
Niching Evolutionary Computation With a Priori
Estimate for Solving Multi-Solution Traveling

Salesman Problem

Ting Huang1, Yue-Jiao Gong1,∗, Xiaoyan Li2, Xiao-Min Hu3, and Jun Zhang4

1 School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
2 College of Computer and Information Engineering, Henan Normal University, Xinxiang, China

3 School of Computers, Guangdong University of Technology, Guangzhou, China
4 Hanyang University, Seoul, South Korea.

∗ Corresponding author: gongyuejiao@gmail.com

Abstract—Multi-solution traveling salesman problem has di-
verse optimal routes. To obtain the different optimal solutions,
current researches incorporate evolutionary algorithms with
niching techniques. However, without knowing the problem
characteristics in advance, the algorithms suffer from difficulties
in setting the niching parameters. To address this issue, we utilize
a graph neural network to predict a prior knowledge about the
optimal tour length. Then, with the prior estimate, the niche
radius can be adjusted for a specific problem. We develop a
niching evolutionary algorithm that utilizes the calculated niche
radius to identify diverse niches. Besides, a selective local search
strategy is embedded into the algorithm to enhance the search
capability. The experimental results show that the proposed
algorithm has a competitive performance over the comparison
algorithms on the benchmark suite.

Index Terms—Graph neural network, multi-solution traveling
salesman problem, niching evolutionary algorithm, prior estimate
knowledge.

I. INTRODUCTION

Multi-solution traveling salesman problem (MSTSP) has

multiple solutions with the same minimum tour cost. It

means that a traveler can traverse all the cities with several

shortest tour programs. Fig. 1 shows a problem instance

of the MSTSP benchmark suite in [1]. The classical TSPs

have been widely applied in engineering and academic issues,

such as vehicle routing problems [2]–[4], the coding order

optimization problem [5], and the in-port ship routing and

scheduling problem [6]. In the literature, most researches

focus on algorithm design for a global optimum. In practice,

there are generally more than one promising solutions in TSP

(or more exactly, MSTSP). Diverse alternatives can provide

flexible choices for a decision maker, quick response in the

uncertain environment, and traffic balance between different

routes.

This work was supported in part by the Key Project of Science and
Technology Innovation 2030, Ministry of Science and Technology of China,
under Grant 2018AAA0101300, and in part by the National Natural Science
Foundation of China under Grants. 61873095 and U1701267, in part by the
Guangdong Natural Science Foundation Research Team Project under Grant
2018B030312003, and in part by the Guangdong-Hong Kong Joint Innovation
Platform Project under Grant 2018B050502006.

0 10 20

0

10

20

72

0 10 20

0

10

20

72

0 10 20

0

10

20

72

0 10 20

0

10

20

72

Fig. 1. Four optimal solutions of MSTSP9.

Considering the advantages of offering multiple optimal

solutions, it is highly desired to design an effective opti-

mization algorithm for MSTSP. However, so far, only a few

publications are related to MSTSP [1], [7]–[10]. One challenge

of tackling an MSTSP lies in the unknown of the cost and

number of the optimal routes, which are significant to the al-

gorithm design. The existing MSTSP optimization algorithms

are the evolutionary algorithms (EAs) equipped with niching

techniques. The EAs search for promising solutions [11],

[12], while the niching technique enables parallel location

of latent optima by dividing the population into multiple

sub-populations. The niching strategy commonly involves a

sensitive niching parameter that determines how to identify the

promising region and divide the population. The population-

based ant colony optimization (P-ACO) algorithms introduced

in [8] incorporated two niching strategies, i.e., fitness sharing

and crowding, both with fixed parameter settings. The niche-

based ant colony system (NACS) [9] remained or created a

niche according to a niche radius and an acceptable threshold.

The neighborhood-based genetic algorithm (NGA) [1] adopted

a less sensitive niching parameter, the neighbourhood size. In

the niching memetic algorithm (NMA) [10], the neighborhood

size is calculated in an adaptive manner. However, so far,

the niching parameter is problem-dependent and difficult to

appropriately set without the prior knowledge of the specific

instance.

