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Abstract— This paper proposes a method for the overall 
optimization of smart city (SC). The proposed method is based on 
multi-population global-best brain storm optimization using 
cooperative coevolution (MP-CCGBSO). Using a SC model, 
energy cost, actual power loads during peak periods, and carbon 
dioxide emission can be minimized. For the SC problem, many 
researchers have proposed various evolutionary algorithms 
including CCGBSO, which applied cooperative coevolution to 
GBSO. However, there is still room to improve quality of the 
solution by CCGBSO. Taking Toyama city of Japan as the 
research object, the calculation results of original CCGBSO 
method and the proposed MP-CCGBSO method of 2, 4, 8 and 16 
populations are compared. 

Keywords— global-best brain storm optimization, cooperative 
coevolution, Large scale mixed integer nonlinear optimization 
problem, reduction of CO2 emission, smart city, multi-population 

I. INTRODUCTION 

Global warming has caused many disasters in recent years, 
and climate emergency is worsening every day. The emergency 
includes extreme high temperature, air pollution, wildfires, 
intensified floods, and drought, and it is affecting lives of people 
all over the world. Reasons of global warming include the 
excessive emission of greenhouse gases [1]. Therefore, it is 
necessary to advance renewable energies in order to reduce 
carbon dioxide emissions and traditional fossil energies. Many 
countries are implementing and validating SC demonstration 
projects to reduce carbon dioxide emissions [2][3]. SC is a 
sustainable low carbon city using renewable energy, batteries, 
and the latest information technology. The climate change 
conference (COP25), held in Madrid, Spain, in 2019, considered 
ways to further reduce carbon dioxide emissions and strengthen 
the implementation of the Paris Agreement [4]. Since it is 
difficult to evaluate the actual carbon dioxide emission 
reduction and energy cost in the development of SC, it is 
necessary to establish a model to evaluate it. Industry, building, 
residence, and railway sectors are modeled by two models 
respectively. One is a dynamic model considering the transient 
phenomena in various sectors. Another one is a static model 
considering all kinds of energy balance. However, there is no SC 
model that can solve the calculation of carbon dioxide emissions 
or energy consumption in all sectors at the same time. Therefore, 

experts in various sectors have developed SC models to 
quantitatively assess the energy cost or carbon dioxide 
emissions of the whole SC. However, considering the 
interaction between various sectors, the optimization of SC 
energy network had not been applied to these models. 

In the past, the authors have put forward overall optimization 
methods of SC energy network using PSO [5], DE [6], DEEPSO 
[7], BSO [8], MBSO [9], GBSO [10], and CCGBSO [11]. These 
methods including the recently developed CCGBSO can reduce 
the energy cost and carbon dioxide emission to the maximum 
extent, and transfer the peak loads to other periods. However, 
solution quality by the conventional methods still needs to be 
improved. 

For large-scale optimization problems (LSOPs), to further 
improvement of solution quality, CC has been developed [11-
13]. CC divides a LSOP with a large number of decision 
variables (DecVars) into several smaller sub problems. It utilizes 
the same algorithm to solve each sub problem in turn to make 
the whole problem solution converge step by step. 

The solution quality of the SC problem can be improved by 
the evolutionary computation method based on multi-population  
[14-16]. Utilizing MP, a whole population is divided into several 
subpopulations, and the optimal solution is searched in each sub-
population. 

This paper proposes an improved coevolution algorithm, 
multi-population global-best brain storm optimization using 
cooperative coevolution (MP-CCGBSO), and utilizes this 
algorithm to optimize the SC problem, so as to improve the 
solution quality. The contribution of this paper are as follows: 

- A new CC algorithm, called MP-CCGBSO is proposed, 

- An overall optimization method of SC based on MP-
CCGBSO is proposed, 

- The original CCGBSO based method was compared with the 
proposed MP-CCGBSO based method with 2, 4, 8, and 16 
subpopulations, and the effectiveness of this method is 
verified by taking Toyama city of Japan as an example. 
Using Friedman test, the solution quality of MP-CCGBSO 
based method with 4 subpopulations is verified to be the 
most improved. 
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The structure of this paper is as follows. Section II explains the 
concept of the SC model. Section III explains the formulation of 
the overall optimization problem of SC. Section IV introduces 
the proposed MP-CCGBSO and the application of MP-
CCGBSO to the overall optimization problem of SC. In section 
V, using the Friedman test, effectiveness of MP-CCGBSO 
method to SC problem is verified. Section VI shows conclusions 
of the whole paper. 

