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Abstract—Swarm intelligence algorithms have been
widely and successfully used to optimize many science
and engineering problems, the collective behavior
of the agents lead to the emergence of intelligence.
These interactions among agents can be classified into
three categories: exploring, emulating and learning.
Brain Storm Optimization (BSO) is a novel swarm
intelligence algorithm which is inspired by the human
brainstorming process, and generates new ideas by
emulating existing ideas. In this paper, a new BSO
algorithm with an adaptive learning strategy (BSO-
AL) is proposed. By considering the evolutionary
speed factor of each individual and the aggregation
degree of the swarm, the proposed BSO-AL generates
new individuals by exploring, emulating or learn-
ing adaptively. Comparative experiments were con-
ducted on a set of benchmark functions with different
dimensions. The experimental results show that the
proposed BSO-AL algorithm outperforms the classic
BSO algorithm and the other two state-of-the-art
algorithms, which demonstrates the effectiveness of
the learning strategy.

Index Terms—brain storm optimization, adaptive
learning, evolutionary speed, aggregation degree

1. Introduction

In the past a few decades, global optimization has
been playing an important role in many different fields
of science and engineering. Swarm Intelligence (SI),
which is inspired by the collective behavior of biologi-
cal systems, has attracted extensive attention from re-
searchers. Many nature-inspired swarm intelligence algo-
rithms have been proposed, such as ant colony optimiza-
tion (ACO) [1], particle swarm optimization (PSO) [2],
artificial bee colony (ABC) algorithm [3], bacterial for-
aging optimization (BFO) [4], firefly optimization (FFO)
algorithm [5], etc. The procedure of a unified swarm
intelligence algorithm is shown in Fig. 1 [6]. In Fig. 1,
the capacity developing is a top-level operator, which
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describes an algorithm’s learning ability to adaptively
change its parameters and structures at different search
stages. The capability learning is the bottom-level oper-
ator, which describes the details how new solutions are
generated in the search space.

Start

Initialization

Terminate?

Capacity Developing

Capability Learning
(Learning, Emulating,

Exploring)

Stop

Yes

No

Figure 1. Procedure of a unified swarm intelligence algorithm

Swarm intelligence system is decentralized and self-
organized, and each agent follows very simple rules.
However, the collective behavior of the agents lead to
the emergence of intelligence, which allows the swarm to
complete complex missions, i.e., the interactions among
agents make significant contributions to swarm intel-
ligence. The interactions among agents can be clas-
sified into three categories: exploring, emulating and
learning [6]. In other words, when talking about gen-
erating new solutions, a good swarm intelligence algo-
rithm should possess all these three strategies, which
is shown in Fig 2. Exploring ensures the searching in
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Figure 2. Exploring, emulating and learning in swarm intelligence
algorithms

decision space and the diversity of solutions, especially
when there is no prior knowledge. For example, random
search is the most widely used strategy for exploring.
In addition, emulating others can also generate new
solutions that could match or surpass the old solutions.
Last but not least, learning aims to reduce the distance
between the current solution and the object solution, the
object solution is usually local or global best solution.
Thus, learning ensures that agents would move towards
better solutions, and can also ensure the convergence
of the SI algorithm. Taking the PSO algorithm as an
example, PSO has two main interactions, which are
exploring and learning. In general, exploring is obtained
by re-initializing, and learning is obtained by updating
the particle’s velocity and position, which include both
inertia, self-cognition and social cognition.

Recently, a novel SI algorithm, i.e., brain storm op-
timization (BSO) [7], was proposed. BSO is inspired by
human brainstorming process, and acts by emulating the
collective behavior of human beings to solve problems.
Many different variants of BSO have also been proposed
to improve the classic BSO algorithm. To reduce the
computational cost of the k-means clustering method in
the classic BSO algorithm, many other clustering meth-
ods were proposed, such as simple grouping method [8],
affinity propagation clustering method [9], k-medians
clustering algorithm [10], random grouping strategy [11],
etc. In addition, in the version of BSO in objective space
(BSO-OS) [12], clustering strategy was even removed to
solve large scale problems. In the aspect of generating
new solutions, many strategies and operations have been
proposed, such as adaptive step-size strategy [13], partial
re-initialization strategy [14], chaotic operations [15],
etc. However, most of the newly proposed variants of
BSO algorithms mentioned above did not consider the
interaction of learning among individuals like the learn-
ing in PSO, the scheme of generating new solutions