In order to design a more reliable and effective niching ap-

proach, more information about an MSTSP instance could be

valuable. Recently, a graph neural network model is proposed

by Prates et al. [13] to solve a TSP variant, decision TSP

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

(dTSP). The model is trained to yield “yes” or “no” answer

whether the route with cost C exists in the instance. Utilizing

the proposed model, named GNN-TSP, we can predict the

optimal cost of TSP/MSTSP. Based on the prior knowledge,

it is possible to design an effective niching algorithm with

problem-specific information.

In this paper, we propose a niching evolutionary algorithm

with a prior estimate (NEA-PE) to search for optimal solutions

of MSTSP. We first predict the minimum tour cost of an

MSTSP with the model GNN-TSP. Subsequently, the prior

estimate is fed into a niching EA for assisting identifying the

niches. Then the population are enhanced by using selective

local search and undergone with reproduction. Finally, the

elites of the population are distinguished and provided.

The rest of the paper is organized as follows. Section II

introduces the existing MSTSP optimization algorithms and

GNN. Section III describes the proposed algorithm in details.

Experimental results are demonstrated and analysed in Section

IV. Finally, we reach conclusions in Section V.

II. BACKGROUND

A. Multi-Solution Optimization Algorithms for MSTSP

MSTSP is an NP-hard problem as TSP but is more dif-

ficult to be solved. MSTSP requires the solvers to obtain

overall optimal tour programs. Consequently, the optimizers

for MSTSP should not only possess a high search efficiency

for satisfactory solutions but also maintain a good population

diversity for different solutions. With limited search resources,

it is difficult to achieve both of the two targets.

The existing multi-solution optimization algorithms for

dealing with MSTSP include the multi-chromosomal cramping

based genetic algorithm (MCC-GA) [8], the niche-based ant

colony system (NACS) [9], the neighborhood-based genetic

algorithm (NGA) [1], and the niching memetic algorithm

(NMA) [10]. In MCC-GA [8], a chromosome is encoded with

a set of solutions. With the number of included solutions, the

problem space increases exponentially. Besides, without the

prior knowledge of the optima size, it is difficult to find out

the whole optimal solution set. Differently, NACS [9] utilizes

several pheromone matrixes to locate different promising can-

didate solutions. When ants detect a good and distinct solution,

a new pheromone matrix is created based on the solution.

The ants on the different pheromone matrixes are favored

to locate different optima. NACS confronts the problem of

setting a suitable niching parameter to identify the solution

for a new niche. Similarly, NGA [1] aggregates neighbors into

one group and performs the basic reproduction operations of

GA. The evolution and selection are restricted within groups,

so as the population locate diverse optima. However, NGA

encounters the problem of slow convergence and difficulty in

setting an appropriate neighborhood size. NMA [10] develops

a niching memetic algorithm with adaptive neighborhood

strategy. The adaptive neighborhood strategy formulates the

neighborhood size according to the population state. However,

the formulation is built with the relative information of the

MSTSP GNN-TSP NEA-PE
Lest

Fig. 2. The pipeline of the problem solving: the problem instance MSTSP,
the prediction model GNN-TSP, and the problem solver NEA-PE.

evolving population. Therefore, how to appropriately set the

niching parameter is still an open issue.

B. Graph Neural Network Model for a TSP Variant

Recently, searchers have noticed that the studies of neural

network (NN) are limited in regular Euclidean data like images

and text, but NN cannot be applied for non-Euclidean data,

such as graph [14]. The graph neural network (GNN), first

proposed by Scarselli et al. [15], becomes the mainstream of

studying on the non-Euclidean data. TSP is a classical graph

problem with non-Euclidean structure. The problem can be

modeled with vertex (cities) and edges (roads). In 2019, Prates

et al. [13] proposed a GNN-TSP model to tackle a TSP variant,

the decision TSP (dTSP). dTSP requires a binary solution to

indicate whether the problem has a route with a specific cost

C. In the proposed GNN-TSP, both of the weights on the edges

and the predefined cost C are fed to a multilayer perceptron

to obtain an edge embedding. Each vertex embedding updates

itself with a recurrent neural network and communicates with

adjacent vertexes along the edges. After the iterations of mas-

sage exchange and information update, the logit probability is

yielded to give the answer.

