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Abstract—Currently, reference sets, which are a collection of
feasible or infeasible points in objective space, are the backbone
of several multi-objective evolutionary algorithms (MOEAs) and
quality indicators (QIs). For both MOEAs and QIs, an important
question is how to construct the reference set regardless of the
dimensionality of the objective space, preserving well-diversified
solutions. The Simplex-Lattice-Design method (SLD) that con-
structs a set of convex weights in a simplex, has been usually used
to define reference sets. However, it is not a good option since
Pareto fronts with irregular geometries cannot be completely
intersected by the weight vectors. In this paper, we propose a tool
based on the Riesz s-energy to generate reference sets exhibiting
good diversity properties. Our experimental results support the
Riesz s-energy-based reference sets as a better option due to
their invariance to the Pareto front shape and the objective space
dimensionality.

Index Terms—Multi-objective optimization, reference sets,
Riesz s-energy

I. INTRODUCTION

Regarding optimization theory, a reference point is a feasi-
ble or infeasible point in the objective space that reasonably
fulfills the desires of a decision maker [1]. In evolutionary
multi-objective optimization (EMOO), it is usual to employ a
set of reference points, also known as a reference set, in two
main directions. First, in the context of multi-objective evolu-
tionary algorithms (MOEAs), reference sets have been used to
guide the population towards the Pareto front [2]. According to
Li et al. [2], this class of MOEAs uses reference sets based on
examined points (i.e., nondominated solutions gathered during
the evolutionary process) or virtually generated points in the
objective space, using, for instance, the method of Das and
Dennis [3]. The Nondominated Sorting Genetic Algorithm III
(NSGA-III) [4] is a well-known reference set-based MOEA
that uses a set of virtual points as its reference set. On the other
hand, reference sets play an important role in the assessment of
MOEAs. Some quality indicators (QIs) such as the inverted
generational distance (IGD) [5] and the IGD+ indicator [6]
require a reference set for its computation. The idea of these
QIs is to determine how close and similar is an approximation
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set, generated by an MOEA, to the reference set on the basis
of a distance function.

Regardless of where the reference set is applied, a critical
issue is how to construct it. Currently, the Das and Dennis
method, denoted as the Simplex-Lattice-Design (SLD), that
generates a set of convex weight vectors1 fitting the shape of
a simplex, has been widely employed to generate reference sets
[4]. However, the generation of a simplex is the main drawback
of the SLD method. Ishibuchi et al. [7] empirically showed
that the performance of MOEAs using convex weight vectors
strongly depends on the Pareto front shape of the MOP being
tackled. If the weight vectors completely intersect the Pareto
front, the MOEA will have a good performance. Otherwise,
the MOEA will not be able to completely cover the Pareto
front shape and will not be able to produce well-diversified
solutions. Concerning the IGD and IGD+ indicators, if a set of
convex weight vectors is used as their reference set, both QIs
will reward similar approximation sets. Hence, both QIs will
produce misleading results since they prefer approximation
sets similar to the set of convex weight vectors [8], [9].
Another difficulty of the SLD method is that the cardinality of
the set is the combinatorial number N =

(
H+m−1
m−1

)
, where m

is the dimension of the objective space and H ∈ N is a user-
supplied parameter that controls the number of divisions of
the objective space. In the case of high-dimensional objective
spaces, the SLD method will generate a number of reference
points that, from a practical point of view, is not feasible to
handle.

Recently, the Riesz s-energy (Es) [10] has been employed
to improve the diversity of MOEAs [11], [12]. This measure
arises from the problem of distributing N points on the unit
sphere Sd in Rd+1, having the influence of potential theory and
the distribution of charges. A relevant application of the Riesz
s-energy is the discretization of manifolds (e.g., Pareto fronts).
According to Hardin and Saff [10], [13], if a manifold has
the d-dimensional Hausdorff measure, the minimization of the
Riesz s-energy leads to asymptotically uniformly distributed
solutions. Due to these nice mathematical properties, the Riesz
s-energy can be used as a diversity indicator and, hence, as

1A vector ~w ∈ Rm is called a convex weight vector if and only if∑m
i=1 wi = 1 and wi ≥ 0 for all i = 1, . . . ,m.
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part of an MOEA’s selection mechanism, aiming to generate
well-diversified Pareto front approximations. In this regard,
Falcón-Cardona et al. [12] have empirically shown that the
use of Es helps MOEAs to avoid the performance dependence
on specific MOPs as pointed out by Ishibuchi et al. [7].