mainly focus on emulating, i.e., new individuals were
generated by emulating one or two selected individuals,
which imitates generating new ideas based on someone
else’s existing ideas in a brainstorming process. There-
fore, in original BSOs, there exist two operators, i.e.,
emulating and exploring, but not learning operator. In
fact, during a realistic brainstorming process, new ideas
are generated based on not only someone else’s ideas,
but also his/her own existing ideas with inspiration from
other’s ideas. As a consequence, a good BSO should
consist of all three operators, i.e., learning, emulating,
and exploring operators. In [16], individuals were ranked
according to their fitness values, a learning strategy
was added by letting the individuals learn from the top
Pe% of individuals and keep far away from the last
Pl% of individuals. In [17], an active learning strategy
with intra-cluster learning and inter-cluster learning was
proposed to improve the original BSO algorithm.

With three operators included in a BSO, it is critical
to know how to execute the three operators, for example,
in a sequential or parallel order, and with what percent-
age, which should be considered in the top layer (Ca-
pacity Developing) of a meta-heuristic algorithm while
the three operators should be considered in the bottom
layer (Capability Learning) of the algorithm [6], [18]. In
this paper, we propose a new variant of BSO algorithm
named BSO with adaptive learning strategy (BSO-AL).
The proposed BSO-AL algorithm takes the evolutionary
speed of each individual into account, as well as the ag-
gregation degree of the swarm. The decision of whether
to emulate or learn is adaptively changed according to
the status of the swarm. By doing so, each individual will
have both self-cognition and social-cognition, and new
individuals could be generated by learning from good in-
dividuals in the swarm. Under this situation, individuals
would seek more benefits and avoid weaknesses, which
is more similar to human behavior.

The rest of this paper is organized as follows. Sec-
tion 3 briefly introduces the classic BSO algorithm. Sec-
tion 3 first discusses the evolutionary speed factor and
the aggregation degree, and then describes the proposed
BSO-AL algorithm. Benchmark functions, parameter
settings, and experimental results are given in Section 4.
Section 5 concludes the paper and proposes the future
work.

2. Brain Storm Optimization Algorithm

Inspired by the human brainstorming process, Shi [7]
first proposed the brain storm optimization (BSO) al-
gorithm in 2011. The detailed procedure of the BSO
algorithm is described as follows.

• Step 1: Generate n initial solutions randomly;
• Step 2: Cluster n solutions into m clusters by

using k-means clustering algorithm;
• Step 3: Evaluate the fitness values of n solutions;



• Step 4: Sort the solutions in each cluster accord-
ing to their fitness values, and set the best ones
as cluster centers;

• Step 5: Generate a random value within (0, 1), if
rand(0, 1) < p1, then randomly select a cluster
center, and replace it with a randomly generated
new solution;

• Step 6: Generate a random value, if rand(0, 1) <
p2, then generate a new solution based on a
solution, if rand(0, 1) < p3, generate the new
solution from a randomly selected cluster center,
else generate the new solution from a randomly
selected solution; otherwise, if rand(0, 1) < p4,
generate the new solution according to two clus-
ter centers, else generate the new solution from
two random solutions.

• Step 7: If n new solutions have been generated,
go to Step 8; otherwise go to Step 6;

• Step 8: Terminate if the maximum number of
iterations has been reached; otherwise, go to Step
2 to run the next iteration.

In the classic BSO algorithm, the new solution is
generated by

Xd
new = Xd

old + ξ ∗ n(µ, σ) (1)
where Xnew is the new solution, Xold is the selected
solution, d means the d-th dimension of the solution,
n(µ, σ) is the Gaussian random function with mean
value of µ and variance value of σ, and ξ is the coefficient
which is defined as

ξ = logsig(
0.5 ∗ T − t

k
) ∗ rand() (2)

where logsig() is the logarithmic sigmoid transfer func-
tion, T is the pre-defined maximum number of itera-
tions, t is the current number of iterations, k is the slope;
and rand() is a random value between 0 and 1.