III. THE PROPOSED ALGORITHM

In order to obtain more information of MSTSP, we first

utilize the GNN-TSP model to predict the optimal cost of

the problem instance. Note that the model can be trained

beforehand. Subsequently, the prior estimate cost Lest is fed

into the niching EA, named NEA-PE. The pipeline of the

problem solving is illustrated in Fig. 2. In the following parts,

the GNN model and the proposed NEA-PE will be introduced

in details.

A. The Prediction Model: GNN-TSP

GNN-TSP in [13] is essentially a message-passing algo-

rithm on graph. The vertices communicate with adjacency

vertices along the edges. Moreover, the weights on edges are

fed into the model for learning both relational and numerical

information. In this way, we can train a model on TSP/MSTSP.

In the experiment, the authors observed that the answer

for the question with a optimal tour cost C∗ can reach at

around 50% prediction value. Based on this assumption, a

binary search with GNN-TSP was developed to predict the

cost of TSP’s optimum. The essence is that GNN-TSP will

give a more positive answer when the trial value C is larger

than the optimal cost C∗, and vice versa. Based on the rule,

we can approach to C∗ using a binary search. To be specific,

we first initialize the lower/upper boundary of an MSTSP, i.e.,

Llb or Lub, with the sum of the first city size smallest/largest

weight (or length) values. Next, we set the estimate cost Lest

Algorithm 1 Binary search with GNN-TSP

Input: An MSTSP model G
Output: Estimate cost Lest

1: Llb, Lub ← initialBound(G)
2: Lest ← (Llb + Lub)/2
3: while Llb < Lest × (1− δ) or Lest × (1 + δ) < Lub do
4: if GNN-TSP(G, Lest) < 50% then
5: Llb ← Lest

6: else
7: Lub ← Lest

8: end if
9: Lest = (Llb + Lub)/2

10: end while

Algorithm 2 NEA-PE

Input: An MSTSP instance, and the prior estimate cost Lest

Output: A representative solution set S
1: Parent ← Initialize(NP)
2: Evaluate(Parent)
3: Archive ← {}
4: while the termination condition is not reached do
5: Niches ← NichingWithPior(Parent, Lest) // Algorithm 3
6: ENiches ← SelectiveLS(Niches, Archive) // Algorithm 4
7: Offspring ← Reproduction(ENiches)
8: Evaluate(Offspring)
9: Parent ← Selection(Offspring)

10: end while
11: S ← EliteIdentif (Parent, Archive)

with the average of Llb and Lub. Then, we recurrently reset

the Llb or Lub to Lest according to the prediction value given

by GNN-TSP. Besides, Lest is updated with the average of the

new boundaries. Until the termination condition is met, we

obtain the final estimate Lest. The procedure is concluded in

Algorithm 1.

B. The Problem Solver: NEA-PE

For NEA-PE, we adopt the genetic algorithm (GA) [16] as

the baseline. The algorithm first initializes the population with

NP chromosomes and then evaluates the initial population.

Each individual in the population is a candidate solution for

the problem. Next, the evolution iteration is called. The Lest

predicted by GNN-TSP is adopted as a prior knowledge to

calculate the niche radius. According to the calculated niching

parameter, the population is partitioned into several niches

(subpopulations). Then, a selective local search strategy is

performed. Within each niche, we adopt the reproduction

approaches and breed the offspring. The offspring are eval-

uated and adopted the environmental selection to provide

the population in the next generation. The above process is

iterated until the termination condition is satisfied. At the end,

we identify and preserve the elite solutions from the final

population for output. The process is outlined in Algorithm 2.

In the following, we describe the subcomponents of NEA-PE

in details.