In this paper, we propose a tool to generate reference
sets of benchmark problems, using the Riesz s-energy. The
underlying idea is to exploit the invariance of Es to produce
discretizations of manifolds with a high degree of diversity.
Consequently, we provide reference sets of classical bench-
mark problems in the EMOO field such that researchers can
use them either to guide MOEAs or for the assessment of
MOEAs on the basis of QIs such as IGD and IGD+. To
this aim, we performed several experiments that show the
superiority of our Riesz s-energy-based reference sets in terms
of diversity for MOPs having from 2 up to 10 objectives.

The remainder of this paper is organized as follows. Section
II briefly describes related studies to the Riesz s-energy and
some techniques to generate reference sets. Section II outlines
our proposed Es-based method to generate reference sets. The
experimental results are shown in Section IV. Finally, our
conclusions as well as some future research topics are provided
in Section V.

II. RELATED WORK

A. Riesz s-energy

Hardin and Saff [10], [13] proposed the discrete Riesz
s-energy to measure the evenness of a set of points in d-
dimensional manifolds. Mathematically, given an approxima-
tion set A = {~a1, . . . ,~aN}, where ~ai ∈ Rm, the Riesz s-
energy is given as follows:

Es(A) =
∑

~x∈A

∑

~y ∈ A
~y 6= ~x

ks(~x, ~y), (1)

where

ks(~x, ~y) =

{
||~x− ~y||−s, s > 0

− log ||~x− ~y||, s = 0
(2)

The function ks is the Riesz s-kernel, || · || denotes the
Euclidean distance, and s ≥ 0 is a parameter that controls
the emphasis on the uniform distribution. As s→∞, a more
uniform distribution is rewarded. It is worth noting that s ≥ 0
is independent of the geometry of the underlying manifold
of A. According to Hardin and Saff [13], the minimization
of Es is related to the solution of the best-packing problem.
There are several applications of the Riesz s-energy such as the
discretization of a manifold (statistical sampling), quadrature
rules, starting points for Newton’s method, computer-aided de-
sign, interpolation schemes, finite element tessellations, among
others [13].

Fig. 1: Weight vectors generated by SLD and UDH in a three-
dimensional space. The contour of the simplex is shown in red.

B. Reference Sets based on Weight Vectors

In the EMOO field, the Simplex-Lattice-Design method
to generate weight vectors has been widely used [3], [4],
[11]. Its authors, Das and Dennis, proposed to generate
uniformly distributed weight vectors in the simplex lattice,
where each weight vector ~w ∈ Rm has

∑m
i=1 wi = 1,

and wi ∈ {0, 1
H ,

2
H , . . . ,

H
H }, i.e., it is a convex weight

vector. H ∈ N is a user-supplied parameter that determines
the number of divisions in each axis. The SLD method
generates N = CH+m−1

m−1 weight vectors in the simplex. This
combinatorial number of vectors is an important drawback
since as m increases, N grows in an exponential fashion
which, from a practical point of view, is not desirable for
MOEAs or even to evaluate Pareto front approximations using
QIs. To generate reference sets using SLD, the usual way is
to determine the best relationship between the set of points
from the Pareto front and the weight vectors via a scalarizing
function u : Rm → R [1]. For instance, a good scalarizing
function is the achivement scalarizing function (ASF) that is
defined as follows:

uASF
~w (~x, ~z) = max

i=1,...,m

{ |xi − zi|
wi

}
. (3)

where ~x, ~z ∈ Rm are the solution vector to evaluate and a
reference point2, respectively.

Another approach to generating evenly distributed weight
vectors is the uniform design using the Hammersley method
(UDH) [14]. UDH aims to tackle the three main drawbacks
of SLD: (1) the diversity of weight vectors, (2) the generation
of too many vectors in the boundary of the simplex, and (3)
the nonlinear increase of the set cardinality. Uniform design
generates uniformly scattered points in the space. According to
Molinet Berenguer and Coello Coello [14], in uniform design,
a set of points is considered uniformly spread throughout
the entire domain if it has a small discrepancy, where the
discrepancy is a numerical measure of scatter. Unlike SLD,
the combination of the uniform design and the Hammersley
method produces more uniform solutions and the cardinality

2In multi-objective optimization, ~z is usually the ideal point that has the
minimum values of all objective functions.



of the set is not subject to a formula. We refer readers to [14]
to obtain more details of this method. Figure 1 compares the
distribution of points between SLD and UDH. It is clear that
UDH does not generate several solutions in the boundary of
the simplex which is a good property in the case of high-
dimensional objective spaces. Similarly to SLD, to generate
reference sets using UDH, the best relationship between each
weight vector and a point from the Pareto front is found using
a scalarizing function.