II. SMART CITY MODEL 

A. Overview of SC Model 

To calculate energy costs and carbon dioxide emission in a 
supply chain considering an interaction between different 
sectors, the SC model has been established [17-19]. The sectors 
in the SC model can be split into demand sides and supply sides 
[18]. Building, industry, railway, and residence sectors is 
included in the demand side. Drinking water treatment plants 
(DWTPs), electric power (EP) utilities, wastewater treatment 
plants (WWTPs), and natural gas (NG) utilities sectors are 
included in the supply side. The SC model considers the 
interaction among all sectors of the whole supply chain, and can 
calculate energy flow, energy cost, and carbon dioxide 
emissions (see Fig.1). 

B. Supply-Side Sectors 

The supply side supplies drinking water, EP and NG to the 
demand side [18]. The supply side can supply various energies 
to the demand side. 

The NG sector model is a model for NG utilities. In other 
words, NG required by demand side sector models can be 
provided to each sector through the NG sector model. 

The EP sector model is a model for EP utilities. EP can be 
produced in nuclear power, thermal power, renewable power 
such as hydropower, photovoltaics power, and wind power 
plants. The carbon dioxide emission and energy cost of power 
plants can be calculated by the model. In this model, the output 
of hydropower and renewable energy can be input as a fixed 
value per hour. Summation of EP generation ratios of all power 
plants is set to 1.  

In the WWTP sector, the quantities of required demand 
response (DR) and renewable generation are set to fixed values. 
In the DWTP sector, required DR, water demand, and renewable 
power generation are set to fixed values. 

C. Demand-Side Sectors 

Railway, residence, building, and industry sectors belong to 
the demand side which interacts with the supply side [19]. EP 
supply facilities such as gas turbine generators (GTGs) are dealt 
with in the demand side model. By the supply side sectors, the 
secondary energies are mainly provided to power supply 
facilities, and the tertiary energies are supplied to various kinds 
of power loads through the power supply facilities in the model. 
Consequently, if all kinds of hourly load values of 24 hours a 
day are given in the demand side sector models, required 
secondary energy values are provided by the supply side sector 
models. 

An industrial model has a variety of batteries, solar power 
systems, energy facilities, and the quantity of required DR. 

A building model is utilized for shopping centers and offices, 
and they are are regarded as energy loads. It also has energy 
supply facilities which are also included in the industrial model. 
In addition, the quantities of various hourly energy loads and 
required DR are also dealt with by the model. 

A residence model can handle apartments and detached 
houses. Both apartments and detached houses utilize a model 
with different input data. In the model, batteries, a tank less 
water heater, a fuel cell, a heat storage tank, and a heat pump 
water heater are treated. These facilities provide heat, EP, and 
hot water. 

III. FORMULATION OF AN OVERALL OPTIMIZATION 

PROBLEM OF SMART CITY 

A. Decision Variables 

The following are the DecVars: 

(a) DWT plant model: water inflow of river, water inflow of 
reservoir, output power of generator, and charge and discharge 
power of battery. 

(b) WWT plant model: output power of the combined generator, 
quantity of water pumped to the wastewater treatment plant, 
and charge and discharge power of battery. 

(c) Industrial model: turbo refrigerator heat output, steam 
refrigerator heat output, GTG power generation, and charging 
and discharging power of battery. 

(d) Building model: turbo refrigerator heat output, steam 
refrigerator heat output, and GTG power output. 

(e) Residential model: power output of fuel cell, charge and 
discharge of battery, and heat output of heat pump water heater. 

(f) Railway model: average speed per hour, train average 
running distance per hour, the number of trains per hour, the 
number of cars per set, passenger average running distance per 
hour, passenger capacity per a car, the number of passengers 
per hour. 

Fig. 1. A SC model configuration. 



Since DecVars have to be prepared for 24 hours, there are 816 
DecVars in a whole SC. Therefore, this problem can be 
regarded as a LSOP. 

