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Abstract We propose a new clustering technique called 
HeMI++. It uses cleansing and cloning operations that help to 
produce sensible clusters. HeMI++ learns necessary properties 
of a good clustering solution for a dataset from a high-quality 
initial population, without requiring any user input. It then 
disqualifies the chromosomes that do not satisfy the properties 
through its cleansing operation. In the cloning operation, 
HeMI++ replaces the chromosomes by high-quality 
chromosomes already found in the initial population.  We 
compare HeMI++ with six (6) existing techniques on twenty (20) 
publicly available datasets using the Tree Index metric. Our 
experimental results indicate a clear superiority of HeMI++ 
over existing methods. We also apply HeMI++ on a brain 
dataset and demonstrate its ability to produce sensible clusters. 

Keywords data mining, clustering, genetic algorithms,
artificial intelligence (AI)

I. INTRODUCTION

A. Clustering
Clustering is a well-known and an important technique

that aims to group the similar records in one cluster and 
dissimilar records in different clusters [1-6]. Clustering has 
enhanced data analysis in a wide range of areas such as 
business [11], machine learning [12] social network analysis 
[13] and medical imaging [14].

K-means [5] is among the top ten most used clustering
techniques [15] for its simplicity and a low complexity 
of  time where n is the size of the data set and d is the 
dimension. Although it is popular for its simplicity, it also 
has several well-known drawbacks. Fundamentally, K-
means is statistically biased (even on data from a mixture of 
multivariate normal distributions with equal variance and 
just one dimension, K-means converges to incorrect means). 
Another issue commonly attributed to K-means is its 
requirement of a user-defined number ( ) of clusters [6, 16]. 
In reality, it can be difficult for a user (data analyst) to 
estimate the suitable number of clusters in advance.  

Because K-means is essentially a hill-climber/gradient 
descent search method on a least  loss, K-means has 
a tendency to converge to poor local optima [10,16,17]. The 
random selection of the initial cluster centers in K-means is 
also considered to be a major drawback since it often results 
in a poor-quality final clustering solution [6,7]. Arthur and 

Vassilvitskii [6] proposed a clustering technique called K-
means++ that shows a theoretical competitive ratio if 
initialisation is cleverly used. However, experimental 
evaluations show that this variant does not alleviate K-means 
problems in practice [7]. 

 To overcome these limitations in recent years, many 
evolutionary algorithms such as stochastic search [18], 
simulated annealing [19] and genetic algorithms [2-4,7] for 
clustering have been proposed that achieve encouraging 
results.  

Genetic algorithms (GA) use randomised search and 
optimisation techniques emulating the concepts of natural 
activity of genes, individual selection, and the evolutionary 
process [2-4,7]. Typically, in GA for clustering, a 
chromosome is an encoding of a clustering solution, and a 
gene within a chromosome corresponds to a vector that 
encodes the centre of a cluster.  

However, there has some limitations on the existing GA-
based clustering techniques. Typically, in the initial 
population, the number of genes of a chromosome are 
generated randomly. The genes are also selected randomly 
from a dataset instead of careful consideration [3,4]. 
Carefully genes selection increases the possibility of getting 
high-quality chromosome in the initial population (recall the 
theoretical result of K-means++). Having high-quality 
chromosomes in the initial population improves speed as it 

 
Rahman and Islam [2] presented a GA-based clustering 

technique known as GenClust that produces high-quality 
chromosomes in the initial population. However, users must 
provide a set of radius values for the chromosomes in the 
initial population. It can be difficult for a user to provide a 
suitable set of radius values.  

Our previous technique, HeMI [7] produces high-quality 
chromosomes in the initial population without requiring any 
user-defined parameter and produces good-quality clustering 
results. We recently proposed a genetic algorithm-based 
clustering technique called GenClust++ [20] where we took 
a slightly similar approach for the initial population of HeMI. 
In the initial population, GenClust++ uses K-means [5] or K-
means++ [16] multiple times with different values for the 
number k of clusters. That is, each value in {  is 
used as the number (k) of clusters for K-means or K-
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means++. Thus, at least nine different clustering solutions 
progress in GenClust++ to a first ranking and culling phase. 
The initial population is probabilistically elected under a 
regime where chromosomes with higher cluster quality have 
greater chance to survive. 

