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Abstract—We use potential fields tuned by genetic algorithms
to dynamically reconfigure unmanned aerial vehicles networks to
serve user bandwidth needs. Such flying network base stations
have applications in the many domains needing quick temporary
networked communications capabilities such as search and rescue
in remote areas and security and defense in overwatch and
scouting. Starting with an initial deployment that covers an
area and discovers how users are distributed across this area of
interest, tuned potential fields specify subsequent movement. A
genetic algorithm tunes potential field parameters to reposition
UAVs to create and maintain a mesh network that maximizes
user bandwidth coverage and network lifetime. Results show
that our evolutionary adaptive network deployment algorithm
outperforms the current state of the art by better repositioning
the unmanned aerial vehicles to provide longer coverage lifetimes
while serving bandwidth requirements. The parameters found by
the genetic algorithm on four training scenarios with different
user distributions lead to better performance than achieved by
the state of the art. Furthermore, these parameters also lead to
superior performance in three never before seen scenarios indi-
cating that our algorithm finds parameter values that generalize
to new scenarios with different user distributions.

Index Terms—UAV network, distributed control, genetic algo-
rithms, potential fields

I. INTRODUCTION

Unmanned Aerial Vehicle (UAV) networks have many
potential applications in emergency, defense, and security
applications where there is a need to quickly deploy a com-
munication network. Flying UAVs can serve as base stations
for civilian and military uses such as search, rescue, surveil-
lance, patrolling, and mapping, especially in difficult, remote
terrain [1]. However, many challenges remain before large
number of UAVs can be efficiently and effectively deployed.
For example, in a search and rescue scenario we have to
first distribute available UAVs over an area of interest so
that we can cover the entire area, then dynamically continue
repositioning UAVs to efficiently (save battery life) serve
found users. Repositioning enables maintaining connectivity
to a fixed operations Command Center (CC) while serving
moving users and changing bandwidth needs [2].

There are only some of the many issues in creating and
maintaining a mesh network. This paper focuses on the
problem of maneuvering a large number of UAVs that create
and maintain a mesh network that connects all users to the
command center for the maximum amount of time. That is, a

network that maximizes bandwidth coverage while maximiz-
ing UAV flying time.

UAVs network deployment algorithms can be centralized
or distributed [3]. Centralized control algorithms work well
in well understood environments; typically not found in
emergency situations. However, even in well understood en-
vironments, long communication delay caused by multiple
hops and limited bandwidth may prevent centralized control
algorithms from being used in time delay sensitive areas
and remote exploring applications. We therefore investigate
distributed control algorithms based on using potential fields to
dynamically reconfigure a UAV network in relatively unknown
environments.

A. Problem formulation

Flying UAV nodes implement a mesh network that maxi-
mizes bandwidth coverage and flying time (network longevity)
while maintaining communications back to a command center.
Optimal, or perfect, bandwidth coverage means providing
every user on the ground with required bandwidth. Each
user may need text, voice, video or a combination of these
services each with different bandwidth requirements. This
has consequences for network longevity. Assuming UAVs use
the same amount of power for hovering and moving which
depletes the battery at a constant rate, then in our problem we
need only consider that battery usage is proportional to served
bandwidth. The less bandwidth a UAV serves, the less battery
is used and the longer it can stay aloft. Thus, we assume that
given a fixed number of UAVs, the more UAVs we can recruit
to serve a required bandwidth, the longer the network lasts.

We assume users are non-uniformly distributed over the
area of interest and that UAVs have user locating sensors
that sense users within Ugr distance. Furthermore, UAVs can
communicate with each other at a maximum range of Uar. For
a user to communicate with the command center, we will then
need a chain of UAVs at most Uar apart all the way from the
user to the command center so that data hops from one UAV
node to the next from the user to the command center and
vice-versa. Figure 1 shows two clusters of users (16) covered
by five (5) UAVs. Since UAVs also need to communicate in
order to move to avoid collisions and optimize the network,
this communication will also need bandwidth. To minimize
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Fig. 1: An example of UAVs network deployment.

such communication, we assume that UAVs only communicate
with their closest (one-hop) neighbors.