III. OUR PROPOSED APPROACH

In the following, we consider A = {~a1, . . . ,~aN} as a finite
subset of the Pareto front. To generate reference sets based
on the Riesz s-energy, a subset Z of size µ < N has to
be constructed by solving the so-called Riesz s-energy subset
selection problem:

Z = arg min
Z ′ ⊂ A
|Z ′| = µ

Es(Z ′). (4)

However, the size of the search space of the above problem
is
(
N
µ

)
. Hence, solving the Riesz s-energy subset selection

problem requires a lot of computational effort. To overcome
this difficulty, we follow a heuristic approach to iteratively
reduce the cardinality of A until getting the desired set size.
To this aim, we compute the individual contribution C of each
solution ~a ∈ A to the Riesz s-energy as follows:

C(~a,A) =
1

2
[Es(A)− Es(A \ {~a})]. (5)

Finally, to reduce the cardinality of A, the worst-contributing
solution ~aworst = arg max~a∈A C(~a,A) is deleted.

The cost of computing Es and C(~a,A) is Θ(N2). In
consequence, the cost of computing all N individual contribu-
tions is Θ(N3), following a naı̈ve approach. In Figure 2, we
propose a memoization structure that allows us to reduce the
computational cost of computing the individual contributions
to Es. When Es(A) is calculated, we take advantage of the
dissimilarity matrix by storing all kij = k(~ai,~aj), i 6= j.
The memoization structure is a vector ~r ∈ RN , where each
rt =

∑N
j=1 ktj . Based on the components of ~r, it is possible to

compute Es(A) as shown in Figure 2. To compute C(~ai,A),
we only need to substract kit from each rt, t 6= i such that
Es(A \ {~ai}) =

∑N
t=1,t6=i rt. This update process allows to

compute every C(~a,A) in Θ(N) and, thus, all individual
contributions are computed in Θ(N2). Algorithm 1 sketches
the above described process.

Algorithm 1 Riesz s-energy steady state selection
Require: Pareto front approximation A; size of the desired reference set µ
Ensure: Reference set
1: Compute dissimilarity matrix
2: while |A| > µ do
3: ~aworst = argmax~a∈A

1
2 [Es(A)− Es(A \ {~a})]

4: From the dissimilarity matrix, delete the row and column associated to ~aworst
5: Update the memoization structure ~r
6: A = A \ {~aworst}
7: return A

0

0

0

MemoizationDissimilarity matrix

Es(A) =
∑N

i=1 ri

k12

k21

kN2kN1

k1N

k2N

r1 =
∑N

j=1 k1j

r2 =
∑N

j=1 k2j

rN =
∑N

j=1 kNj

Fig. 2: Memoization structure that takes advantage of the
dissimilarity matrix to reduce the cost associated to the com-
putation of all the individual contributions of a set.

IV. EXPERIMENTAL RESULTS

In this section, we compare our Riesz s-energy-based
reference sets with reference sets constructed by the SLD,
UDH, and a random selection. For both SLD and UDH, we
use ASF to find the best relationship between the weight
vectors and the solutions in the Pareto fronts. For our ex-
periments, we employed MOPs from the benchmarks: Deb-
Thiele-Laumanns-Zitzler (DTLZ) [15], Walking-Fish-Group
(WFG) [16], Imbalanced MOPs (IMOPs) [17], and the Viennet
MOPs (VIE) [18]. We employed PlatEMO 2.0 [19] to obtain
the Pareto fronts, i.e., the sets A = {~ai}i=1,...,N . To show
the properties of the Riesz s-energy-based reference sets, we
performed the following experiments:

1) We studied the influence of the parameter s in the
distribution of solutions, aiming to determine which is
its best value.

2) A diversity comparison of the reference sets produced
by the four methodologies was performed based on
the hypervolume indicator (HV), the Solow-Polasky
Diversity (SPD), IGD, and IGD+.