However, unlike GenClust++, HeMI does not select the 
initial chromosomes probabilistically, instead, HeMI selects 
only the best chromosomes based on their fitness values. 
Moreover, HeMI++ generates of the initial population 
from a deterministic phase and from a random phase. 
In the deterministic phase, HeMI picks the initial population 
from the pool of chromosomes obtained through K-means 
using the value of k ranging from 2 to 10. In many data sets, 
the true number of clusters is more than 10. To handle such 
situations, in the random phase HeMI generates the initial 
population randomly with the value of k ranging from 2 to 

 (where is the number of records in a dataset). 
However, HeMI also has some limitations. Although it 

produces high-quality chromosomes in the initial population, 
it does not take full advantage of them since they are not used 
in any other genetic operations. Through our intelligent use 
of the high-quality initial population, the genetic operations 
could be made more effective. It also does not use any data-
driven approach to learn the necessary properties of sensible 
clusters. Sometimes it produces non-sensible clustering 
solutions. An example, of a non-sensible clustering solution 
can be two clusters where one cluster has only one record and 
the other cluster has all other records. We discuss this in the 
paper as we go.  

Earlier, we showed [8] that recent clustering techniques 
such K-means [5], K-means ++ [6], AGCUK [3], GAGR [4], 
GenClust [2] and HeMI [7] produces non-sensible cluster: 
they can obtain a huge number of clusters, and sometimes 
they derive only two clusters, with one cluster holding one 
record, and the other cluster contains all remaining records. 
Interestingly, these clustering solutions often attain high 
fitness values for existing evaluation criteria. Here, we 
propose a new clustering technique called HeMI++ that 
produces sensible clusters with high fitness values. 

B. Main contributions of this study
In this paper we propose a new clustering technique

called HeMI++. HeMI++ is inspired by our previous 
techniques called CSClust [8] and HeMI [7]. However, 
HeMI++ has significant differences from those methods [7, 
8] as follows.

Technical contributions:
 The use of multiple streams in HeMI++:  

CSClust did not use multiple streams.
HeMI used multiple streams, but it did not
learn the good clustering property from a
data set and did not apply that knowledge
for producing good quality clusters.
HeMI++ uses multiple streams; like HeMI
and unlike CSClust. Unlike HeMI, it learns
the good clustering property from a data set
and applies that to produce clustering
solutions.

Learning properties of good clustering solutions: 
HeMI did not learn the properties of good
clustering solutions.
CSClust learnt some properties of good
clustering solutions by applying the DB-
Index [26] on the initial population.
However, this approach was problematic
since the selection was biased by the
inductive principle of the DB-Index.
HeMI++ learns properties of a good
clustering solution through a new approach
(without using the DB-Index), and then
applies the knowledge in producing its
clustering solutions.

Experimental contributions: 
 Comparison with more techniques and data sets 

We test HeMI++ against six other existing
techniques on twenty (20) natural data sets.
CSClust was compared with five existing
techniques on ten (10) data sets.

 Complexity analysis: 
We also analyze the complexity of HeMI++
and compare it with six other existing
techniques, whereas in CSClust we did not
present any complexity analysis.

In that follows, the proposed technique is described in 
Section II. In Section III, we discuss experimental results and 
Section IV provides the concluding remarks.   

II. OUR TECHNIQUE

A. Main Components of HeMI++
We first mention the main steps of HeMI++ as follows

and then explain each of them in detail. 

BEGIN 
 Step-1: Normalization 
DO: k=1to m /* m is the user defined number of streams */ 
      Step-2: Population Initialization 
END 
 Step-3: Selection of Sensible Properties 
DO: j=1to G /* G is the user defined number of intervals*/
    DO: k=1to m /* m is the user defined number of streams */

DO: t=1to I /* I=10; I is the number of iterations */ 
Step-4: Noise-Based Selection 
Step-5: Crossover Operation 
Step-6: Twin Removal 
Step-7: Three Steps Mutation Operation 
Step-8: Health Improvement Operation 
Step-9: Cleansing Operation 
Step-10: Cloning Operation 
Step-11: The Elitist Operation 

 END  
     END  
      Step-12: Neighbour Information Sharing 
END 
Step-13: Global Best Selection 

END 



a. Component 1: Normalization

HeMI++ first takes a data set  as input and then
normalizes each attribute of the data set  in order to 
consider each attribute equally regardless of their domain 
size. This step is the same as HeMI [7]. 