1) Niching Strategy With Piror Estimate Cost: The niching

strategy can maintain multiple promising candidates at simul-

taneous in the evolution. However, in the niching approach, the

niche radius is a problem-dependent parameter, which affects

Algorithm 3 NichingWithPior(Parent, Lest)

1: Lbest, Lavg ← UpdateLength(Parent, Lbest)
2: while Parent �= ∅ do
3: Niches ← {}
4: Seed ← FindBest(Parent)
5: r ← CalNicheRadius(Parent, Seed, Lest) // using Eq. (1)
6: sParent ← SortByDist(Parent, Seed, “asc”) // using Eq. (2)
7: for each p in sParent do
8: if D(p, Seed) ≤ r or |Niches| < m then
9: Niches ← Niches + p

10: end if
11: end for
12: Parent ← Parent − Niches
13: Niches ← Niches + Niches
14: end while
15: Parent ← Niches

the algorithm performance largely. By using the GNN-TSP,

we can bring in the prior estimate information to calculate the

niche radius.

The method first updates the best-so-far length Lbest and

the average length Lavg in the population. Next, the niches

are identified and grouped iteratively. To be specific, the best

solution in the unprocessed population is regarded as the seed.

Next, the niche radius r is calculated with the prior estimate

length Lest. Then, the available individuals are sorted by the

distance with the seed (using Eq. (2)), in an ascending order. In

the sequence, the individuals whose distance falls in the niche

radius r belong to the same niche of the seed. If the grouped

member size is smaller than m, the top unsettled individuals

will be supplemented to the niche. Subsequently, the niche is

added to the mating set and the corresponding individuals are

marked as “processed” in the current population. The value of

m is set to 4 to ensure sufficient individuals to conduct the

reproduction. The above procedure is concluded in Algorithm
3

Here, we introduce the two equations mentioned above.

The niche radius measures the size of a “peak”. The words

“niche radius” and “peak” are brought from the concept of the

continuous fitness landscape. There is a similar observation in

the combinatorial optimization filed. Distinguishing different

peaks facilitates the detection for distributed optima. However,

the niche radius is difficult to set, as we are blind to the solu-

tion distribution of the problem. Bringing the prior knowledge,

we can calculate the niche radius with

r =
Lseed − Lest

Lavg − Lbest

(1)

where Lseed is the length of a seed, Lest is the prior estimate

length, Lavg is the average length of the population, and Lbest is

the best-so-far length. The numerator measures the difference

for the seed towards the optimum and the denominator scales

the difference. Note that the value of r is truncated in [0,

1]. Generally, the better of an individual is, the more likely

it locates at top of a peak, and therefore the corresponding

niche radius is smaller. For example, when an individual is

an optimum, the value of r is 0 in theory. That is to say,

the individual is at the peak and do not need any search

Algorithm 4 ENiches ← SelectiveLS(Niches, Archive)

1: count ← 0
2: ENiches ← {}
3: for each niche in Niches do
4: p← FindBest(niche − Archive)
5: if count ≤ N/10 then
6: Archive ← Archive + p
7: Localsearch(p)
8: count++
9: end if

10: randomshuffle(niche)
11: ENiches ← ENiches + niche
12: end for

resource. In another case, when an individual is worse or

equal to Lavg, the value of r may be 1. It may locates at

a valley between hills. The rest unprocessed individuals will

be grouped together to explore for more promising locations.

In the process of the niche identification, the distance

between two solutions should be measured. Note that the

solution of MSTSP is encoded as the permutation of cities.

The distance between two solutions πi and πj is calculated as

follows

D(πi, πj) = 1− |Φ(πi) ∩ Φ(πj)|
N

(2)

where the Φ(πi) and Φ(πj) denote the edge set of the solutions

πi and πj , N is the city size, and |Φ(πi)∩Φ(πj)| is the number

of the common edges of the solutions Φ(πi) and Φ(πj).
2) Selective Local Search Strategy for Niches: After the

niches are identified and settled, we perform selective local

search strategy to improve the search capability of niches. A

2-opt local search [17] is carried out. The 2-opt exchanges

two edges of a solution. As the local search is effective for

local optimum search but is a fitness-evaluation-consumptive

operation, we selectively adopt the local search for the mem-

bers of niches. Besides, we maintain an archive and a counter

to record. The archive preserves the individuals that are to

take local search to avoid the redundant implementation. The

counter is adopted to limit the executions of local search

operations. To be specific, for each niche, we find the best

solution that does not exist in the archive, and then perform

the local search. In each generation, the number of performing

local search is limited within N/10 times, where N denotes

the city size. Besides, the members of each niche are randomly

shuffled. Note that we count one fitness evaluation when the

2-opt local search takes N/4 times, as one complete evaluation

consumes N operations and one local search requires 4 oper-

ations. The selective local search is presented in Algorithm
4.