Members of IEE of Japan SC Model Development 
Committee include this paper's author. According to the 
committee, SC is defined as a kind of local area, like local 
governments and industrial parks.  

B. Objective Function 

Following three terms compose of the objective function: 

(1) Energy cost minimization: summation of energy costs in 
all sectors except EP and NG sectors. 

(2) Peak load minimization: summation of shifted real EP 
peak loads in the whole SC during peak load time. 

Real EP peak load per hour is composed of the quantity of 
original EP loads, converted EP to other energies per hour, and 
battery charging. Peak load time refers to the time when the sum 
of real EP loads of sectors is more than an average of the sum 
of real EP loads of a whole day. 

(3) Carbon dioxide emission minimization: summation of 
carbon dioxide emissions of all sectors in the supply chain 
except EP and NG sectors. 

The objective function is composed of the above three terms 
with a weighted function as follows: 

𝑚𝑖𝑛 ൝𝑤ଵ ෍ ෍(𝑃𝑢𝐺௦௧ × 𝐺𝑈௦௧ + 𝑃𝑢𝐸௦௧ × 𝐸𝑈௦௧)
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்

௧ୀଵ

ௌ

௦ୀଵ
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where  𝑤ଵ , 𝑤ଶ , and 𝑤ଷ  are weighting factors and the sum of 
them is 1,  𝑆  is the number of sectors except NG and EP 
sectors,  𝑇 equals 24 (one day), 𝑃𝑢𝐺௦௧  is the quantity of NG 
purchase of sector 𝑠 at time 𝑡, 𝐺𝑈௦௧ is a NG price of sector 𝑠 at 
time 𝑡, 𝑃𝑢𝐸௦௧ is the quantity of EP purchase of sector 𝑠 at time 
𝑡, 𝐸𝑈௦௧ is a EP price of sector 𝑠 at time 𝑡, 𝑙𝑝𝑙𝑡 is the last time of 
real EP peak load time, 𝑏𝑝𝑙𝑡 is the beginning time of real EP 
peak load time, 𝐺𝐿௦௧ is an real EP load of sector 𝑠 at time 𝑡, 𝐺𝐶 
is a coefficient of a relationship between the quantity of 
purchased NG and carbon dioxide emissions,  𝐸𝐶  is a 
coefficient of a relationship between the quantity of purchased 
EP and carbon dioxide emissions. 

After the DecVars are determined, the dependent variables 
such as purchased EP and NG can be calculated. Therefore, if 
the dependent variables exceed the allowed limit values, 
penalty values are added to the objective function value. 

C. Constraints 

(1) Supply-demand balances of energies: for balances of EP, 
steam, and heat energies, the following equations are 
utilized: 

𝑔௦௥(𝒑, 𝒒) = 0, (𝑠 = 1, … , 𝑆, 𝑟 = 1, … , 𝑅௦) 

𝒑 = (𝑝ଵ, … , 𝑝௅)் , 𝒒 = (𝑞ଵ, … , 𝑞௅)்                     (2) 

where 𝑔௦௥(𝒑, 𝒒) is an energy balance of energy 𝑟 in sector 
𝑠, 𝑝௜  is shutdown or start-up status for DecVar 𝑖, 𝑞௜ is an 
output or input real value for DecVar 𝑖, 𝑅௦ is the number 
of energies in sector 𝑠, and 𝐿 is the number of DecVars. 

(2) Characteristics of facility: characteristics of facilities can 
be expressed using the following equations. Lower and 
upper bounds of various kinds of facilities in each sector 
can be also expressed as follows: 

ℎ௦௙(𝒑, 𝒒) ≤ 0,      (𝑠 = 1, … , 𝑆, 𝑓 = 1, … , 𝐹௦)       (3) 

where ℎ௦௙(𝒑, 𝒒) is the facility characteristic functions that 
are composed of a character and lower / upper bounds of 
facility 𝑓 in sector 𝑠, 𝐹௦ is the number of facilities in sector 
𝑠. 

