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Abstract—This paper proposes new Fitness Landscape Analy-
sis (FLA) metrics as measures for problem difficulty in heuristic
search. The sensitivity and variable interaction metrics are based
on Sobol indices, a common technique in sensitivity analysis. The
fitness- and state-variance and the fitness- and state-skewness
metrics are based on the second and third central statistical
moments. We compute metric values for around 550 continuous
test functions in 2, 5 and 10 dimensions and compare it to well-
established metrics (Fitness Distance Correlation, Autocorrela-
tion, Information Content, Density-Basin Information and Partial
Information Content). By conducting two-sample statistical tests
(T-Test, F-Test, Kolmogorov-Smirnov Test, and Rank-Sum Test)
for all combinations of FLA metrics, we demonstrate that
our proposed metrics result in significantly different distribu-
tions. Thus, we can conclude that they reveal fitness landscape
characteristics not captured by the existing metrics that were
considered.

Index Terms—Fitness Landscape Analysis, Sensitivity Analysis,
Central Moments, Black-Box Optimization, Problem Difficulty

I. INTRODUCTION

In contrast to dynamic (exploratory) Fitness Landscape
Analysis (FLA), static FLA aims to examine characteristics of
a function f(x) independently of the optimization algorithm
that solves it [3]. By conducting an FLA, features of an (black-
box) optimization problem related to algorithm performance
may be identified; thus, they help with the selection of
the ideal algorithm and/or calibrating its hyper-parameters.
At first sight, dynamic FLA appears to be more useful in
this respect, as it provides information specific to a solver
[4]–[7]. Especially hyper-parameter optimization methods are
therefore often online, i.e. only when a solver is initialized to
a new problem are its hyper-parameters tuned to this particular
problem instance [8]–[10].

Static FLA provides extensive information on problem fea-
tures that may also be used to improve algorithm performance.
When encountering a new unknown problem, solver behavior
may be observed and cross-correlated to previously studied,
known test function problems. Therefore, pre-tuning methods
such as in [11], [12], and generally hyper-parameter optimiza-
tion and algorithm selection research can utilize information
from static FLA.

This paper is based on results from a PhD thesis [1] and findings have been
partially published in [2].

It has been shown that several FLA metrics are required
to properly capture the diverse characteristics of real-world
problems [13], [14]. When facing a new problem with no prior
information about its structure, it remains unclear which FLA
metric yields the highest descriptive content. Therefore, this
paper introduces the following (static) metrics to add to the
existing FLA literature:
• Degree of Variable Interaction, vinter
• Coefficient of Variation in Variable Sensitivity, vcv
• Fitness Variance, µ2(y)
• State Variance, µ2(‖d‖)
• Fitness Skewness, s(y)
• State Skewness, s(‖d‖)
vinter and vcv are based on the Sobol indices, a common

technique in Global Sensitivity Analysis [15]. vcv describes
how sensitive the cost value of a function f(x) reacts to
individual decision variables xi. vinter describes the degree of
variable interaction, i.e. how much the cost value is varied
due to interaction effects between multiple xi. The authors
in [16] have also developed a metric to quantify variable
interactions; however, the main difference to vcv is that our
metric is strictly static, as it relies on a Monte-Carlo based
sequence as sampling input. The metric by [16], on the other
hand, is for dynamic FLA.
µ2(y) and µ2(‖d‖) are the second central moment—i.e. the

variance—of fitness and state distributions. Larger variations
have a negative influence on the effectiveness of probabilistic
sampling or optimization methods.
s(y) and s(‖d‖) are based on the third central moment—

i.e. the skewness—however not centered around the mean
of a distribution. Thus, they inform on whether probabilistic
methods are more likely to find low- or high-cost solutions,
as well as how dispersed solutions are in variable space.

For computing µ2‖d‖ and s(‖d‖), we introduce a new dis-
tance measure, state dispersion, that informs on the dispersion
in variable space for specific cost-value ranges.

Our proposed metrics are described in detail in Section
II. In Section III we compare metric values of our metrics
with other established popular FLA metrics (Fitness Distance
Correlation [17], Autocorrelation [18], Information Content,
Density-Basin Information and Partial Information Content
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[19]), using a large set of over 550 continuous optimization
problems as compiled by [7].

Although we only consider continuous functions in this
study, the proposed metrics can also be applied to discrete
/ combinatorial problems with minor modifications, e.g. by
using the Hamming distance instead of Euclidean as a state-
distance measure. Furthermore, µ2(y), µ2(‖d‖), s(y) and
s(‖d‖) could also be applied to dynamic FLA, but we compute
them as static measures in this study.