3) Reproduction Techniques: The reproduction is imple-

mented within niches. GA contains two reproduction tech-

niques: crossover and mutation. The crossover mates two

chromosomes to breed two children. We adopt partially-

mapped crossover [18]. Specifically, the genes between the

exchange points are inherited from its direct parental chro-

mosome directly; other slots take genes from another parental

chromosome; genes are derived from the mapping relationship

TABLE I
MAXFES APPLIED FOR 2 RANGES OF TEST INSTANCES

Two ranges of test instances MaxFEs
MSTSP1 - MSTSP12 6.00E+04

MSTSP13 - MSTSP25 1.20E+06

when the genes to be placed in the slot have already included

in the current chromosome.

The mutation perturbs the chromosome to avoid the pop-

ulation being trapped into the local optimum. We randomly

exchange two genes in the chromosome to perform the muta-

tion.

4) Selection Approch: The parent from the same niche can

breed similar children at a high probability, and the repro-

duction limits the search around the niche. The environmental

selection is also limited within niches. Through this method,

we can maintain multiple promising candidates in different

subregions. For each child, we choose the closest parental

chromosome in the niche to compare and survive the best

one.

5) Elite Idetification Approch: When the evolution iteration

stops, we obtain the final population set in niches. Note that

the archive of the selective local search strategy is identified

as a niche and is appended to the set. The obtained candidates

are somewhere between the in-process and final solutions. The

in-process solutions are inferior and redundancy to provide for

a decision maker. Therefore, we refine the solutions with an

elite identification approach. We distinguish the elite solutions

on two occasions: (a) The length of the candidate solution is

exactly Lbest. (b) The candidate solution has a length shorter

than Lthr and a minimum distance from other selected solutions

larger than a threshold ε. The value of Lthr is set to 1.01×Lbest

and ε is set to 0.2. Through this way, we can preserve the elites

and eliminate the inferiors from the final solution set.

IV. EXPERIMENTS

A. Experimental Setup

The proposed NEA-PE is compared with state-of-the-art

MSTSP algorithms, i.e., the niche-based ant colony sys-

tem (NACS) [9], the neighborhood-based genetic algorithm

(NGA) [1], and the niching memetic algorithm (NMA) [10],

and two discrete multimodal optimization algorithms, i.e.,

crowding GA (CGA) [19] and sharing GA (ShGA) [19].

The algorithms are tested on the 25 MSTSP benchmark suite

in [1]. All the algorithms set the population size as 150 and

terminate when the maximum fitness evaluations (MaxFEs) are

exhausted. The MaxFEs of MSTSPs are listed in Table I. The

parameters of the comparison algorithms are set according to

their publications. The algorithms are independently executed

50 times. To measure the algorithm performance, we adopt

two evaluation indicators, i.e., Fβ and the diversity indicator

(DI). For the obtained solution set of the algorithm, Fβ score

evaluates the quality and DI measures the diversity. The details

of these two indicators can be referred to [1], [10].

TABLE II
Fβ SCORE OF THE ALGORITHMS ON 25 MSTSPS OVER 50 RUNS.
EACH RESULT IS ASSOCIATED WITH A SIGNIFICANT NOTATION IN

THE PARENTHESIS. THE AVERAGE Fβ VALUE AND THE OVERALL

SIGNIFICANT RESULTS ARE SUMMARIZED IN THE LAST TWO ROWS.