3) We analyzed the effect of all the reference set schemes
for the optimal µ-distributions of the IGD and IGD+

indicators.
4) A set of MOEAs is evaluated by IGD and IGD+ using

the four types of reference sets to analyze the difference
in preferences.

It is worth noting that the source code of the Riesz s-energy
steady state selection that implements the fast computation
of the individual contributions and the complete numerical
results of the proposed experiments are available at http:
//computacion.cs.cinvestav.mx/∼jfalcon/ReferenceSets.html.

A. Influence of the Parameter s

The Riesz s-energy depends on the parameter s ≥ 0 that
controls the uniformity of solutions in the Es-based optimal
distribution. Regarding MOEAs, s has been usually set to
m−1, where m is the number of objective functions. However,

http://computacion.cs.cinvestav.mx/~jfalcon/ReferenceSets.html
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(a) DTLZ1 3D

(b) DTLZ1 5D

(c) DTLZ2 3D

Fig. 3: Approximated Riesz s-energy optimal distributions,
varying the value of the parameter s.

we do not completely know what is the effect of s in the
Riesz s-energy optimal µ-distributions. In consequence, we
varied the value of s for different MOPs to observe some
distribution properties. Figure 3 shows the distributions related
to s = 0, 1, 2, 3, 4, 5, 6, 13 for DTLZ1 3D, DTLZ1 5D, and
DTLZ2 3D. From the distributions, there is evidence that the
closer s is to zero, the stronger the preference of the Riesz s-
energy for boundary solutions is. Regarding the three-objective
DTLZ1 and DTLZ2, we can see well-diversified distributions
with a slight emphasis on the boundaries when s = 2 and there
is not a clear difference between the distributions with s > 2.
Hence, this supports the election of s = m − 1. Although
the interpretation of the parallel coordinates of DTLZ1 5D is
difficult, when the “peaks” are crowded, this means that the
density of solutions in the boundary is high. It is worth em-
phasizing that for large values of s, the numerical values of the

TABLE I: Cardinality of the reference sets where H is the
parameter of the SLD method.

mmm N1N1N1 N2N2N2 N3N3N3 N4N4N4 N5N5N5

2 50H=49 100H=99 200H=199 300H=299 500H=499

3 66H=10 105H=13 210H=19 300H=23 496H=30

4 56H=5 120H=7 220H=9 364H=11 560H=13

5 35H=3 126H=5 210H=6 330H=7 495H=8

6 56H=3 126H=4 252H=5 - 462H=6

7 28H=2 84H=3 210H=4 - 462H=5

8 36H=2 120H=3 - 330H=4 792H=5

9 45H=2 165H=3 - - 495H=4

10 55H=2 - 220H=3 - 715H=4

Riesz s-kernel grow greatly which can produce representation
problems in a computer. Hence, for the experiments in the
following sections, we employed s = m − 1 as suggested in
[11], [12].

B. Assessing Reference Sets

This experiment aims to provide evidence that our proposed
approach produces reference sets having high diversity prop-
erties. To this purpose, we generated reference sets of the
problems DTLZ1, DTLZ2, DTLZ5, DTLZ6, DTLZ7, WFG1-
WFG4 for 2 to 10 objective functions and we also considered
the test instances IMOP1-IMOP8 and VIE1-VIE3 that have a
fixed number of objective functions. We adopted these MOPs
since all of them cover linear, concave, convex, degenerate,
disconnected, and mixed Pareto front shapes. For all test
instances, we produced reference sets of different cardinalities
that are shown in Table I (N1: about 50, N2: about 100, N3:
about 200, N4 about 300, and N5: about 500). As previously
mentioned, the Pareto fronts were obtained from PlatEMO 2.0.
Tables II, III, IV, and V show the average ranking results for
the HV, SPD, IGD, and IGD+ comparisons, respectively. SPD
employs θ = 10. IGD and IGD+ employ reference sets of
size 2,000 for their computation in each test instance, where
these reference sets were directly obtained from PlatEMO.
Our proposed reference sets are in all cases the best-ranked
approaches considering the SPD indicator which is a pure-
diversity QI. On the other hand, HV, IGD, and IGD+, which
are convergence-diversity QIs, mostly prefer the Riesz s-
energy reference sets. The differences with respect to SPD
are due to their own preferences properties, .e.g., HV prefers
solutions around the Pareto front’s knee. Consequently, there is
strong empirical evidence that the Riesz s-energy indicator is
able to produce well-diversified reference sets regardless of the
geometry of the Pareto fronts and their dimensionality. Figure
4 shows a graphical comparison of the four methodologies for
the five-objective DTLZ5, WFG1, and WFG3 problems. The
Riesz s-energy-based reference sets exhibit better coverage
and diversity of solutions in comparison to the random SLD,
UDH, and random selection.