3. Proposed BSO with Adaptive Learning
Strategy

As discussed above, a good swarm intelligence al-
gorithm should possess three components: exploring,
emulating, and learning. Classic BSO algorithm only
has two components, which are exploring and emulating.
As we all know, the PSO algorithm has exploration
and learning, the learning in PSO is based on the self-
cognition and social cognition of each particle. To ad-
dress learning, both the status of each individual and the
swarm should be considered. In this paper, we consider
two factors, which are the evolutionary speed factor
of each individual and the aggregation degree of the
swarm [19]. These two factors have been widely used
in many applications.

The evolutionary speed factor of the individual i at
the t-th iteration is defined as [19]

ht
i =

∣∣∣∣min(F t−1
i , F t

i )

max(F t−1
i , F t

i )

∣∣∣∣ (3)

where F t
i is the fitness value of the i-th individual at the

t-th iteration. It can be obtained that 0 ≤ h ≤ 1, and ht
i

reflects the evolutionary speed factor of the individual
i, the smaller the value of h, the faster the evolutionary
speed of the individual i.

The aggregation degree of the swarm is defined
as [19]

s =

∣∣∣∣min(Ftbest, Ft)

max(Ftbest, Ft)

∣∣∣∣ (4)

where Ftbest is the best fitness value of all individuals at
the t-th iteration, and Ft is the mean fitness value of all
individuals in the swarm at the t-th iteration. It can be
obtained that 0 ≤ s ≤ 1, the larger the value of s, the
more aggregated the swarm is.

For each individual in the swarm, to emulate or to
learn should be determined by the dynamic status. The
proposed method considers the combination of the two
dynamic factors mentioned above, which is defined as

wt
i = f(ht

i, s) = α ∗ (1− ht
i) + β ∗ s (5)

where α and β are two parameters within the range [0, 1],
and α+ β = 1. It can be obtained that initially w0

i = 0
because h0

i = 1 and s = 0. With the increase of the
number of iterations, wt

i also increases. Finally, when the
algorithm converges, both the evolutionary speed factor
of each individual hT

i and the aggregation degree of the
swarm s will approach 1.

For emulation, the emulating() operator is inherited
from the classic BSO algorithm in Eq. (1), which adds
random noise to existing solutions to generate new so-
lutions. For learning, an individual learns from others
with itself as the starting point, i.e., moves towards
“good” individuals (global best individual and its cluster
center). The learning() operator is defined in Eq. (6).

Xd
new = Xd

old + r1 ∗ (gbestd −Xd
old)

+r2 ∗ (centerd −Xd
old)

(6)

where d is the dimension, r1 and r2 are random values
within [0, 1], gbest is the global best individual, i.e., the
one with the best fitness value, and center is the center
of the cluster which contains Xold. If an individual is
learning from one individual, then Xold is selected within
the cluster, which is either the cluster center or a random
individual in the cluster. If an individual is learning from
two individuals Xa and Xb, then Xold is defined as the
linear weighting of Xa and Xb in Eq. (7).

Xd
old = q ∗Xd

a + (1− q) ∗Xd
b (7)

where q is a random value within [0, 1].



Algorithm 1 proposed BSO-AL algorithm
1: Require: N , number of population; M , number of

clusters; T , max iterations
2: for i := 1 to N do ▷ init
3: randomly generate solution Xi

4: evaluate the fitness of Xi

5: while t < T do
6: cluster N solutions into M clusters ▷ Clustering
7: for i := 1 to M do
8: set solution with best fitness as cluster center
9: for i := 1 to N do ▷ Generating

10: if rand() < p1 then
11: randomly select a cluster C1

12: if rand() < p2 then
13: Xi ← cluster center
14: else
15: Xi ← random solution in C1

16: compute wt
i according to Eqs. (3)-(5)

17: if wt
i > t/T then

18: Xnew ← emulating(Xi)
19: else
20: Xnew ← learning(Xi)