b. Component 2: Multiple Stream

HeMI++ uses the multiple stream approach of HeMI in 
order to take the advantage of using a big population through 
multiple streams where each stream contains relatively small 
number of chromosomes. It can process each stream 
separately in parallel in order to reduce the time complexity. 
It generates the chromosomes for each stream separately 
through the population initialization. Various components 
such as noise-based selection, crossover and mutation are 
applied on each stream separately. 

c. Component 3: Population Initialization

HeMI++ generates the initial population of 
chromosomes,  from the deterministic phase and  
from the random phase. The value of  in HeMI++ is set 
to 20. This component is same as HeMI [7]. 

d. Component 4: Selection of Sensible Properties

HeMI++ selects  top chromosomes from the generated
initial chromosomes based on their fitness (DB value). The 
Davis Bouldin Index [26] is biased towards a low number of 
clusters and a low number of records in a cluster [8]. 
Therefore, HeMI++ finds the necessary properties of a 
sensible clustering solution. The properties of a sensible 
clustering solution are then used in each generation in order 
to ensure that chromosomes in a population do not contradict 
the properties. 

In the initial population, HeMI++ produces 9×4=360 
chromosomes as it has 4 streams. Each stream generates 90 
chromosomes. HeMI++ finds the minimum number of 
records in a cluster for each of the 360 chromosomes. It then 
sorts these number in descending order and calculates the 
median of these numbers. The median value is then used as a 
property (of a sensible clustering solution) relating to the 
minimum number of records in a cluster. HeMI++ similarly 
finds the minimum and maximum number of clusters in a 
clustering solution, based on the 360 chromosomes. These 
values are then used in the cleansing operation in order to 
identify a sensible clustering solution. 

Note that CSClust [8] uses a similar component. 
However, there are some significant differences, First, 
CSClust does not use multiple streams and hence it finds the 
properties based on 90 chromosomes of its single stream. 
Second, in order to find the minimum number of records in a 
cluster CSClust identifies the best 20 chromosomes 
according to their DB Index values and then picks the 
minimum number of records in a cluster out of all clusters in 
these 20 chromosomes. Since the best 20 chromosomes are 
selected based on their DB Index values, CSClust also suffers 

from the drawbacks of DB Index in identifying the properties 
of a sensible clustering solution.  

e. Component 5: Noise Based Selection

The chromosomes of two generations are compared in 
order to select the chromosomes for the consequent genetic 
operations. HeMI also uses this component.  

f. Component 6: Crossover Operation

All chromosomes in a population participate in crossover 
pair by pair. The best chromosome (available in the current 
population) is selected as the 1st chromosome of the pair and 
the 2nd chromosome of the pair is selected probabilistically 
using the roulette wheel technique [6, 9]. The probability of 
a chromosome is computed as   Here,  
is the fitness of the chromosome  and  is the size of the 
current population 

There are many approaches for crossover such as single-
point, multi-point, arithmetic and path-based crossover [2, 4, 
6, 20]. However, many existing techniques [2, 6, 7] use a 
single-point crossover, and it is commonly used in genetic 
algorithms. Moreover, Peng et al. [21] suggest that a single-
point crossover performs better than a multi-point crossover. 
Therefore, HeMI++ uses a single-point crossover where each 
chromosome of a pair is randomly divided into two 
segments, where some genes of the chromosome fall in one 
segment and other genes fall in the other segment. A segment 
of the first chromosome is then swapped with a segment of 
the second chromosome. Thus, two offspring chromosomes 
are generated from two-parent chromosomes. 

g. Component 7: Twin Removal

We use the twin removal approach [2] to change/remove 
the identical genes. If a chromosome has two identical genes 
and, if the length of the chromosome is more than two, then 
HeMI++ deletes one of the two identical genes. If the number 
of genes of a chromosome is two and both genes are identical, 
HeMI++ then randomly changes an attribute value of a gene 
to ensure that there are no identical genes.   

h. Component 8: Three Steps Mutation Operation

The mutation operation of the proposed technique 
changes each chromosome using three operations: division, 
absorption and a random change This component is the same 
as HeMI [7].  