C. IGD and IGD+ optimal µ-distributions

Our aim is to determine which is the effect of the Riesz s-
energy-based reference sets to approximate the IGD and IGD+

optimal µ-distribution. Based on the results of the previous



Fig. 4: Examples of reference sets for the DTLZ5, WFG1, and WFG2 problems with five objective functions.

Fig. 5: Approximated IGD+ optimal distributions of size 100 of the three-dimensional DTLZ1, DTLZ7, and WFG2 problems.
The true Pareto front is shown in red.



TABLE II: Average ranking for Hypervolume comparison.

MOP Riesz s-energy Random SLD UDH
DTLZ1 1.184 2.789 2.289 3.736
DTLZ2 1.973 3.710 1.710 2.605
DTLZ5 1.000 2.421 3.8425 2.736
DTLZ6 1.000 2.263 3.842 2.894
DTLZ7 1.531 3.312 2.562 2.593
WFG1 2.500 2.421 1.657 3.421
WFG2 2.684 2.552 1.447 3.315
WFG3 1.000 2.210 3.736 3.052
WFG4 1.552 3.736 2.210 2.500
IMOP1 1.000 2.200 3.600 3.200
IMOP2 1.000 3.600 2.800 2.600
IMOP3 1.000 2.200 3.600 3.200
IMOP4 1.000 3.200 3.400 2.400
IMOP5 1.000 4.000 2.800 2.200
IMOP6 1.200 1.800 3.600 3.400
IMOP7 1.000 4.000 2.600 2.400
IMOP8 1.000 3.800 3.200 2.000
VIE1 1.000 2.666 3.333 3.000
VIE2 1.000 2.000 3.666 3.333
VIE3 1.333 2.666 2.000 4.000

TABLE III: Average ranking for Solow-Polasky Diversity
comparison.

MOP Riesz s-energy Random SLD UDH
DTLZ1 1.473 2.921 1.763 3.842
DTLZ2 1.184 3.131 2.421 3.263
DTLZ5 1.000 2.289 3.894 2.815
DTLZ6 1.000 2.263 3.842 2.894
DTLZ7 1.000 2.218 3.500 3.281
WFG1 1.000 2.631 2.684 3.684
WFG2 1.000 2.342 2.894 3.763
WFG3 1.000 2.342 3.815 2.842
WFG4 1.000 2.552 2.815 3.631
IMOP1 1.000 2.000 3.800 3.200
IMOP2 1.000 3.600 2.600 2.800
IMOP3 1.000 3.000 2.800 3.200
IMOP4 1.000 2.200 4.000 2.800
IMOP5 1.000 4.000 3.000 2.000
IMOP6 1.000 2.800 3.000 3.200
IMOP7 1.000 4.000 2.000 3.000
IMOP8 1.000 3.200 3.000 2.800
VIE1 1.000 2.000 4.000 3.000
VIE2 1.000 2.000 3.666 3.333
VIE3 1.000 2.000 3.000 4.000

TABLE IV: Average ranking for IGD comparison.

MOP Riesz s-energy Random SLD UDH
DTLZ1 2.921 3.078 2.657 1.342
DTLZ2 1.763 3.342 3.026 1.868
DTLZ5 1.263 2.368 3.605 2.763
DTLZ6 1.263 2.421 3.605 2.710
DTLZ7 1.343 2.125 3.562 2.968
WFG1 3.342 2.526 2.078 2.052
WFG2 2.921 2.263 2.210 2.605
WFG3 1.263 2.368 3.605 2.763
WFG4 1.526 2.947 3.263 2.263
IMOP1 1.000 2.000 3.800 3.200
IMOP2 2.200 4.000 2.200 1.600
IMOP3 1.000 3.800 2.400 2.800
IMOP4 1.000 2.000 4.000 3.000
IMOP5 1.000 2.200 3.800 3.000
IMOP6 1.000 2.000 3.200 3.800
IMOP7 1.000 2.400 3.000 3.600
IMOP8 1.000 2.800 3.400 2.800
VIE1 1.000 2.666 2.666 3.666
VIE2 1.000 2.000 3.666 3.333
VIE3 1.000 2.000 3.000 4.000

TABLE V: Average ranking for IGD+ comparison.