21: else
22: randomly select two clusters C1, C2
23: if rand() < p3 then
24: Xi1, Xi2 ← two cluster centers
25: else
26: Xi1, Xi2 ← random solutions in

C1, C2

27: compute wt
i according to Eqs. (3)-(5)

28: if wt
i > t/T then

29: Xnew ← emulating(Xi1, Xi2)
30: else
31: Xnew ← learning(Xi1, Xi2)

32: select Xi or Xnew based on their fitness values
33: t← t+ 1

A BSO algorithm with learning has the unified
framework shown in Fig. 1, in which the three operators,
i.e., learning, emulating, and exploring operator, are in
the Capability Learning layer, and Capacity Develop-
ing layer determines how the three operators in the
Capability Learning layer are organized and in what
percentage. There can be different ways to implement
the Capacity Developing layer as there are different ways
to implement the three operators. In general, initially, all
the individuals of the swarm should explore the decision
space as much as possible, and finally converge. Thus,
the emulation operation should be performed more in
the early stage, and the learning operation should be
performed more in the late stage in the whole procedure.
Since wt

i is used to represent the status of swarm and
changes over iterations, in this paper, we compare it with
t/T to determine whether the emulating or the learning
operator should be taken, which is one way to implement
the Capacity Developing layer.

According to the parameter investigation in
BSO [20], the replacing operator in classic BSO has
very limited or even no contributions. Thus, in the
proposed BSO-AL algorithm, the replacing operator is
removed to simplify the algorithm [20]. The pseudocode
of the proposed BSO-AL algorithm is shown in Alg. 1,
which is one way to implement the unified BSO
algorithm.

4. Experiments and Discussions
The effectiveness of the proposed BSO-AL algorithm

is tested on a set of benchmark functions, which have
been widely used to evaluate metaheuristic algorithms.
In this paper, a set of benchmark functions are chosen
for evaluation, which are shown as follows. More details
and features of the benchmark functions are listed in
Table 1.

Sphere function:

f(x) =

n∑
i=1

x2
i (8)

which is evaluated on x ∈ [−100, 100], the global minima
is f(x∗) = 0 at x∗ = (0, . . . , 0).

Rastrigin function:

f(x) = 10n+

n∑
i=1

(x2
i − 10 cos(2πxi)) (9)

which is evaluated on x ∈ [−5.12, 5.12], the global
minima is f(x∗) = 0 at x∗ = (0, . . . , 0).

Rosenbrock function:

f(x) =

n∑
i=1

|100(xi+1 − x2
i )

2 + (1− xi)
2| (10)

which is evaluated on x ∈ [−5, 10], the global minima is
f(x∗) = 0 at x∗ = (1, . . . , 1).

Griewank function:

f(x) = 1 +

n∑
i=1

x2
i

4000
−

n∏
i=1

cos( xi√
i
) (11)

which is evaluated on x ∈ [−600, 600], the global minima
is f(x∗) = 0 at x∗ = (0, . . . , 0).

Apart from the classic benchmark functions, the
rotated and more complicated benchmark functions are
also tested. The rotated functions are generated by mul-
tiplying an orthogonal matrix M, i.e., the new rotated
variable y = M ∗ x, where x is the original variable [21].
In this paper, the orthogonal matrix is generated by
using Gram-Schmidt orthonormalization method, the
new rotated variable y is used to evaluate the fitness
values. The rotated benchmark functions are described
as follows.

Rotated Rastrigin function:

f(x) = 10n+

n∑
i=1

(y2i − 10 cos(2πyi)),y = M ∗ x (12)



TABLE 1. Benchmark functions

Functions Expressions Features Search Range Global Optima

Sphere f(x) =
n∑

i=1
x2
i unimodal, convex [−100, 100] f(x∗) = 0 at x∗ = (0, . . . , 0)

Rastrigin f(x) = 10n+
n∑

i=1
(x2

i − 10 cos(2πxi)) multimodal, non-convex [−5.12, 5.12] f(x∗) = 0 at x∗ = (0, . . . , 0)

Rosenbrock f(x) =
n∑

i=1
|100(xi+1 − x2

i )
2 + (1− xi)