In our scenarios, UAVs start at the command center in
the center of a rectangular Area Of Interest (AOI) and are
deployed to cover the AOI in order to locate all users while
maintaining a mesh network connected to the CC. Once
this phase completes, UAVs move to provide coverage and
maximize lifetime over the non-uniformly distributed users
in the AOI. Given these assumptions, we use a genetic
algorithm to tune the parameters of potential fields to govern
the movement of UAVs. Since the number of available UAVs
determines coverage and lifetimes, we also consider scenarios
with different numbers of available UAVs.

Early experimental results show that the genetic algorithm
tuned potential fields based algorithm outperforms the state
of the art Adaptive Triangular Deployment Algorithm (ATRI)
on four training and three test scenarios each with different
numbers of UAVs and different numbers and distributions of
users on the ground. These experiments do not consider battery
usage for moving since ATRI and other prior approaches do
not consider movement and only provide desired positions
to move to - not how to get to the desired positions. With
potential fields, collision free movement to desired locations
naturally emerges with no additional work. Furthermore, our
proposed algorithm improves network lifetime compared to
ATRI and serves more data to users on the ground over
network lifetime.

The remainder of this paper is organized as follows. The
next section describes prior work in mesh networks and
potential fields based group movement. Section III specifies
our training scenarios, and movement model, movement. Next,
section III-A describes our algorithm, how potential fields
determine UAV movement, our fitness function, and provides a
brief overview of the ATRI algorithm. Our experimental setup
and results constitute section IV. The last section provides
conclusions and future work.

II. RELATED WORK

UAV deployment for on demand wireless coverage has sev-
eral real world applications and has been attracting increasing
interest [1]. In terms of control, we focus on distributed control
since that is most closely related to the work in this paper [3].

Mesh network creation and maintenance presents multiple
challenges when using UAVs as base stations. Minimizing
deployment time, placing UAVs optimally to increase wire-
less coverage, minimizing number of UAVs to be deployed,
maintaining a mesh network connected to ground base station,
and extending lifetime of deployed UAVs, routing, channel
allocation, all present significant challenges.

To minimize deployment delay, Zhang presented fast de-
ployment algorithms in [4]. Fast deployment of UAVs as
flying base stations during emergency situations may help to
save people trapped in a wildfire in a forest or in other natural
disasters. In [5], authors presented a dynamic algorithm
to serve a sub-region within the AOI that requires more
bandwidth. The study assumed an uniform distribution of users
while we look at non-uniform distributions of users.

The complexity of UAV deployment over AOI increases
with unknown user distributions and would be more common
in emergency or first responder situations. When searching for
users in need of rescue, we want to blanket the AOI and one
possible way to do so is to distribute UAVs in a covering
pattern over the AOI. Common methods for such deployment
use the circle point theorem [6] and adaptive triangular
deployment (ATRI) based on delauney triangulation [7]. Using
one hop neighbor state information and bandwidth demand,
ATRI generates a mesh network within a given AOI and
to the best of our knowledge, seems to be the state of the
art for UAVs network deployment. In [8] Lyu, proposed
a placement optimization technique to minimize number of
unmanned aerial vehicle-mounted mobile base station while
proving wireless coverage to ground terminals. The algorithm
works in polynomial time with successive mobile base station
placement. In [9], authors initially deploy UAVs using Circle
Packing Theory [6] and then proposed an approach to adjust
the altitude of deployed UAVs to increase and decrease an
UAV’s sensing area. Using this approach, the bandwidth area
coverage is maximized but as the altitude of deployment in-
creases, the signal strength reduces resulting in poor coverage
quality.

Potential field controllers have been used to guide au-
tonomous agents in many different application domains. La
in [10] uses a potential field based controller for dynamic
tracking of a target while avoiding obstacles. Louis and others
have used potential fields for 2D and 3D distributed auton-
omy in games [11]–[14]. Zhao presented a centralized and a
distributed algorithm for UAVs deployment while maintaining
connectivity among UAVs [3]. However, they considered only
two different types of user distributions - uniformly random
and in three clusters spread around the AOI with a command
center in the middle. In this work, we build on the idea and
investigate several different user distribution scenarios using
an evolutionary distributed control algorithm to maximize
both bandwidth coverage and longevity of the network. Our
approach uses potential fields to guide UAVs in unknown
environment and the GA evolves the parameters of potential
fields. The next subsection explains our research environment
and methodology for experiments.