i. Component 9: Health Improvement Operation

This component aims to continuously improve the health 
of chromosomes within a population in order to ensure the 
presence of healthy (high-quality) chromosomes in each 
generation. This component is the same as HeMI [7].  

j. Component 10: Cleansing Operation



The aim of this component is to identify the 
chromosomes in a population with sensible and non-sensible 
solutions. This component is the same as CSClust [8]. 

k. Component 11: Cloning Operation

The cloning operation replaces the sick chromosomes 
found in the cleansing operation. This component is the same 
as CSClust [8]. 

l. Component 12: The Elitist Operation

The elitist operation carries the best chromosome 
throughout the generations and pass it to the next generation 
in order to improve the quality of the population [2-4, 6, 20]. 
This component is same as HeMI [7].   

m. Component 13: Neighbor Information Sharing

HeMI++ uses the neighbor information sharing approach 
of HeMI [7] in order to share/exchange the best chromosome 
among neighboring streams at a regular interval such as at 
every 10th iteration. This component is the same as HeMI [7]. 

n. Component 14: Global Best Selection

HeMI++ uses this component in order to find the global 
best chromosome among multiple streams.  This component 
is the same as HeMI [7]. 

B. The HeMI++ Algorithm
We now present the HeMI++ algorithm, whose main

steps is shown in Section 2 (A). HeMI++ first takes a data set 
D as an input and normalizes all attributes separately. It then 
takes the user defined number of multiple streams as HeMI. 
The default number of multiple streams in HeMI++ is set 
to 4.  

HeMI++ then produces initial chromosomes for each 
stream separately through the Population Initialization. It 
then applies the Selection of Sensible Properties like CSClust 
to find the necessary properties of a sensible clustering 
solution. HeMI++ applies the noise-based selection 
operation like HeMI does. 

HeMI++ then sequentially applies the Crossover, Twin 
Removal, Mutation and Health Improvement operation. 
HeMI++ applies the cleansing and cloning operation in order 
to increase the chance that all chromosomes in a population 
do not contradict with the properties of a sensible solution.  

It then performs the Elitist operation to find the best 
chromosome. In order to take the advantage of multiple 
streams, HeMI++ then applies the neighbor information 
sharing component like HeMI does at regular intervals. In 
this study, the default value of the interval is 10 iterations. At 
the end of all iterations, HeMI++ applies the Global Best 
Selection operation like HMI does to find the final clustering 
solution.   

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. The Data Sets and the Evaluation Criteria
We empirically compare our proposed technique called

HeMI++ with six existing techniques namely K-means [5], 
K-means ++ [6], AGCUK [3], GAGR [4], GenClust [2] and
HeMI [7] on a brain data set (CHB-MIT data set) [24, 25].
HeMI++ is also compared with these existing techniques on
20 natural data sets that are available from the UCI machine
learning repository [22]. HeMI++ is compared with these
techniques because they are recent, and better than many
other techniques as shown in the literature [2-4,7,8]. Detailed
information about the data sets is presented in Table 1.

TABLE 1: A brief description of the data sets 

Data set No. of Records  
Hepatitis (HT) 155 
Glass Identification (GI) 214 
Statlog Heart (STH) 270 
Vertebral Column (VC) 310 
Ecoli (EC) 336 
Leaf (LF) 340 
Liver Disorder (LD) 345 
Credit Approval (CA) 690 
Breast Cancer Wisconsin Original (WBC) 699 
Blood Transfusion (BT)  748 
Pima Indian Diabetes (PID) 768 
Statlog Vehicle Silhouettes (SV) 846 
Bank Note Authentication (BN) 1,372 
Contraceptive Method Choice (CMC) 1,473 
Yeast (YT) 1,484 
Image Segmentation (IS) 2,310 
Wine Quality (WQ) 4,898 
Page Blocks Classification (PBC) 5,473 
MAGIC Gamma Telescope (MGT) 19,020 
Chess (King-Rook vs. King) (CKRK) 28,056 

B. The Parameters used in the Experiments
For the experimentation of AGCUK [3], GAGR [4]

GenClust [2], HeMI [7] and HeMI++ the population size is 
set to be 20 and the number of iterations/generations is set to 
be 50. In order to ensure a fair comparison among the 
techniques we maintain this consistency.  

In the experiments, the number of iterations of K-means, 
K-means++, and the number of iterations of K-means in
GenClust set to be 50.  The number of clusters  in GAGR,
K-means and K-means++ is generated randomly. The
threshold value for K- means is defined as 0.005.