MOP Riesz s-energy Random SLD UDH
DTLZ1 2.894 2.842 3.000 1.263
DTLZ2 2.131 4.000 1.368 2.500
DTLZ5 1.000 2.342 3.763 2.894
DTLZ6 1.000 2.342 3.763 2.894
DTLZ7 2.218 2.718 3.187 1.875
WFG1 3.763 3.105 1.973 1.157
WFG2 3.421 3.289 1.921 1.368
WFG3 1.236 2.342 3.605 2.815
WFG4 2.473 3.921 1.184 2.421
IMOP1 1.000 2.200 3.000 3.800
IMOP2 1.000 4.000 2.200 2.800
IMOP3 1.000 3.000 3.200 2.800
IMOP4 1.000 2.000 4.000 3.000
IMOP5 1.200 2.000 4.000 2.800
IMOP6 1.000 2.000 3.200 3.800
IMOP7 1.000 2.600 2.600 3.800
IMOP8 1.800 3.600 2.400 2.200
VIE1 1.000 2.333 4.000 2.666
VIE2 1.000 2.000 3.666 3.333
VIE3 1.000 2.333 2.666 4.000

section, we hypothesize that their use could improve the diver-
sity proporties of these distributions. For this experiment, we
implemented a steady-state MOEA (based on the framework
of the SMS-EMOA [20]) that uses a density estimator based
on IGD and IGD+. We denoted such algorithms as IGD-
MaOEA and IGD+-MaOEA. Both algorithms employed a
fixed reference set whose cardinality is given by the column
N5 of Table I. We approximated the optimal µ-distributions of
the problems DTLZ1, DTLZ2, DTLZ5, DTLZ6, DTLZ7, and
WFG1-WFG4 with 2 to 10 objective functions, where µ is the
population size of the algorithms and we used µ = 20, 50, 100.
To correctly approximate the distributions, we turned off all
the difficulties of the problems. For each test instance, the
stopping criterion of both algorithms was 100,000 function
evaluations.

Tables VI and VII show the average ranking results for IGD-
MaOEA and IGD+-MaOEA regarding SPD, IGD, and IGD+

values. Similarly to the previous section, the SPD indicator
shows that the use of the Riesz s-energy-based reference
sets allows both MOEAs to achieve better distributions in
comparison to the use of reference sets based on SLD, UDH,
and the random selection. However, the results of both IGD
and IGD+ are different from the SPD results, biasing the
preference to the UDH-based reference sets. This behavior can
be explained as follows. For the calculation of IGD and IGD+,
we employed the reference sets produced by the PlatEMO
that uses weight vectors to find Pareto optimal solutions.
Hence, there is a correlation between such reference sets and
the results using UDH. Figure 5 presents a comparison of
distributions for the DTLZ1, DTLZ7, and WFG2 problems
with three-objective functions. As the SPD, in Tables VI and
VII, indicates, the distributions created using the Riesz s-
energy-based reference set have better diversity of solutions.
Based on these discussions, we can claim that the use of the
Riesz s-energy to generate reference sets could help referece
set-based MOEAs to generate Pareto front approximations
with a higher degree of diversity.



TABLE VI: SPD, IGD, and IGD+ average ranking results
of the IGD optimal µ-distributions using the four types of
reference sets.

QI MOP Riesz s-energy Random SLD UDH

SPD

DTLZ1 1.962 2.296 1.777 3.962
DTLZ2 2.333 3.481 2.074 2.111
DTLZ5 1.370 2.148 3.777 2.703
DTLZ6 1.592 1.851 3.740 2.814
DTLZ7 1.380 2.428 3.190 3.000
WFG1 1.222 2.037 2.962 3.777
WFG2 1.407 1.814 3.037 3.740
WFG3 1.296 2.296 3.037 3.370
WFG4 1.148 2.148 3.481 3.222