(a) S1 (b) S2 (c) S3 (d) S4

Fig. 2: The four training scenarios used for fitness evaluation. Note that each scenario has a different user (blue +) distribution.

(a) S5 (b) S6 (c) S7

Fig. 3: The three testing scenarios distinct from training scenarios and never seen during parameter evolution.

III. METHODOLOGY

For simulations, we used Unity3D software to create users,
UAVs and different scenarios. We use a (λ+µ) evolutionary al-
gorithm with simple crossover and mutation of binary encoded
chromosomes. The binary encoding enabled easy control of
search space size. Evaluating fitness comprised four steps.

1) Send chromosome of potential field parameters to UAV
net simulation

2) Run simulation for n time steps and gather variable
values

3) Compute fitness from variable values
4) Return fitness

Prior work and our own experience in initial testing indicated
that using one scenario ( one user distribution and a set number
of UAVs) during fitness evaluation often resulted in lower
performance in other scenarios not seen during evolution. We
thus generated and used four scenarios during evaluation. That
is, one fitness evaluation repeated the four steps above for four
different distributions of users and returned the average of the
fitness over the four scenarios. Figure 2 shows these training
scenarios. From left to right, we have an uniform distribution
of users throughout the AOI, users uniformly distributed
among two clusters, and users uniformly distributed among
three clusters. The rightmost scenario uniformly distributes
users along a horizontal central band and along the right side
of the AOI.

Once our evolutionary algorithm was done, we took the
best individual from the last generation and evaluated this

individual’s fitness on three different testing scenarios. These
testing scenarios are show in Figure 3. From left to right,
users are distributed on two horizontal band in upper and
lower side of AOI, users distribution similar to 4th training
scenario but with different concentration of users, and lastly,
in the 3rd test scenario users are in two clusters with different
distributions. Doing well on never before seen test scenarios
provides evidence supporting our approach’s robustness. We
note also, that the computationally intensive fitness evaluation
simulation took several seconds to run thus restricting us to
relatively low population sizes.

A. Representation and Computing Fitness

In this work, we assume that the AOI is a square of length
2000 meters and that the command center is located in the
middle at (1000, 1000). All UAVs start at the center within a
10x10 meter area and we assume that they maintain a constant
altitude of 100 meters. Table III lists these and other simulation
parameters and genetic algorithm parameters.

The UAVs move in two phases. First, to find users, UAVs
spread out to cover the AOI. Active UAVs (AUs) start provid-
ing coverage for users within their service radius, Ugr. UAVs
not within range of any users are called Inactive UAVs (IUs).
The first phase runs for 1500 time steps and user positions and
final UAV positions are shown in Figure 4. This phase uses
one set of hand-tuned potential fields parameters to move. In
the figure, red dots represent users, red lines connect users to
their server UAV and green lines indicate neighboring UAVs.



Fig. 4: Initial UAV deployment over the area of interest.
Red dots represent users, lines represent connections between
UAVS (green) and User-UAVs (red).

The blue rectangle shows an active UAV serving 3 users while
the black rectangle indicates an inactive UAV serving no one.

The second phase runs Algorithm 1, our proposed algorithm
called Evolutionary Adaptive Network Deployment Algorithm
(EANet). Algorithm 1 deploys UAVs over a given AOI
by computing potential fields and then uses the final UAV
locations to compute the deployment’s fitness. This phase
uses a second set of potential fields specified by the genetic
algorithm to move. The outer loop, loops over the four training
scenarios and runs each scenario for MaxTimeSteps. At each
time step, the AssociateUsers function in Algorithm 1
finds users within sensor range (Ugr) and gathers data tracking
user coverage and bandwidth consumption. For each UAV,
FindNeighbors finds other UAVs within Air-to-Air (A-2-
A) communication range (Uar) and records them as neighbors.
Once each UAV knows information about its associated users
and neighbor UAVs, ComputePotentialFields com-
putes heading from the potentials fields at its current location.
moveAll(Heading) then moves each UAV in the direction
of this heading at maximum speed. At MaxTimeSteps, the
algorithm computes bandwidth coverage provided by UAVs
to users in the AOI using findBQCoverage and the total
number of active UAVs computed by FindActiveUAVs.
The algorithm then computes a normalized fitness between 0
and 1 for each of bandwidth coverage and active UAVs using
MaxBW , the maximum bandwidth coverage demanded by
users, and MaxUAV , the total number of UAVs available for
deployment. Summing these two factors results in a fitness
between 0 and 2 for each scenario. At the end of the for-loop,
the algorithm returns average fitness over MaxScenarios.
Note again that the genetic algorithm only tunes the potential
fields for this second phase.