IV. MULTI-POPULATION GLOBAL-BEST BRAIN STORM 

OPTIMIZATION USING COOPERATIVE COEVOLUTION FOR  

OVERALL OPTIMIZATION OF SMARY CITY 

A. Overview of GBSO 

GBSO is one of improved BSO methods, which adopts a 
global best information (gbest) in individual updating and 
utilizes a fitness based grouping (FbG) algorithm in a clustering 
method. It was developed in 2017 by El-Abd [20]. 

If a certain condition is met, GBSO utilizes gbest (the current 
best individual among all individuals) to update individuals 
when generating a new individual (see Fig.2). In general, an 
early search phase should emphasize exploration in a larger 
searching area, while a final search phase should emphasize 
exploitation and update individuals in a smaller attractive area. 
Namely, when (5) is satisfied, utilize (6) in order to add gbest 
information to 𝑥௜௝

௢௟ௗ : 

𝐶 = 𝐶௠௜௡ +
𝑖𝑡𝑒𝑟

𝐼𝑇𝐸𝑅
× (𝐶௠௔௫ − 𝐶௠௜௡)          (4) 

𝐶 > 𝑟𝑎𝑛𝑑(1,0)                               (5) 

𝑥௜௝
௢௟ௗ = 𝑥௜௝

௢௟ௗ + 𝑟𝑎𝑛𝑑(1,0) × 𝐶 × ൫𝑥௝
௚௕௘௦௧

− 𝑥௜௝
௢௟ௗ൯   (6) 

Fig. 2. A Concept of new individuals generation. 
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where, 𝐶௠௔௫  and  𝐶௠௜௡  are the maximum and minimum 
values of 𝐶, 𝐶 is a parameter utilized to determine whether 
gbest information should be utilized or not. 

The authors proposed to utilize new equations (5) and (6) 
[10] instead of using the original equations proposed in [20]. 
Although solution quality of GBSO is higher than that of BSO, 
it can be further improved by CC algorithm [11]. 

B. Overview of Cooperative Coevolution 

CC algorithms divide a high-dimensional problem into 
several low-dimensional sub-problems and solve each sub-
problem in order. The high-dimensional problem has a large 
number of DecVars, which are divided into the variables of the 
sub-problem. While dealing with a certain sub-problem, only 
DecVars of the current sub-problem are updated and DecVars 
of other sub-problems are treated as fixed variables. An 
objective function value is calculated using all DecVars 
(updated and fixed values) of all sub-problems by the same 
algorithm. 

C. Overview of Multi-population 

The authors found that standard deviations by CCGBSO for 
the overall optimization of SC were quite large compared with 
the conventional methods [11]. As described above, MP has a 
possibility to improve solution quality. Therefore, in this paper, 
the authors improve the CCBSO algorithm using a MP 
algorithm to reduce standard deviation and average values of 
the optimization results by the conventional CCGBSO based 
method. 

MP is an algorithm to divide search individuals of a 
population into several subpopulations and an optimization 
algorithm is performed at each subpopulation. A migration 
model is a kind of MP models. It makes individuals exchange, 
and replace among subpopulations every certain interval.  

Hyperparameters of the MP model in this paper is explained 
as follows. Firstly, “the number of subpopulation” is the number 
of subpopulations independently executing CCGBSO. Secondly, 
“Subpopulation architecture” is a network architecture among 
subpopulations. A ring architecture can be utilized for two 
subpopulations and among more than two subpopulations. A 
triangle cone architecture can be utilized for four subpopulations. 
a cube architecture can be utilized for eight subpopulations. A 
hypercube architecture can be utilized for 16 subpopulations. 
Thirdly, “Migration interval” is frequency of migration. Fourthly, 
“Migration policy” is a policy that can explain which individuals 
should be migrated in the subpopulation of a sending side and 
which individuals should be replaced in a receiving side. For 
example, a Worst-Best (W-B) policy replaces the worst 
individual in the receiving side subpopulation with the best one 
in the sending side subpopulation, a Worst-Random (W-R) 
policy replaces the worst individual in the receiving side 
population with a random one in the sending side population, a 
Random-Random (R-R) policy replaces a random individual in 
the receiving side population with a random one in the sending 
side population (R-R), and a Random-Best (R-B) policy 
replaces a random individual in the receiving side population 
with the best one in the sending side population (R-B).  