2| multimodal, non-convex [−5, 10] f(x∗) = 0 at x∗ = (1, . . . , 1)

Griewank f(x) = 1 +
n∑

i=1

x2
i

4000
−

n∏
i=1

cos( xi√
i
) unimodal, non-convex [−600, 600] f(x∗) = 0 at x∗ = (0, . . . , 0)

Rotated Rastrigin f(x) = 10n+
n∑

i=1
(y2i − 10 cos(2πyi)) multimodal, non-convex [−5.12, 5.12] f(x∗) = 0 at x∗ = (0, . . . , 0)

Rotated Rosenbrock f(x) =
n∑

i=1
|100(yi+1 − y2i )

2 + (1− yi)
2| multimodal, non-convex [−2.048, 2.048] f(x∗) = 0 at x∗ = (1, . . . , 1)

Rotated Griewank f(x) = 1 +
n∑

i=1

y2
i

4000
−

n∏
i=1

cos( yi√
i
) unimodal, non-convex [−600, 600] f(x∗) = 0 at x∗ = (0, . . . , 0)

which is evaluated on x ∈ [−5.12, 5.12], the global
minima is f(x∗) = 0 at x∗ = (0, . . . , 0).

Rotated Rosenbrock function:

f(x) =

n∑
i=1

|100(yi+1−y2i )
2+(1−yi)

2|,y = M ∗ x (13)

which is evaluated on x ∈ [−2.048, 2.048], the global
minima is f(x∗) = 0 at x∗ = (1, . . . , 1).

Rotated Griewank function:

f(x) = 1 +

n∑
i=1

y2i
4000

−
n∏

i=1

cos( yi√
i
),y = M ∗ x (14)

which is evaluated on x ∈ [−600, 600], the global minima
is f(x∗) = 0 at x∗ = (0, . . . , 0).

For each benchmark function, three sets of exper-
iments with dimensions 10, 20 and 40 were conducted
over 50 runs each. In this paper, two other state-of-
the-art variations of BSO with learning methods are
also evaluated, which are BSOLS [16] and ALBSO [17].
Since all the experiments are based on BSO, the shared
parameters for different algorithms were taken the same
value. For the classic BSO algorithm, the parameter
settings are shown in Table 2.

TABLE 2. Parameter settings

n m p1 p2 p3 p4 k max_iteration µ σ

100 5 0.2 0.8 0.4 0.5 20 500 0 1

In Table 2, n is the size of population, m stands
for number of clusters, p1, p2, p3 and p4 are the pre-
defined probabilities used for generating new solutions.
For other newly introduced parameters in BSOLS and
ALBSO, the same values of parameters in their original
papers were taken. For the proposed BSO-AL algorithm,
the α and β in Eq. (5) are both set as 0.5.

The proposed algorithm was programmed in C++,
and all the experiments were conducted on an Intel
i5-6500 CPU@3.60GHz with 16GB RAM. The mean,

minimum, maximum fitness values, and the variances
are shown in Table 3, the best solutions found were
marked with bold fonts.

As it can be observed from Table 3, the proposed
BSO-AL algorithm outperforms the classic BSO, the
BSOLS and the ALBSO algorithm on all benchmark
functions for all different dimensions except the rotated
Rosenbrock function on the dimension of 10, which
demonstrate the effectiveness of the proposed BSO al-
gorithm with adaptive learning strategy.

Taking the experiments with 40 dimensions as exam-
ples, for benchmark functions Rastrigin and Griewank,
as well as the rotated Rastrigin and Griewank functions,
the proposed BSO-AL algorithm can always find global
optima under all dimensions, which means that the
search ability and stability of the proposed algorithm
perform significantly better than the classic BSO, the
BSOLS and the ALBSO algorithms. Additionally, the
Rastrigin function is multimodal, while the Griewank
function is unimodal, therefore, the proposed BSO-AL
algorithm works on optimizing both multimodal and
unimodal functions. For the Sphere, Rosenbrock and
Schewefel function, as well as the rotated Rosenbrock
and Schewefel functions, the mean fitness values of the
proposed BSO-AL are much smaller than the classic
BSO, the BSOLS, and the ALBSO algorithms. In addi-
tion, the minimum values found by the proposed BSO-
AL algorithm are very close to the global minima. Last
but not least, the proposed BSO-AL algorithm also
achieves smaller variances in all experiments, which il-
lustrates the stability of the proposed algorithm.