Fβ NACS NGA CGA ShGA NMA NEA-PE

MSTSP1 0.684(−) 0.973(−) 0.024(−) 0.026(−) 1.000(≈) 1.000
MSTSP2 0.804(−) 0.959(−) 0.030(−) 0.034(−) 1.000(≈) 1.000
MSTSP3 0.497(−) 0.935(−) 0.078(−) 0.110(−) 1.000(≈) 1.000
MSTSP4 0.724(−) 0.932(−) 0.034(−) 0.034(−) 1.000(≈) 1.000
MSTSP5 0.989(≈) 0.846(−) 0.017(−) 0.017(−) 1.000(≈) 1.000
MSTSP6 0.643(−) 0.877(−) 0.034(−) 0.034(−) 1.000(≈) 0.999
MSTSP7 0.125(−) 0.769(−) 0.261(−) 0.435(−) 0.923(−) 0.992
MSTSP8 0.137(−) 0.578(−) 0.337(−) 0.700(−) 0.772(−) 0.861
MSTSP9 0.768(−) 0.974(−) 0.034(−) 0.034(−) 1.000(≈) 1.000

MSTSP10 0.813(−) 0.969(−) 0.034(−) 0.034(−) 1.000(≈) 1.000
MSTSP11 0.459(−) 0.949(−) 0.071(−) 0.118(−) 1.000(≈) 1.000
MSTSP12 0.090(−) 0.331(+) 0.275(+) 0.919(+) 0.535(+) 0.247
MSTSP13 0.025(−) 0.096(−) 0.255(−) 0.003(−) 0.611(−) 0.943
MSTSP14 0.087(−) 0.172(−) 0.090(−) 0.000(−) 0.883(≈) 0.871
MSTSP15 0.004(−) 0.416(−) 0.219(−) 0.003(−) 0.732(−) 0.904
MSTSP16 0.000(−) 0.054(−) 0.211(−) 0.000(−) 0.554(−) 0.973
MSTSP17 0.000(−) 0.044(−) 0.044(−) 0.000(−) 0.605(−) 0.910
MSTSP18 0.000(−) 0.031(≈) 0.062(−) 0.000(−) 0.571(+) 0.113
MSTSP19 0.000(≈) 0.007(≈) 0.040(+) 0.000(≈) 0.168(+) 0.007
MSTSP20 0.000(−) 0.000(−) 0.015(−) 0.000(−) 0.165(≈) 0.208
MSTSP21 0.012(−) 0.000(−) 0.001(≈) 0.000(−) 0.023(≈) 0.082
MSTSP22 0.000(≈) 0.000(≈) 0.001(≈) 0.000(≈) 0.013(≈) 0.011
MSTSP23 0.000(≈) 0.000(≈) 0.000(≈) 0.000(≈) 0.016(≈) 0.026
MSTSP24 0.000(−) 0.000(−) 0.002(≈) 0.000(−) 0.010(≈) 0.024
MSTSP25 0.000(≈) 0.000(≈) 0.000(≈) 0.000(≈) 0.002(≈) 0.005

Avg. 0.274 0.437 0.087 0.100 0.623 0.647
−/≈/+ 0/5/20 1/5/19 2/5/18 1/4/20 3/16/6

* The figures in the format of (−/≈/+) indicate that the number of the
comparison algorithm are significantly worse than, similar to, or significantly
better than the proposed NEA-PE, respectively.

B. Comparisons With MSTSP Optimization Algorithms

1) Fβ score: The algorithm with a larger Fβ value indicates

high solution quality. We carry out the comparison expeirment

on the Fβ score. Furthermore, a Wilcoxon rank-sum test with

significant level 0.05 is conducted to validate the algorithm

performance in terms of Fβ . Table II summerizes the Fβ

values of NEA-PE and the comparison algorithms and their

significant results. The best results are marked in bold. From

the table, we can see that NEA-PE performs the best 19 out

of 25. NEA-PE has the average Fβ value at 0.647, followed

by NMA with 0.623. The significant results indicate that

NEA-PE significantly outperforms NACS, NGA, CGA, shGA,

and NMA on 20, 19, 18, 20, and 6 out of 25. Overall, the

experimental results in terms of Fβ validate the compititive

performance of NEA-PE.

2) DI: The algorithm with a higher DI values implys that

it has more diverse solution set. The pseudo-color image in

terms of DI is illustrated in Fig. 3. The figure suggests that

CGA, NMA, and NEA-PE have an overall good diveristy.

Particularly, NEA-PE achives the best DI on the MSTSP13-

MSTSP17. NEA-PE is outstanding among the most compari-

son algorithms in terms of DI.

