best performance of VNS-SS is close to GA and
VNS in the majority of the problems.

C. Experiment 2: DFJSP Simulation

In experiment 2, the problem instances are generated ran-
domly based on the method in [6]. In real-world job shops,
there are situations of different levels of workload and machine
utilization rate (which is a common indicator of workload and
is denoted as U). U in the range of 0.6−0.9 can represent the
the levels from relaxed workload to excessive workload. Four
different problem instances are generated randomly according
to the rules following.

(1)The number of machines is m = 6.
(2)Each problem include 50 jobs.
(3)The number of operations of each job is uniformly

distributed in {4, 5, 6}.
(4)The number of machines each operation can be processed

on is uniformly distributed in {1, 2, 3, 4} and the machines are
randomly selected.

(5)Ti,j,k is uniformly distributed in the range of [1, 7] and
can only be integers.

(6)The intervals between job release times is is exponential
distributed based on λ.

Thus, the average processing time of a job, which denoted
as P , is 20. To adjust the expected U , Eq.8 show how to
compute λ.

λ = P/(m× U) (8)

Because of the dynamic property of DFJSP, only one or
few jobs have been released in the beginning. Hence, the
initialization approaches do not matter and only two rather
than four SS algorithms are tested in experiment 2: GA-SS
and VNS-SS. Each algorithm in experiment 2 has been run
for 5 times to solve each problem.

Table VI presents the performance of the three algorithms
used to compare with SS, including GA [3], VNS [4] and
ROA combining SPT, FIFO and AT. All the performance
data in Table VI are quired through experiments and the the
parameters of GA and VNS are set in the same way with
[3,4] except that the size of population and the total number
of generations of GA are set 100 and 500 respectively and
that the permitted maximum step number with no improving
of both GA and VNS is set 50. The first column shows the
corresponding U of the problem instances. In the second to
the fourth columns show the results of the three algorithms
in literature. Table VII show the performance of GA-SS and
VNS-SS under different scale of processing times.

The results show that GA-SS outperforms VNS-SS in
DFJSP and that GA also performs better than VNS. Under all

TABLE I
PARAMETERS OF GA-SS AND VNS-SS IN EXPERIMENT 1

Algorithms Parameters value

GA-SS

The size of the population 100
Crossover probability, pc 0.8
Mutation probability, pm 0.1

Proportion of random initialization of GA-SS(RO), s% 80
Proportion of RO initialization of GA-SS(RO), t% 20

Proportion of random insertion phase, p% 20
Proportion of appending insertion phase, q% 20

Proportion of dispatch rule insertion phase: r% 60
Selection phase Binary tournament

VNS-SS

Size of the candidate solutions 100
Proportion of random insertion phase, p% 20

Proportion of appending insertion phase, q% 20
Proportion of dispatch rule insertion phase: r% 60

TABLE II
PERFORMANCE IN BRANDIMARTE PROBLEMS OF FOUR ALGORITHMS IN LITERATURE

Problem Scale(n×m) LB GA [3] VNS [4] Heuristic [9] ROA
BCmax BCmax ACmax BCmax BCmax ACmax

Mk01 10 ∗ 6 36 40 40 40.0 42 42 43.4
Mk02 10 ∗ 6 24 26 26 26.2 28 37 38.2
Mk03 15 ∗ 8 204 204 204 204 204 204 207
Mk04 15 ∗ 8 48 60 60 60.2 75 73 75.0
Mk05 15 ∗ 4 168 173 173 173.0 179 181 182.6
Mk06 10 ∗ 15 33 63 59 60.0 69 86 91.8
Mk07 20 ∗ 5 133 139 140 140.8 149 191 196.4
Mk08 20 ∗ 10 523 523 523 523.0 555 523 524.6
Mk09 20 ∗ 10 299 311 307 307.8 342 331 341.2
Mk10 20 ∗ 15 165 212 207 208.4 242 269 274.4

TABLE III
AVERAGE PERFORMANCE IN BRANDIMARTE PROBLEMS OF GA-SS

Problem
ACmax

GA-SS(RO) GA-SS(rand)
Unit=1s Unit=2s Unit=4s Unit=8s Unit=1s Unit=2s Unit=4s Unit=8s