The   and  values in AGCUK and HeMI are set 
to 1 and 0 respectively. For the cluster evaluation technique 
Tree Index [9,10], we need to build a decision tree from a 
data set where records are labelled on the clustering result 
that is being evaluated. While building the decision tree we 
need to assign a minimum number of records for each leaf. 



In this study we assign 1% of records of a data set, as long 
as it stays within the range between 2 to 15. If 1% of records 
is less than 2 then we assign 2, and if 1% of records is more 
than 15 then we assign 15. On each data set, we run HeMI++ 
20 times and we present the average clustering results of each 
technique. 

C. Brain Data Set Pre-processing
We prepared the CHB-MIT Scalp EEG data set [2,25]

which contains EEG recordings of 22 epileptic patients from 
different age groups.  

Most of the cases 23 channels were used, only in some 
cases 24 or 26 channel were used. We divided the data in 
epochs of 10 seconds for each channel. We then calculated 
the Maximum (Max), Minimum (Min), Mean, Standard 
deviation (Std), Kurtosis, Skewness, Entropy, Line length 
and Energy for each epoch. Therefore, from each channel of 
one-hour data we get 360 records containing nine attributes: 
Max, Min, Mean, Std, Kurtosis, Skewness, Entropy, Line 
Length and Energy. 

For the experiments reported in this article, we prepared 
one-hour data of one patient. This data set has the recordings 
of 23 channels. Hence, from all 23 channels altogether, we 
obtain 360*23=8280 records. In this data set, the patient 
experienced a seizure for around 40 seconds (from the 2996th 
second to 3036th second). During this period, we have 5 
records. These records are considered as seizure records and 
all other records are considered as non-seizure records. 
Therefore, from the chb_01_03 data set altogether, we get 
23*5= 115 seizure records and 8165 non-seizure records. 

D. Evaluation of  HeMI++ and other techniques on the
MIT-chb01_03 data set

In this section, we empirically compere HeMI++ with K-
means [5], K-means ++ [6], AGCUK [3], GAGR [4], 
GenClust [2] and HeMI [7] on a brain data set (MIT-
chb01_03) through visual analysis of clustering results. We 
also compare all the techniques based on Tree Index [9,10] 
in order to validate the correctness of Tree Index evaluation. 
In this section, we use three attributes (Max, Min and Std) of 
the data set in order to plot the records so that we can see the 
records and their orientations. Such plots also help us to see 
clustering results and their appropriateness. 

TABLE 2. Clustering results of HeMI++ and other techniques on (MIT-
chb01_03) based on Tree Index 

Clustering Techniques Tree Index (lower the better) 
HeMI++ 0.55 

HeMI  
GenClust 5.27 
GAGR 19.89 

AGCUK 18.19 
K-means 27.41 

K-means++ 31.01 

Fig.1 shows the clustering result of HeMI on the CHB-
MIT Scalp EEG (chb01-03) data set. HeMI generates two 
clusters but one cluster contains only one record and all other 
records belong to the other cluster. Clearly, this does not 

appear to be a sensible clustering. From Table 2 we can see 
that according to Tree Index, HeMI receives a poor 
evaluation result which is . Therefore, the evaluation made 
by Tree Index matches with the manual evaluation (the visual 
analysis of the plotted records). 

Fig.2 shows the clustering result of AGCUK where it 
generates two clusters: seizure and non-seizure. Mainly, the 
non-seizure records appear in Cluster 1 and a mixture of 
seizure and non-seizure records are found in Cluster 2. 
Cluster 1 has 2836 non-seizure records (dots in Fig.2) and 0 
seizure records (plus signs in Fig.2), while Cluster 2 has 5389 
non-seizure records (triangles in Fig.2) and 55 seizure 
records (circles in Fig.2). We can clearly see that while the 
clustering result is more sensible than the clustering result of 
HeMI (see Fig.1), it is still not a good clustering result.  

Fig.3, Fig.4, Fig.5 and Fig.6 show the clustering results 
of GAGR, GenClust, K-means and K-means++ where 
GAGR, GenClust, K-means and K-means++ produce 56, 
477, 28 and 13 clusters, respectively. Considering that the 
data set has only two types of records: Seizure and Non-
seizure these clustering results with so many clusters also do 
not seem appropriate. This is also identified by Tree Index 
evaluation technique as shown in Table 2. 