C. Investigation of the Prior Estimate Knowledge

The niche radius is calculated with the prior estimate cost

Lest with the premise: the value of Lest predicted by GNN-

TSP is equal to the minimum tour cost L∗ of the MSTSP.

However, GNN-TSP is a probabilistic model trained with data.

NACS NGA CGA ShGA NMA NEA-PE

MSTSP25
MSTSP24
MSTSP23
MSTSP22
MSTSP21
MSTSP20
MSTSP19
MSTSP18
MSTSP17
MSTSP16
MSTSP15
MSTSP14
MSTSP13
MSTSP12
MSTSP11
MSTSP10

MSTSP9
MSTSP8
MSTSP7
MSTSP6
MSTSP5
MSTSP4
MSTSP3
MSTSP2
MSTSP1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. The pseudo-color plot of 25 MSTSPs with the comparison algorithms
and NEA-PE.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Instance index

0

0.2

0.4

0.6

0.8

1.0

F
�

NEA-PE

NEA-GT

-1.0

0

1.0

2.0

��
��

�
�

�
�
��

�
�

Fig. 4. Line chart of the deviation ratio (upper subgraph) and average Fβ

(lower subgraph) of NEA-PE and NEA-GT on each problem instance.

There is deviation on the prediction to the reality. In this part,

we present the deviation of the prior estimate and investigate

its influence. To conduct the comparison and analyze the

influence of the deviation, we feed the ground-truth cost L∗ to

the proposed algorithm, which results in NEA-GT. In Fig. 4,

we plot the line chart of the deviation ratio (calculated with

(Lest – L∗)/L∗) on each MSTSP instance, and correspondingly

illustrate the average Fβ obtained by NEA-PE and NEA-GT.

From the figure, we can see that GNN-TSP always undervalues

the simple and geometry problems (MSTP1–MSTSP12) and

overvalues the composite problems (MSTSP13-MSTSP25).

In an overall perspective of the lower subgraph, NEA-GT

outperforms or ties with NEA-PE on most MSTSP instances.

To make a further analysis, we study the specific problem

instances. For example, for the MSTSP12, NEA-GT achieves

a higher Fβ than NEA-PE does. GNN-TSP predicts the route

cost with -3.15 absolute deviation from the ground truth. The

underestimation makes NEA-PE to increase the niche size,

which results in a limited number of niches. Consequently,

NEA-PE cannot maintain sufficient number of optima, which

leads to a worse Fβ value. As to another instance, MSTSP20,

NEA-PE performs better than NEA-GT. GNN-TSP predicts

the route cost with 1.27 absolute deviation ratio. MSTSP20

with 45 cities owns a relatively large problem space. The

overestimation makes NEA-PE think that it finds optima

wrongly and hence set a smaller niche size. The shrink of the

search space improves the convergence ability, as it exploits

in a smaller problem space. But generally, as can be observed

in Fig. 4, a more accurate estimator can enhance the search

capability of NEA-PE in most cases.

V. CONCLUSIONS

This paper develops a niching evolutionary algorithm in-

corporating a prior estimate knowledge to deal with MSTSPs.

First, a GNN-TSP model predicts the prior optimal route cost

for the problem. Then, the predicted information is fed into the

niching evolutionary algorithm for the calculation of the niche

size. According to the niche radius, we can identify the niches

from population. Based on the niches, we further strengthen

the search capability and distinguish the elites for the output.

In order to investigate the effectiveness of the proposed

algorithm, NEA-PE is compared with the existing MSTSP

optimization algorithms. The experimental results validate that

NEA-PE outperforms the comparison algorithms in terms of

solution quality and solution diversity. Furthermore, we study

the influence of the prior estimate knowledge on the solution

quality. The summarized results indicate that the algorithm

favors a more accurate optimal length.

REFERENCES

[1] T. Huang, Y.-J. Gong, and J. Zhang, “Seeking multiple solutions of
combinatorial optimization problems: A proof of principle study,” in
Proc. IEEE Symposium Series Comput. Intell. ACM, 2018, pp. 87–88.