Algorithm 1: EANet deployment and fitness compu-
tation
Input : Initial position of UAVs, AOI, Candidate

Solution
Output: fitness

1 fitness = 0;
2 MaxScenarios = 4;
3 MaxTimeSteps = 1500;
4 for scenario in MaxScenarios do
5 timeSteps = 0;
6 while timeSteps<MaxTimeSteps do
7 AssociateUsers(scenario);
8 FindNeighbors();
9 Headings = ComputePotentialFields();

10 MoveAll(Headings);
11 timeSteps++;
12 end
13 bwCoverage = FindBQCoverage();
14 AUs = FindActiveUAVs();
15 fitness += bwCoverage / MaxBW + AUs /

MaxUAV;
16 end
17 fitness = fitness / MaxScenarios;
18 return(fitness);

B. Potential fields

Potential fields have been used extensively in robotics and
games for fast, real-time, collision free movement [12], [15],
[16]. Each potential field of the form cde where d is distance
has two tunable parameters (c, e) that determine field effect.
During the first phase, when the relatively simple goal is to
maximize coverage of the AOI while maintaining the mesh
network, we hand tune these parameters. We can use multiple
other techniques that work equally well on this simple first
phase [6], [7]. Since we start at the center, we only need a
single repulsive potential field to achieve desired coverage as
shown in Figure 4. We run this phase for 1500 simulation
steps, sufficient to cover the area. Once UAVs are deployed,
each UAV associate users within a sensing range of Ugr and
finds neighboring UAVs in the range Uar.

Figure 5 shows user and UAV distribution at the end of the
second phase. Equation 1 shows the four potential fields that
affect a specific UAV’s (UAV∗) movement during the 1500
step second phase. The vector sum of these potential fields
given by PFuav provides a desired heading for the UAVs to
turn to while moving at a speed. Specifically UAV∗ moves in
the direction given by PF ∗uav’s direction vector.

~PF ∗uav = ~PFbw + ~PFnbw + ~PFrd + ~PFac (1)

We next described each term on the right hand side. First,
PFbw specifies an attractive potential field based on user
bandwidth demands and user location. This field attracts UAVs
towards high bandwidth areas. Second, since the more UAVs
that share a user’s bandwidth requirement, the less power



Fig. 5: Final deployed UAV positions on test scenario S5.

used and longer network lifetimes gained, PFnbw specifies a
potential field that attracts one-hop UAV neighbors. Third, too
much attraction can cause collisions, thus a repulsive distance
based potential field, PFrd, repulses UAVs from each other
and avoids collisions. Finally, the command center attracts
UAVs in order for the mesh network to be able to connect
the CC. A potential field specified by PFac that only acts
on inactive UAVs, takes care of this requirement. Noting that
each term in the equation above (Equation 2) is itself a vector
sum over all considered UAVs, we can rewrite the equation as
follows.

~PF k
uav =

n∑
i=0

c1bwd
e1
i +

m∑
i=0

c2bws
e2
i

+
m∑
i=0

c3d
e3
i + c4d

e4
i

(2)

Here n, the upper limit on the first term is the number of
users and the vector is directed from the UAV∗ towards the
ith user with bandwidth demanded, bwd, as magnitude. m
is the number of UAVs and for each element of the second
term, the vector is directed from the ith UAV towards UAV∗

with bandwidth served, bws, as magnitude (if the ith UAV
is within one hop). The third term vectors direct away from
UAV∗ towards the ith UAV with distance, d, as magnitude
(simply the vector difference in position), and the fourth term’s
vectors direct towards the command center with distance as
magnitude. Tuning the coefficients, cs, and exponents, es
of these highly non-linear equations to maximize bandwidth
coverage and lifetime served is difficult and we thus use an
evolutionary algorithm to do so.