Intuitively, adding learning to BSO will outperform
the classic BSO. However, the results show that the
BSOLS and the ALBSO algorithms work worse than
the classic BSO algorithm on finding global optima
for some experiments. In BSOLS, individuals keep far
away from the last Pl% individuals to avoid weaknesses,
and learn from the top Pe% individuals to improve
themselves. It is worth to mention that this learning
strategy was added at the end of each iteration from



TABLE 3. Experimental results over 50 runs

Function Dimension BSO BSOLS ALBSO BSO-AL
Mean Min Max Variance Mean Min Max Variance Mean Min Max Variance Mean Min Max Variance

Sphere
10 1.54E-07 3.19E-12 6.73E-06 8.96E-13 1.17E-05 1.20E-12 5.83E-04 6.65E-09 1.08E+02 2.16E+01 3.18E+02 3.88E+03 5.31E-100 2.39E-143 2.66E-98 1.38E-197
20 2.74E-02 3.76E-10 1.32E+00 3.43E-02 6.86E-02 5.13E-07 1.75E+00 7.13E-02 5.08E+02 2.26E+02 9.10E+02 2.75E+04 4.85E-82 4.21E-124 2.37E-80 1.10E-161
40 2.11E+01 4.26E-02 4.54E+02 5.97E+03 1.10E+02 2.94E-01 6.60E+02 2.92E+04 1.86E+03 7.99E+02 3.38E+03 3.52E+05 2.94E-73 3.32E-104 9.98E-72 2.24E-144

Rastrigin
10 6.46E+00 1.93E+00 1.66E+01 8.08E+00 9.63E+00 3.59E+00 1.63E+01 7.38E+00 3.33E+01 1.42E+01 5.39E+01 7.63E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
20 2.96E+01 1.56E+01 5.34E+01 8.72E+01 5.74E+01 3.84E+01 7.56E+01 8.47E+01 1.11E+02 6.25E+01 1.45E+02 2.95E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
40 1.36E+02 5.00E+01 1.95E+02 1.09E+03 1.90E+02 1.18E+02 2.23E+02 3.29E+02 2.82E+02 2.25E+02 3.38E+02 7.26E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Rosenbrock
10 4.72E-01 3.12E-04 6.46E+00 9.73E-01 1.07E+00 1.01E-03 9.32E+00 3.01E+00 1.36E+03 1.56E+02 3.79E+03 6.97E+05 3.31E+00 8.47E-02 8.92E+00 7.59E+00
20 9.13E+01 3.08E+00 4.05E+02 8.15E+03 1.02E+02 7.74E+00 3.79E+02 5.88E+03 6.44E+03 2.77E+03 1.14E+04 4.32E+06 1.43E+01 3.47E+00 1.90E+01 1.24E+01
40 7.21E+02 1.03E+02 2.10E+03 1.62E+05 6.80E+02 7.60E+01 2.40E+03 1.67E+05 2.77E+04 1.56E+04 5.22E+04 6.00E+07 3.45E+01 2.40E+01 3.90E+01 7.98E+00