IGD

DTLZ1 2.629 3.037 3.148 1.185
DTLZ2 1.740 3.259 3.370 1.629
DTLZ5 1.259 2.222 3.703 2.814
DTLZ6 1.370 2.111 3.703 2.814
DTLZ7 2.904 2.761 2.476 1.857
WFG1 3.703 2.814 2.185 1.296
WFG2 3.629 2.629 1.888 1.851
WFG3 1.222 2.222 3.666 2.888
WFG4 2.481 2.629 3.259 1.629

IGD+

DTLZ1 2.851 2.888 3.111 1.148
DTLZ2 2.592 3.814 1.185 2.407
DTLZ5 1.148 2.111 3.740 3.000
DTLZ6 1.370 1.888 3.740 3.000
DTLZ7 1.428 2.095 3.619 2.857
WFG1 3.851 3.074 1.925 1.148
WFG2 3.666 3.333 1.851 1.148
WFG3 1.296 2.148 3.666 2.888
WFG4 3.222 3.296 1.333 2.148

TABLE VII: SPD, IGD, and IGD+ average ranking results
of the IGD+ optimal µ-distributions using the four types of
reference sets.

QI MOP Riesz s-energy Random SLD UDH

SPD

DTLZ1 1.777 2.481 1.777 3.962
DTLZ2 1.925 2.333 2.925 2.814
DTLZ5 1.518 2.555 3.740 2.185
DTLZ6 1.555 2.296 3.777 2.370
DTLZ7 1.428 1.809 3.380 3.380
WFG1 1.259 1.925 3.037 3.777
WFG2 1.185 1.851 3.074 3.888
WFG3 1.296 2.444 2.851 3.407
WFG4 2.000 2.148 2.925 2.925

IGD

DTLZ1 2.481 3.074 3.074 1.370
DTLZ2 2.296 1.777 3.111 2.814
DTLZ5 2.333 2.555 3.444 1.666
DTLZ6 2.370 2.444 3.481 1.703
DTLZ7 1.952 1.761 3.666 2.619
WFG1 1.555 1.592 3.185 3.666
WFG2 1.444 1.629 3.148 3.777
WFG3 1.185 2.222 3.777 2.814
WFG4 2.296 1.296 3.407 3.000

IGD+

DTLZ1 2.666 3.074 3.074 1.185
DTLZ2 2.333 3.629 2.148 1.888
DTLZ5 1.296 2.296 3.629 2.777
DTLZ6 1.370 2.185 3.666 2.777
DTLZ7 2.666 3.190 2.428 1.714
WFG1 3.740 3.222 1.592 1.444
WFG2 3.740 3.037 1.925 1.296
WFG3 1.185 2.185 3.740 2.888
WFG4 3.074 3.777 1.592 1.555

D. Assessment of MOEAs
In this section, we aim to analyze the preference of the

IGD indicator using the four types of reference sets in the
IGD-based comparison of different MOEAs. For this aim, we
executed several MOEAs on MOPs having 2 to 6 objective
functions. Each MOEA was executed 30 independent times
on each test instance. Table VIII shows the numerical results
of the comparison only for the WFG2 problem due to lack
of space. We employed the reference sets of cardinality equal
to the column N5 of Table I. The use of different methods to
generate reference sets does not radically change the prefer-
ence of IGD as it is clear in Table VIII. Further research is
required in this direction to determine the effect of the Riesz
s-energy-based reference on the IGD comparison.

V. CONCLUSIONS AND FUTURE WORK

Currently, reference sets are widely used to guide the
population of an MOEA towards the Pareto front or for
the assessment of MOEAs through quality indicators. An
important issue is how to construct the reference set, having
good diversity properties regardless of the dimensionality of
the objective space and the geometry of the Pareto front. In
this paper, we proposed to use the Riesz s-energy to construct
reference sets due to its nice properties that allow to uniformly
sample a d-dimensional manifold. Our experimental results
that include the diversity assessment of our reference sets
and other three construction methodologies of reference sets
indicate the superiority of the Riesz s-energy. This superiority
was shown in the construction of approximated optimal µ-
distributions for the IGD and IGD+ indicators and for the
assessment of state-of-the-art MOEAs. As part of our future
work, we want to further analyze the mathematical properties
of the Riesz s-energy and its use to dynamically guide
reference set-based MOEAs.
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TABLE VIII: Mean and, in parentheses, standard deviation of the IGD comparison, for the WFG2 problem, using the four
methods to generate reference sets. The two best values are shown in grayscale, where the darker tone corresponds to the best
algorithm. The superscript indicates the rank of the algorithm.
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