In addition to the four coefficients and exponents, we
use one additional parameter to specify a minimum distance
threshold, d∗. When computing PFrd, we only count UAVs
within d∗. Different values of d∗ have differing impacts on
performance . For example, if d∗ is large then UAVs will not
congregate sufficiently due to repulsion from UAVs relatively
far away and thus may not share bandwidth demand. Whereas

if minimum distance value is small, then UAVs may converge
too close leaving some other users without any service.

We encoded these parameters in a binary chromosome
where each coefficient is encoded in 14 bits, each exponent
in 10 bits, and minimum distance in 8 bits. This encoding
enables good control over search space size and makes it
easy to restrict and change the ranges of each parameter. The
length of our chromosome is thus 14× 4 + 10× 4 + 8 = 104
bits giving us a highly non-linear search space size of 2104.
Coefficient bounds are −8192 ≤ ci ≤ 8192 with a precision of
1. Exponents range between −5.12 ≤ ei ≤ 5.12 with precision
of 0.01, d∗ ranges between 0 ≤ d∗ ≤ 28.

Our EA thus tunes nine parameters to maximize equation 3
to promote candidate solutions that maintain a mesh network
connected to the command center while maximizing the total
number of active UAVs in the deployed network.∑

i∈MU

bwi

MaxBW
+
NumAU

m
(3)

The first term counts the fraction of bandwidth served in
network UAVs and the second term counts the fraction of
active UAVs. Assuming we have enough UAVs, this func-
tion achieves a maximum when all UAVs are serving total
bandwidth requirements. Here, MU is the set of all UAVs
participating in the mesh network, bwi is the bandwidth served
by the ith UAV. Total request bandwidth over all users is
MaxBW . In the second term m indicates the number of
UAVs available and NumAU is the number of active UAVs.
We compare deployed network performance using proposed
EANet Algorithm when tuned by our EA against the per-
formance of ATRI, the current state of the art deployment
algorithm.

C. Adaptive Triangular Deployment (ATRI)

Adaptive triangular deployment is a well know method
for deploying large numbers of mobile sensors in unknown
environments [7]. We compared our proposed EANet algo-
rithm with ATRI over the training scenarios in Figures 2
and 3 considering different numbers of UAVs and users. We
briefly describe the ATRI algorithm here, more details are in
the original paper [7]. In ATRI, each UAV at the center of
a circle of radius Uar divides this circular region into six
sectors. Recall that Uar is a UAV’s air-to-air communication
range. ATRI then finds the nearest neighbor in each sector,
if any, and computes the sum of difference vectors. If the
magnitude of this sum vector exceeds a threshold value, the
UAV moves in the direction of this vector, otherwise, it moves
away. If users require more bandwidth than servable by the
current deployment, ATRI reduces this threshold upto Ugr.
Each UAV updates its position periodically, that is for N
UAVs to be deployed, a UAV will update its position and wait
till remaining N − 1 UAVs update their positions. The next
section shows and explain the experimental results obtained
using EANet and ATRI.



TABLE I: Comparing percentage fitness difference between EANet and ATRI on training scenarios across UAVs and users

156 UAVs 117 UAVs 78 UAVs
Users S1 S2 S3 S4 Avg S1 S2 S3 S4 Avg S1 S2 S3 S4 Avg

200 4.63 21.66 12.68 12.1 12.83 1.19 25.59 15.81 11.21 13.54 7.66 24.66 -11.48 15.75 9.30
150 2.95 16.34 11.93 9.39 10.16 6.94 21.53 16.65 18.82 15.98 8.05 33.85 -10.62 16.15 11.95
100 12.05 7.86 7.36 7.11 8.57 8.1 9.93 9.93 11.51 9.86 7.15 24.63 28.79 17.44 19.42
50 2.7 3.66 6.46 8.57 5.40 8.10 10.59 12.21 9.33 10.01 13.2 48.7 28.34 15.48 25.89

(a) (b)

Fig. 6: Comparing average bandwidth coverage (a) and number of active UAVs (b) for EANet and ATRI on four training
scenarios with 156 UAVs and different numbers of users.