D. Overview of MP-CCGBSO 

In each divided subpopulation, DecVars of each individual 
are divided into several sub-problems and updated by the 
CCGBSO algorithm. When the number of iterations reaches a 
preset iteration, individual migration among different 
subpopulations is carried out (see Fig.3 and Fig.4).  

E. Overall Optimization of SC by MP-CCGBSO 

Step.1 Initialization: Initial individuals are generated at 

Algorithm: The procedure of the MP-CCGBSO 

 1: Randomly initialize n individuals at each subpopulation 
 2: OutLoop = 1 
 3: while OutLoop ≤ Max_OutLoopNum do 
 4:    subpop = 1 
 5:    while subpop ≤ Max_SubpopNum do 
 6:       s = 1 
 7:       while s ≤ Max_SectorNum do 
 8:          Evaluate the n individuals 
 9:          InLoop = 1 
10:         while InLoop ≤ Max_InLoopNum do 
11:            Cluster n individuals into m clusters using FbG 
12:            Find the best and worst individuals in each cluster 
13:            Update the best and worst individuals at InLoop with GBSO 
14:            InLoop = 𝐼𝑛𝐿𝑜𝑜𝑝 + 1 
15:         end do 
16:         Update the best and worst individuals in s 
17:         s=s+1 
18:      end do 
19:      Update the best and worst individuals in subpop 
20:      subpop = subpop+1 
21:   end do 
22:   if OutLoop % Migration == 0 then 
23:      Compare the best individual of two neighboring subpopulations 
24:      Replace the worst individual with the better one 
25:   end if 
26:   Update the global best individual 
27:   OutLoop =Outloop+1 
28: end do 
29: Return the best individual 

Fig. 4. An example of MP-CCGBSO algorithm using the W-B policy. 
 

Fig. 3. A Concept of MP-CCBSO.  
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random in all subpopulations. 

Step.2 According to the initial individuals of each 
subpopulation, objective function values considering 
carbon dioxide emissions, peak hour actual power 
loads, and energy costs are calculated. If operation 
variables are out of the constraint, penalty values are 
added to the objective function value.𝑂𝑢𝑡𝑙𝑜𝑜𝑝 = 1 
(current outer loop number). 

Step.3 𝑠𝑢𝑏𝑝𝑜𝑝 = 1 (subpopulation number). 

Step.4 𝑠 = 1 (sector number). 

Step.5  𝐼𝑛𝐿𝑜𝑜𝑝 = 1 (current inner loop number). 

Step.6 Clustering: 𝐹𝑏𝐺  is utilized in all subpopulations in 
order to divide all individuals into clusters. 

Step.7 New individual generations: DecVars of a current 
sector 𝑠𝑝  are updated under preset conditions as 
explained in IV-A. DecVars of other sectors is fixed 
with the current values. 

Step.8 Selection: Using newly generated DecVars of sector 
𝑠𝑝  and fixed DecVars of other sectors, individuals' 
objective function values are calculated. Current 
individuals' objective function values are compared 
with those of newly generated individuals with a same 
individual number. Individuals with better values are 
stored as current ones. 

Step.9 Evaluation: New current individual objective function 
values are calculated. If an individual objective 
function value is better than that of a global best 
individual of previous generations, the global best 
individual is updated. 

Step.10 When 𝐼𝑛𝐿𝑜𝑜𝑝 reaches the preset maximum inner loop 
number, go to the next step. Otherwise, 𝐼𝑛𝐿𝑜𝑜𝑝 =
𝐼𝑛𝐿𝑜𝑜𝑝 + 1 and go back to Step.6. 

Step.11 When 𝑠 reaches the preset maximum sector number, 
go to the next step. Otherwise, 𝑠 = 𝑠 + 1 and go back 
to Step.5. 

Step.12 When 𝑠𝑢𝑏𝑝𝑜𝑝  reaches the preset maximum 
subpopulation number, go to the next step. Otherwise, 
𝑠𝑢𝑏𝑝𝑜𝑝 = 𝑠𝑢𝑏𝑝𝑜𝑝 + 1 and go back to Step.4. 

Step.13 Migration: When the 𝑙𝑜𝑜𝑝  reaches preset migration 
interval, the migration is performed. 