As we can see in Fig.7, HeMI++ produces a sensible 
clustering solution as it matches with the original orientation 
of records in the data set. It produces two clusters: Cluster 1 
and Cluster 2. Cluster 1 contains 8219 non-seizure records 
and 38 seizure records, while Cluster 2 contains 6 non-
seizure records and 17 seizure records. As a result, HeMI++ 
also achieves a good evaluation value based on Tree Index as 
shown in Table 2. This re-confirms that Tree Index produces 
better evaluation value for better clustering solutions.  

E. Experimental Results on All Techniques on 20 Real
Life Data Sets based on Tree Index

We now experimentally evaluate the performance of 
HeMI++ by comparing it with K-means, K-means++, 
GAGR, AGCUK, GenClust and HeMI on 20 other real-life 
data sets. For each data set, we run each technique 20 times. 

Fig.1. Clustering result of HeMI on the CHB-MIT Scalp EEG (chb01-
03) data set



Fig. 2. Clustering result of AGCUK on the CHB-MIT 
Scalp EEG (chb01-03) data set Fig. 3. Clustering result of GAGR on the CHB-

MIT Scalp EEG (chb01-03) data set 

Fig. 4. Clustering result of GenClust on the CHB-
MIT Scalp EEG (chb01-03) data set 

Fig. 5. Clustering result of K-means on the CHB-
MIT Scalp EEG (chb01-03) data set 

Fig. 6. Clustering result of K-means++ on the CHB-MIT 
Scalp EEG (chb01-03) data set  Fig.7. Clustering result of our proposed technique, 

HeMI++ on the CHB-MIT Scalp EEG (chb01-03) data 
set 



Fig.8 shows the total score of all techniques on 15 
numerical data sets based on Tree Index [9,10]. In this 
scoring system, the technique with the best clustering result 
gets 7 points and the technique with the worst result get 1 
point - for each data set. Fig.8 shows the total scores of a 
technique over all data sets. The bar graph shows that 
HeMI++ achieves higher score than all other techniques.  

Fig. 8. Scores of the techniques on 15 numerical data sets based on Tree 
Index 

TABLE 3. Clustering results of HeMI ++ and other techniques on 5 
categorical data sets based on Tree Index 

Data set  GenCslust HeMI HeMI++ 
HT 1.94 0.59 0.46 
STH 1.75  1.38 
CA   1.57 
CMC 0.78  2.51 
CKRK 60.39 2.23 1.39 

We compare HeMI++ with GenClust and HeMI on 5 
categorical data sets (data sets that have only categorical 
attributes or both the categorical and numerical attributes). 
For each data set, we ran each technique 20 times and present 
the average clustering result. Table 3 shows that HeMI++ 
achieves better results in 4 out of 5 data sets than GenClust. 
HeMI++ performs better than HeMI in 5 out of 5 categorical 
data set.  

F. Statistical Friedman Test
We now carry out statistical Friedman test [23] in order

to evaluate the superiority of the results (Silhouette 
Coefficient) obtained by HeMI++ over the results obtained 
by the existing techniques including HeMI. We compute the 
Silhouette Coefficient for each algorithm according to rank-
ordering as it is used in the Friedman Test [23]. Among the 7 
competing algorithms, the one providing the best Silhouette 
Coefficient is assigned a Rank of 1, the second best to the 
Silhouette Coefficient receives a Rank of 2 and so on (hence, 
the lower the average rank the better result). The result of ties 
is resolved by assigning the average of the sequential 
Silhouette Coefficient ranks they would have received. The 
Silhouette Coefficient Rank of each competing algorithm for 
each data set is presented within parentheses. The bottom 
row of Table 4 presents (within parentheses) the average of 
Silhouette Coefficient Rank (in short, Rank) of each 
competing algorithm from all data sets considered. 