IV. RESULTS AND DISCUSSION

We compare our algorithm, EANet, against ATRI and
summarize results in this section. The experiments in our paper
assumed that deployed UAVs use the 2 MHz communications
channel with a spectral efficiency of 2.5 bps/Hz [17]. Each
UAV serves a data rate of 5Mbps to users. We assume that
initially, UAVs batteries are fully charged and have 1000×103

Joules of energy and hover at a constant altitude of 100
meters. Table III summarizes these and other experimental
parameters. Users bandwidth requirements can range from
simple text message communication to HD video streaming
services during, for example, a health emergency. Thus, we
assume that a user’s maximum bandwidth requirement is
3Mpbs.

A. Experiments on Training Scenarios

EANet tunes potential field parameters for the 4 differ-
ent training scenarios. We considered these scenarios with
156, 117 and 78 UAVs available, and with 200, 150, 100, and
50 users. Because of the very long fitness evaluation times,
we used a small population (20) run for only 20 generations.
Later on to see the effect of large population size and number
of generations on fitness, we explored other population sizes
upto 60, running for upto 90 generations without significant
improvements in results. Thus we kept to a population size
of 20 run for 20 generations as this was fast and gave
good results. We use elitist selection where offspring double

the parent population to 40. The best half (20) move on
to subsequent generations. Single point crossover and point
mutation produce offspring with probabilities of 0.95 and 0.05
respectively. The EA ran ten times with different random
seeds.

The evaluation simulation ran for 3000 time steps; 1500
time steps for the user discovery phase, phase 1, and the
remaining 1500 time step for UAVs to move towards users,
phase 2. The best solution from the last generation is selected
for comparing with ATRI. Table I compares results for the
combination of 156, 117, and 78 UAVs and 200, 150, 100,
and 50 user over the 4 different training scenarios, as shown
in Figure 2. We thus compare a total of 3 × 4 × 4 = 48
different combination of UAVs, users, and scenarios. Each
entry of Table I is computed using equation 4.

diff =
FitnessEANet − FitnessATRI

2
∗ 100 (4)

The table summarizes our comparison results and shows
the percentage difference in performance between EANet and
ATRI. Positive values indicate how much better (in percentage
terms) EANet performs compared to ATRI. Negative values
show how much better ATRI performs. As clearly shown in
Table I, EANet outperforms ATRI on 46 of the 48 possible
combination of UAVs, users, and scenarios whereas ATRI
perform better only in 2 such combinations. That is, EANet
outperforms ATRI 96% of the time. When looking at averages



TABLE II: Comparing percentage fitness difference between EANet and ATRI on testing scenarios across UAVs and users.

156 UAVs 117 UAVs 78 UAVs
Users S5 S6 S7 Avg S5 S6 S7 Avg S5 S6 S7 Avg

200 7.4 11.92 10.75 10.02 5.29 17.6 8.24 10.32 12.92 19.68 21.19 17.92
150 6.77 17.85 8 10.84 7.35 19.95 9.49 12.20 17.47 22.4 19.09 19.64
100 5.83 12.09 8.29 8.65 8.61 25.53 9.34 14.28 10.64 24.72 16.21 16.98
50 2.51 7.65 6.46 5.53 9.79 11.04 5.78 8.82 14.79 15.28 19.55 16.57

(a) (b)

Fig. 7: Comparing the number of active UAVs (a) and data served (b) over network lifetime for EANet and ATRI on S3 with
156 UAVs and 200 users.

TABLE III: Simulation and EA parameters.

Parameters Symbol Value

UAV

Area of Interest AOI 2000m*2000m
Height of UAVs Uh 100m

Coverage Radius of UAVs Ugr 100m
A-2-A communication Range Uar 300m

Max Speed of UAV Us 15 m/s
Initial energy of UAV Et 1000× 103 J

Hovering Energy Eh 98 J/s
Serving per users Energy Eu 5 J/s

EA

Max population size MaxPop 20
Max generation MaxGen 20
Crossover rate Px 0.95
Mutation rate Pm 0.05

over the four scenarios, we can see that on average we obtain
between 5.4% and 25.89% performance improvement.