[2] K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, “Vehicle
routing problems for drone delivery,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 47, no. 1, pp. 70–85, Jan 2017.

[3] J.-H. Wang, Y. Zhou, Y. Wang, J. Zhang, C. L. P. Chen, and Z.-B. Zheng,
“Multiobjective vehicle routing problems with simultaneous delivery and
pickup and time windows: formulation, instances, and algorithms,” IEEE
Trans. Cybern., vol. 46, no. 3, pp. 582–594, Mar. 2016.

[4] R. Roberti and M. Wen, “The electric traveling salesman problem with
time windows,” Transp. Res. Part E: Logistics Transp. Rev., vol. 89, pp.
32–52, 2016.

[5] A. Zheng, Y. Yuan, J.-T. Zhou, Y.-F. Guo, H.-T. Yang, and O. C. Au,
“Adaptive block coding order for intra prediction in HEVC,” IEEE Trans.
Circuits Syst. Video Technol., vol. 26, no. 11, pp. 2152–2158, Nov 2016.

[6] M. J. Arnesen, M. Gjestvang, X. Wang, K. Fagerholt, K. Thun, and J. G.
Rakke, “A traveling salesman problem with pickups and deliveries, time
windows and draft limits: Case study from chemical shipping,” Comput.
& Operations Res., vol. 77, pp. 20 – 31, 2017.

[7] S. Ronald, “Finding multiple solutions with an evolutionary algorithm,”
in Proc. IEEE Int. Conf. Evol. Comput., vol. 2, Nov. 1995, pp. 641–646.

[8] D. Angus, “Niching for population-based ant colony optimization,” in
IEEE Int. Conf. E-Science Grid Comput., Dec 2006, pp. 115–115.

[9] X.-C. Han, H.-W. Ke, Y.-J. Gong, Y. Lin, W.-L. Liu, and J. Zhang,
“Multimodal optimization of traveling salesman problem: A niching ant
colony system,” in Proc. Genet. Evol. Comput. Conf. Companion. ACM,
2018, pp. 87–88.

[10] T. Huang, Y.-J. Gong, S. Kwong, H. Wang, and J. Zhang, “A niching
memetic algorithm for multi-solution traveling salesman problem,” IEEE
Trans. Evol. Comput., pp. 1–1, 2019.

[11] Z. Liu and Y. Wang, “Handling constrained multiobjective optimization
problems with constraints in both the decision and objective spaces,”
IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 870–884, 2019.

[12] Z. Liu, Y. Wang, S. Yang, and K. Tang, “An adaptive framework to
tune the coordinate systems in nature-inspired optimization algorithms,”
IEEE Trans. Cybern., vol. 49, no. 4, pp. 1403–1416, 2019.

[13] M. Prates, P. H. Avelar, H. Lemos, L. C. Lamb, and M. Y. Vardi,
“Learning to solve NP-complete problems: A graph neural network for
decision TSP,” in Proc. AAAI Conf. Artificial Intell., vol. 33, 2019, pp.
4731–4738.

[14] J. Zhou, G.-Q. Cui, Z.-Y. Zhang, C. Yang, Z.-Y. Liu, L.-F. Wang, C.-C.
Li, and M.-S. Sun, “Graph neural networks: A review of methods and
applications,” 2018.

[15] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan 2009.

[16] T. Huang, Y. Gong, Y. Zhang, Z. Zhan, and J. Zhang, “Automatic
planning of multiple itineraries: A niching genetic evolution approach,”
IEEE Trans. Intell. Transp. Syst., pp. 1–16, 2019.

[17] S. Lin, “Computer solutions of the traveling salesman problem,” Bell
System Technical Journal, vol. 44, no. 10, pp. 2245–2269, 1965.

[18] D. E. Goldberg, R. Lingle et al., “Alleles, loci, and the traveling salesman
problem,” in Proc. Int. Conf. Genet. Algorithms Their Appl., vol. 154.
Lawrence Erlbaum, Hillsdale, NJ, 1985, pp. 154–159.

[19] R. Thomsen, “Multimodal optimization using crowding-based differen-
tial evolution,” in IEEE Congr. Evol. Comput., vol. 2, 2004, pp. 1382–
1389.