From Table 4, we can see that K-means never provides 
the best Silhouette Coefficient (Rank: 4.26), K-means++ also 
for no data sets (Rank: 4.40), GAGR as well for no data sets 
(Rank: 4.60), AGCUK for no data sets (Rank: 4.20), 
GenClust for 2 data sets (Rank: 3.50), HeMI for no data sets 
(Rank: 5.90) whereas HeMI++ achieves the best Silhouette 

TABLE 4: Silhouette Coefficient rank of the techniques based on Friedman Test [23] 

Data set Tree Index (lower the better) 
K-means K-means++ GAGR AGCUK GenClust HeMI HeMI++ 

GI 2.11 (4) 1.87 (3) 3.47 (6) 0.92 (2) 2.47 (5)  0.31 (1) 
VC 4.94 (4) 4.11 (3) 5.37 (5)  3.55 (2)  1.53 (1) 
EC   6.12 (2)    2.94 (1) 
LF 2.64 (3) 3.05 (4) 3.53 (5) 1.32 (2) 3.71 (6)  0.95 (1) 
LD 6.31 (6) 4.85 (5) 7.52 (7) 1.21 (3) 4.28 (4) 0.46 (2) 0.24 (1) 
WBC 5.92 (5) 7.07 (6) 8.24 (7) 3.21 (3) 5.58 (4) 2.38 (2) 1.28 (1) 
BT 5.81 (4) 5.73 (3) 0.47 (2)    0.27 (1) 
PID 13.40 (4) 14.19 (5) 6.20 (3)  3.72 (1)  6.19 (2) 
SV 5.18 (6) 3.25 (4) 4.46 (5) 1.2 (2) 3.05 (3)  0.00 (1) 
BN 4.25 (4) 5.59 (6) 4.64 (5) 1.89 (2) 2.51 (3)  0.77 (1) 
YT 13.78 (4) 12.98 (3)   4.87 (2)  2.44 (1) 
IS 3.12 (4) 2.48 (3) 5.19 (5) 2.11 (2)   1.53 (1) 
WQ 32.64 (4) 47.09 (5) 15.37 (3)  7.98 (1)  13.26 (2) 
PBC 13.15 (4) 14.18 (5) 10.21 (3)  4.77 (2)  0.44 (1) 
MGT 62.06 (3) 128.61 (6) 100.09 (5) 72.92 (4) 30.67 (2)  18.89 (1) 
Average rank (4.26) (4.40) (4.60) (4.20) (3.50) (5.90) (1.13) 



Coefficient in 13 out of 15 data sets (Rank 1.13). We now 
conduct a statistical significance test [23] in order to assess 
the superiority of HeMI++ over the existing techniques The 
Friedman [23] test is a non-parametric test used to compare 
multiple algorithms on multiple data sets. For our instance of 
the Friedman test, the null hypothesis is that all algorithms 
are equivalent. If the null hypothesis is rejected, we can 
proceed with a post-hoc test such as the Bonferroni-Dunn 
test [23].  The Friedman statistics is distributed according to 

 with   degrees of freedom when  (the number of 
competing algorithms) and  (the number of data sets) are 
big enough (as a rule of a thumb,   and   [62]. 
Iman and Davenport [64]  
is undesirably conservative and derived a better statistic

. With 7 algorithms and 15 data sets, the value of

is calculated to be11.64. With  =0.05 the critical value 
of  is calculated to be 2.13. 

We can see that the critical value remains lower than the 
pair wise differences of ranks between the control clustering 
algorithm (HeMI++) and all other contending algorithms (K-
means vs HeMI++: 3.13, K-means++ vs HeMI++: 3.26, 
GAGR vs HeMI++: 3.46, AGCUK vs HeMI++: 3.06, 
GenClust vs HeMI++: 2.36 and HeMI vs HeMI++: 4.76) 
indicating that HeMI++ performs better (in terms of 
Silhouette Coefficient) than all other algorithms on 15 real-
life data sets.   

IV. CONCLUSION
In this paper, we propose a new clustering technique 

HeMI++ that first learns important properties of sensible 
clustering solutions and then applies this information in 
producing its clustering solutions. When we apply HeMI++ 
on a brain data set we find that the proposed clustering 
technique overcomes the existing problem and produces 
sensible clustering solutions. 

We empirically compared our proposed clustering 
technique (HeMI++) with six existing techniques on 20 
publicly available data sets in terms of our Tree Index 
evaluation technique. We find that HeMI++ achieves the best 
clustering solutions in 17 out of 20 data sets. Moreover, we 
graphically visualise the clustering results of HeMI++ on a 
brain data set and find the results to be more sensible than 
others. 
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