Griewank
10 1.98E+00 2.14E-01 4.46E+00 7.39E-01 4.29E+00 1.76E+00 1.25E+01 5.09E+00 1.86E+00 1.10E+00 3.97E+00 3.72E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
20 5.53E+00 1.51E+00 1.09E+01 5.94E+00 1.20E+01 3.53E+00 4.10E+01 5.16E+01 5.83E+00 1.93E+00 1.12E+01 4.38E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
40 1.97E+01 1.10E+01 3.18E+01 2.37E+01 3.97E+01 2.04E+01 7.88E+01 1.72E+02 1.83E+01 1.06E+01 3.00E+01 1.71E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Rotated Rastrigin
10 5.70E+00 1.06E+00 1.12E+01 4.35E+00 1.51E+01 1.95E-01 2.70E+01 3.92E+01 2.91E+01 1.31E+01 4.26E+01 6.22E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
20 1.97E+01 8.03E+00 3.50E+01 3.22E+01 7.31E+01 3.47E+01 9.49E+01 1.86E+02 1.07E+02 6.04E+01 1.40E+02 2.47E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
40 6.31E+01 3.84E+01 1.20E+02 5.01E+02 2.24E+02 1.93E+02 2.66E+02 3.42E+02 2.86E+02 2.33E+02 3.29E+02 5.73E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Rotated Rosenbrock
10 7.36E+00 2.52E+00 1.41E+01 7.15E+00 6.16E+00 3.03E+00 1.07E+01 2.91E+00 1.52E+01 8.12E+00 4.16E+01 3.57E+01 8.18E+00 4.40E+00 9.00E+00 1.25E+00
20 2.01E+01 1.29E+01 3.15E+01 1.88E+01 1.99E+01 1.24E+01 6.63E+01 5.68E+01 5.64E+01 3.36E+01 1.05E+02 2.09E+02 1.88E+01 1.77E+01 1.90E+01 1.15E-01
40 6.55E+01 4.99E+01 9.46E+01 2.07E+02 1.08E+02 6.27E+01 1.63E+02 1.07E+03 1.54E+02 9.54E+01 2.42E+02 1.45E+03 3.90E+01 3.88E+01 3.90E+01 2.35E-03

Rotated Griewank
10 2.03E+00 2.56E-01 4.05E+00 8.82E-01 1.07E+00 4.55E-01 4.25E+00 4.38E-01 1.84E+00 7.62E-01 4.07E+00 4.12E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
20 5.02E+00 1.52E+00 1.09E+01 4.03E+00 6.57E-01 3.21E-02 2.30E+00 1.89E-01 5.34E+00 2.67E+00 1.40E+01 4.45E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
40 2.35E+01 1.40E+01 3.54E+01 3.70E+01 8.84E+00 1.60E+00 1.97E+01 2.75E+01 1.82E+01 1.08E+01 2.68E+01 1.40E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00

the first iteration, after the updating operator in the
classic BSO algorithm. At the beginning, the population
was initialized randomly in the decision space. If the
top Pe% falls into local optima, or the last Pl% are
located near the global optima but with worse fitness
values, this learning strategy may lose its effectiveness.
For ALBSO, the results obtained were the worst among
all algorithms over 500 iterations. In their original paper,
the experiments were conducted over 300, 000 function
evaluations with the population size of 30, so each exper-
iment was run over 10, 000 iterations. In ALBSO, all the
new individuals were generated by the proposed differen-
tial learning strategy, i.e, emulating was removed, which
might be the reason why the ALBSO algorithm achieved
the worst results over the same iterations comparing to
other algorithms.

Performing learning strategy at the beginning may
decrease the exploration of the population, make the
algorithm converge faster, and more easily fall into local
optima. In addition, individuals should do more explo-
ration at the initial stage to ensure the searching in the
decision space, as well as the diversity of the population.
Therefore, to add learning, the status of the swarm
should be considered.

5. Conclusions and Future Work

In this paper, we have addressed the importance
of the interactions in swarm intelligence and discussed
the three categories of interactions, which are exploring,
emulating and learning. Since there are no interactions
of learning in the classic BSO algorithm, we proposed a
new BSO algorithm with an adaptive learning strategy
(BSO-AL). Experiments on a set of benchmark functions
were conducted to demonstrate the effectiveness of the
proposed algorithm. The obtained experimental results
showed that the proposed BSO-AL algorithm outper-
forms the classic BSO, the BSOLS and the ALBSO
algorithms significantly in terms of searching ability and
stability, no matter the dimensions and features of the
benchmark functions.

Apparently, there are different ways to add a learning
strategy to BSO, which should be considered in the
Capacity Developing layer of the unified BSO. For our
future work, the proposed BSO-AL will be evaluated
on more complex benchmark functions, and will be
compared with more swarm intelligence algorithms, as
well as evolutionary algorithms. Moreover, more learning
strategies will be explored and compared.
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