Step.14 When 𝑂𝑢𝑡𝐿𝑜𝑜𝑝  reaches the preset maximum outer 
loop number, go to the next step. Otherwise, 
𝑂𝑢𝑡𝑙𝑜𝑜𝑝 = 𝑂𝑢𝑡𝑙𝑜𝑜𝑝 + 1  and go back to Step.3. 

Step.15 Final output contains DecVars of the final global best 
individual and its objective function value.  

V. SIMULATIONS 

A. Simulation Conditions 

A model of Toyama City, a typical medium-sized SC in 
Japan, is utilized for an application of the proposed method. In 
this paper, we set a certain number of models for various sectors 
based on energy consumption values of real sectors in Toyama 
city as follows:  

Residential: 45000, Industry: 15, Railroad: 1, Building: 50, 
DWTP: 1, WWTP: 1. 

Based on comparison of simulation results of the 
conventional methods including GBSO and DEEPSO based 
methods with those of the conventional CCGBSO based 
method, we found that CCGBSO is the most effective among 
the methods [11]. Therefore, in this paper, the proposed MP-
CCGBSO based method with 2, 4, 8 and 16 subpopulations are 
compared only with the conventional original CCGBSO based 
method with one population. 

This paper sets up three cases. Case 1 is to minimize the 
energy cost (e.g. purpose of industrial park). Case 2 is to 
minimize carbon dioxide emissions (e.g. purpose of local 
government). Case 3 is to minimize the actual power load, 
carbon dioxide emissions and energy costs during peak load 
time equally. The weighting factors for each case are as 
follows: 

Case 1: 𝑤ଵ : 1，𝑤ଶ : 0, 𝑤ଷ: 0 
Case 2: 𝑤ଵ : 0，𝑤ଶ : 0, 𝑤ଷ: 1 
Case 3: 𝑤ଵ : 0.00001，𝑤ଶ : 0.99998, 𝑤ଷ: 0.00001 

Parameters for the conventional CCGBSO based method are as 
follows:  

𝐶௠௔௫: 0.9,  𝐶௠௜௡: 0.1,  𝑝௖௟௨௦௧௘௥௜௡௚: 0.5,  𝑝௚௘௡௘௥௔௧௜௢௡: 0.5, 
𝑝ை௡௘஼௟௨௦௧௘௥: 0.2, 𝑝்௪௢஼௟௨௦௧௘௥: 0.2. 

Parameters for the proposed MP-CCGBSO based method are 
as follows: 

- The number of subpopulation (NSP) are set to 2, 4, 8, and 
16. 

- A migration interval is set to 10 for all cases.  
- Subpopulation architecture: Ring (2 subpopulations), 

triangle cone (4 subpopulations), cube (8 subpopulations), 
and hypercube (16 subpopulations) architectures are 
utilized. 

- The number of total individuals is set to 160. For example, 
there are 40 individuals in each subpopulation when there 
are 4 subpopulations. 

- Migration policy: the W-B policy is utilized. 

The number of trials is set to 50. The maximum inner loop 
number is set to 100. The maximum outer loop number is set to 
100. Therefore, the maximum iteration is 10000. The initial 
search point is randomly generated. A simulation environment 
on a PC (Intel Xeon E5-2670 (2.60GHz)) using C language (gcc 
version 5.3.7) is utilized. 

B. Simulation Results 

Table 1 shows comparison results of mean, the minimum, 
the maximum and standard deviation of objective function 
values by the conventional original CCGBSO (NSP = 1) based 
method and the proposed MP-CCGBSO based methods with 2, 
4, 8, and 16 subpopulations for all cases. According to the table, 
all values are the most reduced by the proposed method with 4 
subpopulations. Especially, the standard deviation values are 
greatly reduced. 

Table 2 shows results of mean ranks and p-values among the 
conventional original CCGBSO (NSP = 1) based method and 
the proposed MP-CCGBSO based methods with 2, 4, 8, and 16 
subpopulations by Friedman test. Mean ranks of 4 
subpopulations are the best for all cases. The results show that 



there are significant differences among the methods at 0.05 
significance level. 