Mk01 43.0 43.0 42.6 42.4 43.4 42.8 42.2 42
Mk02 33.2 32.4 30.8 31.8 37.0 34.4 34.2 35.2
Mk03 204.0 205.6 204.0 206.8 209.8 210.2 208.8 204.0
Mk04 70.6 69.0 67.8 69.4 70.6 68.6 69.8 71.4
Mk05 179.8 178.6 178.4 177.8 181.0 180.4 178.6 179.6
Mk06 86.0 81.8 79.0 80.2 94.4 90.0 90.6 86.0
Mk07 155.6 152.6 149.8 151.4 167.4 163.8 167.4 168.8
Mk08 523.0 523.0 523.0 523.0 523.2 523.0 523.0 523.0
Mk09 331.0 330.4 330.0 327.2 336.8 337.6 333.4 331.4
Mk10 264.0 265.6 261.2 257.4 276.8 275.4 267.6 264.4

TABLE IV
AVERAGE PERFORMANCE IN BRANDIMARTE PROBLEMS OF VNS-SS

Problem
ACmax

VNS-SS(RO) VNS-SS(rand)
Unit=1s Unit=2s Unit=4s Unit=8s Unit=1s Unit=2s Unit=4s Unit=8s

Mk01 42.0 43.4 42.0 42.0 43.6 41.6 42.0 41.8
Mk02 37.2 32.8 30.6 30.4 33.8 30.4 29.2 29.2
Mk03 204.0 204.2 204.0 204.0 204.2 204.0 204.0 205.2
Mk04 69.8 68.0 66.2 67.4 70.2 68.4 69.2 68.8
Mk05 177.8 176.4 174.6 175.0 178.0 174.4 175.2 175.2
Mk06 80.0 72.2 71.2 69.8 82.2 74.6 72.2 71.6
Mk07 155.6 150.2 149.6 146.4 154.0 149.8 148.8 146.2
Mk08 523.0 523.0 523.0 523.0 523.6 524.2 524.8 523.0
Mk09 323.2 319.0 323.0 317.8 322.8 326.2 314.2 316.0
Mk10 247.2 241.8 238.8 235.2 242.4 238.8 236.4 231.8

TABLE V
BEST PERFORMANCE IN BRANDIMARTE PROBLEMS OF VNS-SS (UNIT=1S, 2S, 4S, 8S)

Problem BCmax

GA-SS(RO) GA-SS(rand) VNS-SS(RO) VNS-SS(rand)
Mk01 42 41 41 40
Mk02 28 32 29 28
Mk03 204 204 204 204
Mk04 67 65 67 67
Mk05 176 177 173 173
Mk06 77 83 67 70
Mk07 146 159 144 144
Mk08 523 523 523 523
Mk09 319 321 313 311
Mk10 249 253 224 229

TABLE VI
PERFORMANCE IN DFJSP OF THREE ALGORITHMS IN LITERATURE

U F
GA VNS ROA

0.6 14.96 15.00 20.59
0.7 16.20 16.26 20.90
0.8 19.28 19.75 23.60
0.9 23.96 24.92 28.31

TABLE VII
PERFORMANCE IN DFJSP OF GA-SS AND VNS-SS

U
F

GA-SS VNS-SS
Unit=1s Unit=2s Unit=4s Unit=8s Unit=1s Unit=2s Unit=4s Unit=8s

0.6 15.29 15.12 14.83 14.88 15.91 15.63 15.61 15.41
0.7 16.35 16.22 15.79 15.66 16.72 16.55 16.31 16.40
0.8 18.99 18.83 19.08 19.39 19.95 19.47 19.54 19.23
0.9 24.44 23.86 23.72 23.90 24.72 24.35 23.52 23.44

different U, the performance of GA-SS and VNS-SS is slightly
better than GA and VNS respectively and is significantly better
than ROA.

D. Results Analysis

The results in the two sets of experiments show that the
SS is effective in both static FJSP and DFJSP. In DFJSP, the
proposed GA-SS and VNS-SS outperform GA and VNS of
the state of art.

The analysis on why GA-SS and VNS-SS outperform the
other algorithms is as follows. One reason is that the EA in
SS has no termination criteria and the computing goes on for
a longer time (although the WT of SS is near zero). The other
reason is that the scale and complexity of the whole DFJSP
is very large and SS has a natural advantage in solving large
scale problems. When using GA, VNS or other EA in common
approaches, it is hard to obtain an optimal solution of large
scale FJSP. But in SS, with the machine processing going
on, the number of the remaining operations to complete is
decreasing and the scale of the real-time FJSP is shrinking. As
a result, the processing scheme of the remaining operations
is becoming easier to optimize. Thus, SS can obtain better
scheduling schemes in large scale FJSP. To illustrate this
advantage, assume that there are 100 jobs in a FJSP. For GA

and VNS, the sequence and machine assignment of all the
operations of the 100 jobs are to be scheduled at a time. For
GA-SS and VNS-SS, the case is different. In the beginning, SS
is solving a FJSP containing 100 jobs; when 50 jobs have been
finished, SS is solving a FJSP containing 50 jobs; when 90
jobs have been finished, SS is solving a FJSP containing only
10 jobs. The scale of the problem is becoming smaller and
smaller and the optimal scheduling scheme of the remaining
operations is becoming easier and easier to obtain.