As stated earlier, both percentage bandwidth coverage
and percentage active UAVs are combined together to get
fitness. Hence, to see the effect of both on fitness, we
plotted the graphs shown in Figure 6 for 156 UAVs and
different number of users. The figure 6(a) shows that there
is not much difference in bandwidth coverage with dif-
fering numbers of users between EANet and ATRI. The
performance difference comes from the number of active
UAVs where EANet uses more UAVs to serve bandwidth
needs, as shown in figure 6(b). If more UAVs are used
to serve a certain bandwidth, coverage lifetime should in-
crease. Here is the link of videos for four training scenarios.

The ATRI approach work does not address movement, so we
wrote and used our own motion model to move the UAVs in
the videos. In contrast, the EANet videos use our potential
fields movement model which is a distinguishing feature of
using potential fields.

B. Experiments on Testing Scenarios

Table II shows the same performance difference values on
the three testing scenarios. Here, EANet outperformed ATRI
in all, 3×3×4 = 36 cases. When looking at averages over the
three scenarios, we can see that on average we obtain between
5.53% and 19.64% performance improvement. This provides
evidence that our results generalize and specifically that
parameters tuned in training scenarios are robust to difference
distributions of users in never before seen scenarios. Once
again we observe that the performance difference can be
attributed to longer network lifetimes as UAVs remain active
longer. Here is a link to videos for three testing scenarios
showing simulations for both deployment phases.

Figure 7(a) plots the number of active UAVs versus time
while Figure 7(b) shows cumulative data served over the same
time on the 3rd training scenario as shown in Figure 2. During
our experiments, the total data served by all UAVs is computed
every 20 seconds and Figure 7(a) shows how total number of
active UAVs decreases over a time period for both algorithms.
Using ATRI, active UAVs number reduces drastically and after
138 minutes of deployment, the total active UAVs are less than
10. At 165 minutes, the total active UAVs is 0 for ATRI and

https://www.cse.unr.edu/~rahuld/CEC2020/Training/
https://www.cse.unr.edu/~rahuld/CEC2020/Testing/


at 170 minutes after deployment the total active UAVs is 0 for
EANet algorithm. However, due less number of active UAVs in
case of ATRI deployed network, the data served to users after
138 minutes is almost stagnated. Figure 7(b) shows the clear
difference in the total data served. Larger number of active
UAVs allows our proposed algorithm to deliver more data to
users. The figures indicate that EANet serves more data for a
longer amount of time compared to ATRI.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed an evolutionary algorithm,
EANet, for adaptive UAV mesh network deployment in
unknown environments. We start by distributing UAVs for
maximal area coverage while maintaining the mesh network
connected to the command center in order to find all users. We
assume that UAVs are equipped with sensors to find users on
the ground in the AOI. In the next phase, once users and their
requirements are know, a set of potential fields tuned by our
evolutionary algorithm guides UAVs towards users to provide
bandwidth coverage for maximal time. Networks last longer
when more UAVs share users’ bandwidth requirements.

Results reported in this paper show that EANet on average
outperforms ATRI across 48 different scenarios with varying
numbers of users, UAVs, and user distributions. Moreover,
although the parameters were tuned on four training scenarios
used during fitness evaluation, EANet outperformed ATRI on
distributions of users not seen during evolution. This indicates
the potential robustness of our approach. We also note that
using potential fields yields collisions free movement which
has not been addressed by prior work in this area. Simulating
UAVs using real-UAV speeds, acceleration, and turning radii
will provide much better and usable estimates of network
lifetimes. We plan to begin this work next.

In the future, we plan to deploy UAVs in the real world
and consider more realistic situations where localization is a
significant problem and the exact positions of UAVs during
deployment will not be available to compute potential fields.
We believe that our approach subsumes ATRI, as well as ear-
lier more static approaches based on the circle point theorem
and delauney triangulation [6], [7] and are working on both
theoretical and experimental verification of this conjecture.
For example, we are working on a theoretical derivation of
potential field parameters that will result in mimicking ATRI.
Next, we plan to formulate UAV network deployment as
a multi-objective optimization problem and use evolutionary
multi-objective optimization techniques to provide a pareto
front of tradeoff choices between lifetime and bandwidth
coverage. Finally, prior work has mainly addressed static users
that do not move. We plan to begin addressing such unrealistic
assumptions by incorporating dynamic users and user routing
in simulation, and thus extending our approach to dynamic
environments.
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