Table 3 shows comparison of optimal operation in an 
industrial model by the conventional original CCGBSO based 
method and the proposed MP-CCGBSO based methods with 2, 
4, 8, and 16 subpopulations for Case 1. Column A shows the 
quantity of EP output of GTGs and column B shows the quantity 
of purchased EP from an EP utility. Between 8:00 and 22:00, 
prices of EP output of the GTGs per hour are lower than prices 
of purchased EP per hour. Therefore, in order to reduce the 
energy cost, it is necessary to increase the EP output of the GTGs. 
The results show that the proposed MP-CCGBSO based method 

with 4 subpopulations can maximize the EP output of the GTGs. 
Therefore, the proposed method can reduce the energy cost the 
most. 

Table 4 shows comparison of optimal operation in an 
industrial model by the conventional original CCGBSO based 
method and the proposed MP-CCGBSO based methods with 2, 
4, 8, and 16 subpopulations for Case 2. 𝐺𝐶 is less than 𝐸𝐶 in (1). 
Therefore, in order to reduce carbon dioxide emissions, the EP 
output of the GTGs should be increased all day. The results 
show that the proposed MP-CCGBSO based method with 4 
subpopulations can maximize the EP output of the GTGs. 
Therefore, the proposed method can reduce the carbon dioxide 
emission the most. 

VI. CONCLUTIONS 

This paper proposes a new evolutionary computation 
method, namely multi-population global-best brain storm 
optimization using cooperative coevolution, called MP-
CCGBSO, and overall optimization of smart city by the 
proposed MP-CCGBSO. The proposed MP-CCGBSO based 
methods with 2, 4, 8, and 16 subpopulations is compared with 
the conventional original CCGBSO based method with a model 
of Toyama city, a typical SC in Japan. The results show that the 

TABLE II. RESULTS OF MEAN RANKS AND P-VALUES AMONG THE 
CONVENTIONAL ORIGINAL CCGBSO BASED METHOD AND THE PROPOSED 
MP-CCGBSO BASED METHODS WITH  2, 4, 8, AND 16 SUBPOPULATIONS BY 

FRIEDMAN TEST . 

NSP 1 2 4 8 16 p-value 
Case 1 3.98 1.86 1.2 3.84 4.12 3.02E-31 
Case 2 3.92 2 1.16 4.08 3.84 1.01E-29 
Case 3 3.96 1.88 1.2 3.92 4.04 9.49E-31 

 

TABLE III. COMPARISON OF OPTIMAL OPERATION BY THE CONVENTIONAL ORIGINAL CCGBSO BASED METHOD AND THE PROPOSED MP-CCGBSO BASED 
METHODS WITH  2, 4, 8, AND 16 SUBPOPULATIONS FOR CASE 1. 

NSP 1 2 4 8 16 
Hour A B A B A B A B A B 

1 0.00  7.44  0.00  7.45  0.00  7.45  0.00  7.37  0.00  7.36  
2 0.00  7.39  0.00  7.45  0.00  7.43  0.00  7.15  0.00  7.33  
3 0.00  7.36  0.00  7.43  0.00  7.44  0.00  7.36  0.00  7.24  
4 0.00  7.38  0.00  7.42  0.00  7.44  0.00  7.38  0.00  7.25  
5 0.00  9.41  0.00  9.44  0.00  9.44  0.00  9.32  0.00  9.33  
6 0.00  9.30  0.00  9.33  0.00  9.34  0.00  9.25  0.00  9.15  
7 0.00  9.29  0.00  9.32  0.00  9.33  0.00  9.06  0.00  9.16  
8 8.95  0.01  9.13  0.01  9.19  0.00  9.03  0.00  8.88  0.11  
9 10.90  0.02  11.03  0.01  11.07  0.00  10.70  0.17  10.62  0.42  