V. DISCUSSION AND FUTURE WORK

This paper proposes the novel scheduling strategy, in which
scheduling schemes are continuously optimized in simultane-
ity with machine processing. This strategy can be used to
minimize wait time for computing so that the machines can
start to work as soon as possible and can obtain scheduling
solutions with high quality.

Two algorithms GA-SS and VNS-SS are presented and sim-
ulation experiments on them are performed. The experimental
studies show that GA-SS and VNS-SS significantly outperform
simple heuristic algorithms of the state of art and that solution
performances of GA-SS and VNS-SS are near to GA and
VNS, although GA-SS and VNS-SS have near zero WT, in
both static FJSP and DFJSP.

This paper has only applied the idea of SS in FJSP and
DFJSP, designed FJSP algorithms based on GA and VNS and
demonstrated the effectiveness. In the future, more different
EAs can be adopted in SS and SS can be developed to solve
more scheduling problems other than FJSP.

ACKNOWLEDGMENT

The author would like to thank SJTU Innovation Center of
Producer Service Development, Shanghai Research Center for
industrial Informatics, Shanghai Key Lab of Advanced Man-
ufacturing Environment, National Natural Science Foundation
of China (Grant No. 71632008) and Major Special Basic
Research Projects for Aero engines and Gas turbines (Grant
No. 2017-I-0007-0008, Grant No.2017-I-0011-0012) for the
funding support to this research.

REFERENCES

[1] Gao K, Cao Z, Zhang L, et al. A review on swarm intelligence
and evolutionary algorithms for solving flexible job shop scheduling
problems[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(4): 904-
916.

[2] Mohan J, Lanka K, Rao A N, et al. A Review of Dynamic Job Shop
Scheduling Techniques[J]. Procedia Manufacturing, 2019: 34-39.

[3] Pezzella F, Morganti G, Ciaschetti G, et al. A genetic algorithm for
the Flexible Job-shop Scheduling Problem[J]. Computers & Operations
Research, 2008, 35(10): 3202-3212.

[4] Amiri M, Zandieh M, Yazdani M, et al. A variable neighbourhood search
algorithm for the flexible job-shop scheduling problem[J]. International
Journal of Production Research, 2010, 48(19): 5671-5689.

[5] Bierwirth C, Kopfer H, Mattfeld D C, et al. Genetic algorithm based
scheduling in a dynamic manufacturing environment[C]. ieee interna-
tional conference on evolutionary computing, 1995.

[6] Bierwirth C, Mattfeld D C. Production scheduling and rescheduling with
genetic algorithms[J]. Evolutionary Computing, 1999, 7(1): 1-17.

[7] Holthaus O. Scheduling in job shops with machine breakdowns: an
experimental study[J]. Computers & Industrial Engineering, 1999, 36(1):
137-162.

[8] Rossi A, Dini G. Dynamic scheduling of FMS using a real-time genetic
algorithm[J]. International Journal of Production Research, 2000, 38(1):
1-11.

[9] Ziaee M. A heuristic algorithm for solving flexible job shop schedul-
ing problem[J]. The International Journal of Advanced Manufacturing
Technology, 2014: 519-528.

[10] Rajabinasab A, Mansour S. Dynamic flexible job shop scheduling with
alternative process plans: an agent-based approach[J]. The International
Journal of Advanced Manufacturing Technology, 2011, 54(9): 1091-
1107.

[11] Li X, Gao L. An effective hybrid genetic algorithm and tabu search
for flexible job shop scheduling problem[J]. International Journal of
Production Economics, 2016: 93-110.

[12] Gao J, Sun L, Gen M, et al. A hybrid genetic and variable neighbor-
hood descent algorithm for flexible job shop scheduling problems[J].
Computers & Operations Research, 2008, 35(9): 2892-2907.

[13] Gao K, Yang F, Zhou M, et al. Flexible Job-Shop Rescheduling for New
Job Insertion by Using Discrete Jaya Algorithm[J]. IEEE Transactions
on Systems, Man, and Cybernetics, 2019, 49(5): 1944-1955.

[14] Brandimarte P. Routing and scheduling in a flexible job shop by tabu
search[J]. Annals of Operations Research, 1993, 41(1): 157-183.