10 14.89  0.05  15.00  0.01  15.05  0.01  14.89  0.21  14.73  0.44  
11 18.91  0.01  18.96  0.01  19.01  0.00  18.67  0.25  18.82  0.21  
12 19.98  4.75  19.99  4.73  19.99  4.77  20.00  4.88  19.90  4.81  
13 17.76  0.02  17.87  0.01  17.88  0.01  17.67  0.05  17.79  0.12  
14 19.98  2.02  20.00  2.00  19.99  2.01  19.89  2.28  19.74  2.37  
15 19.99  3.11  20.00  3.00  19.99  3.01  19.84  3.16  19.87  3.13  
16 19.99  1.01  20.00  1.00  19.99  1.01  19.89  1.40  20.00  1.00  
17 19.99  2.83  20.00  2.70  20.00  2.70  20.00  2.78  20.00  2.70  
18 19.97  2.05  19.99  1.91  19.99  1.91  20.00  1.90  20.00  2.00  
19 19.98  2.92  19.98  2.92  19.99  2.91  20.00  2.90  20.00  2.90  
20 19.98  1.11  19.99  1.01  19.99  1.14  20.00  1.00  19.93  1.24  
21 17.22  0.04  17.00  0.00  16.99  0.01  16.92  0.08  17.06  0.02  
22 12.15  0.04  12.19  0.03  12.13  0.00  11.85  0.21  12.11  0.03  
23 0.00  13.03  0.00  13.05  0.00  13.03  0.00  12.99  0.00  12.96  
24 0.00  10.45  0.00  10.45  0.00  10.45  0.00  10.45  0.00  10.45  

Total 260.66  19.97  261.13  19.36  261.26  19.49  259.35  21.27  259.46  21.50  
*) A: The quantity of EP output of GTGs. B: The quantity of purchased EP. Total: Summation of values between 8:00 and 22:00. 

TABLE I. COMPARISON RESULTS OF MEAN, THE MINIMUM, THE MAXIIMUM, 
AND STANDARD DEVIATION OF OBJECTIVE FUNCTION VALUES BY THE 

CONVENTIONAL ORIGINAL CCGBSO BASED METHOD AND THE PROPOSED 
MP-CCGBSO BASED METHODS WITH 2, 4, 8, AND 16 SUBPOPULATIONS FOR 

ALL CASES. 

Case NSP Mean Min. Max. Std. 

Case 1 

1 100.00 98.89 101.72 1.06 
2 98.91 98.86 100.05 0.17 
4 98.87 98.85 98.90 0.01 
8 99.19 99.08 99.44 0.06 

16 99.24 99.10 99.77 0.11 

Case 2 

1 100.00 99.43 100.72 0.51 
2 99.47 99.39 100.66 0.18 
4 99.42 99.38 99.46 0.02 
8 99.64 99.56 99.75 0.04 

16 99.63 99.55 99.72 0.03 

Case 3 

1 100.00 99.69 100.47 0.30 
2 99.70 99.69 100.03 0.05 
4 99.69 99.69 99.70 0.00 
8 99.78 99.74 98.87 0.02 

16 99.79 99.75 99.93 0.03 
*: The mean of the original CCGBSO is set to 100% and all values are ratios for the value.  



proposed MP-CCGBSO based method with 4 subpopulations 
can improve the solution quality and minimize the standard 
deviation value the most. 

As future works, the authors will investigate more effective 
evolutionary computation methods for solving overall 
optimization of smart city. If an EV model as a moving battery 
is added to the SC model by IEE of Japan, an automobile sector 
will be considered. 
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8 9.10  0.09  8.03  1.23  9.22  0.05  8.04  1.07  8.86  0.39  
9 10.99  0.21  11.16  0.01  11.12  0.03  10.89  0.19  10.53  0.45  

10 15.02  0.10  15.11  0.09  15.10  0.04  14.87  0.24  14.76  0.29  
11 18.93  0.13  19.00  0.04  19.01  0.07  18.80  0.25  18.47  0.50  
12 19.92  4.94  19.97  4.99  19.98  5.00  19.66  5.25  19.64  5.29  
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17 19.96  3.06  19.94  3.13  19.96  3.10  19.53  3.35  19.76  3.14  
18 19.90  2.21  19.98  2.22  19.97  2.27  19.75  2.26  20.00  1.98  
19 19.89  3.31  19.98  3.21  19.98  3.28  19.74  3.38  19.73  3.17  
20 19.84  1.46  19.93  1.40  19.97  1.31  19.91  1.17  19.45  1.77  
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Total 336.83  27.23  339.53  25.33  339.98  24.85  333.98  28.26  332.96  29.03  
*) A: The quantity of EP output of GTGs. B: The quantity of purchased EP. Total: Summation of values all day. 