II. PROPOSED FLA METRICS

The proposed FLA metrics require an input sequence X .
More specifically, vinter and vcv require a Monte-Carlo based
sequence, such as the Sobol-sequence, which is a low discrep-
ancy quasi-random sampling technique. In [20] a sampling
size of T = m× (n+ 2) is suggested, with m ranging at least
between 500 and 1000, and n being the problem dimension1.
The other metrics µ2(y), µ2(‖d‖), s(y) and s(‖d‖) work
with any kind of sequence, but naturally benefit from an
extensive sampling. The individual FLA metrics are described
in detail in the following sections and exemplified with four
test functions in n = 10 from the COCO set [21], shown in
n = 2 in Fig. 1.

(a) Sphere function (b) Ellipsoidal function

(c) Weierstrass function (d) Gallagher’s Gaussian 21-hi
Peaks function

Fig. 1. Test functions used in n = 10 to exemplify proposed Fitness
Landscape metrics (visualized in n = 2 here). Images from [21]

A. Metrics based on Sobol Indices

The Sobol method [15] is a variance-based Global Sensi-
tivity Analysis technique that quantifies the variation in cost
value y = f(x) caused by changing decision variable values

1In order to reduce numerical issues, we even use m = 10, 000 in our
later numerical experiments in Section III.
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Fig. 2. First- and total-order effects as computed by the Sobol method for
four test functions in n = 10. Light grey barcharts show ‖ST,i‖ (normalized
between minimal and maximal ST,i per problem), dark grey barcharts show
Si. Star markers show vcv, circle markers show vinter. The bar segments
indicate individual variable values of xi for ‖ST,i‖ and Si respectively.

xi, i ∈ n. The Sobol method provides two indices: (i) The
first-order effect Si that indicates the amount of variation
of y caused solely by an individual variable xi (i.e. without
considering variable interactions), and (ii) the total-order Sobol
index ST,i that indicates the amount of variation in y caused by
xi including its interaction effects with other variables. We use
the sobol2007 function of the R package sensitivity
that implements the equations by [22], [23].
Si and ST,i are shown in Fig. 2 as stacked barplots for four

test functions in n = 10. Large Si values translate to a high
influence on the output variance by the variable itself without
interactions. Large ST,i mean a high influence on the output
variance by a variable including its interaction effects. Fig.
1a and 1b are examples of separable problems (small vinter),
Fig. 1c and 1d are examples for inseparable problems (large
vinter). Also, Fig. 1b shows that this instance of the Ellipsoidal
function from the COCO set has a single variable xi that
contributes almost entirely to the output variance. We aim to
quantify such function characteristics with the FLA metrics as
described in the following.

1) Degree of Variable Interaction: Our first metric vinter
measures the degree of variable interactions of a function f(x).
Only the first-order effect, Si, is used for its computation:

vinter := 1−
n∑

i=1

Si. (1)



Since Si indicates the contribution that a single variable xi
has on the variance of y (ignoring possible interactions with
other xj , j 6= i), vinter describes how much of the variation in
y can be described by first-order effects only. Theoretically,∑n

i=1 Si = 1 for completely separable problems and gener-
ally

∑n
i=1 Si ≤ 1, meaning that when vinter approaches 1,

interactions between variables have a higher contribution to
the output variance. On the contrary, a small value for vinter
indicates variable separability (see circle markers in Fig. 2).

2) Coefficient of Variation in Variable Sensitivities: The
second proposed metric based on the Sobol method measures
the variation in variable sensitivity by computing the coeffi-
cient of variation, i.e. the ratio of the standard deviation to the
mean of all ST,i of a problem:

vcv :=
σST

S̄T
, (2)

where σST is the standard deviation and S̄T is the mean of all
ST,i, i ∈ n. Since ST,i indicates the impact of xi on the output
variance y including its interactions with other variables, a
large value for vcv indicates that only few xi are important
in a problem. On the contrary, small values for vcv mean that
most xi are equally important (see star markers in Fig. 2).

B. Fitness- and State-Variance

The fitness- and state-variance metrics µ2(y) and µ2(‖d‖)
are derived from histograms as a way to visualize the dis-
tribution of a sampled problem [14], [24]. We propose using
the second central statistical moment—i.e. the variance—as a
summarizing FLA metric to such histograms.

1) Fitness Variance: The fitness variance is computed as:

µ2(y) := E(y′ − µy′)2, (3)

where y′ is y = f(X) after mean normalization, µy′ is the
mean of y′ and E denotes the expected value. A large fitness
variance means that the probability of sampling a wider range
of different cost values increases, whereas a small fitness
variance indicates that probabilistic methods will more likely
find solutions with similar cost values. Therefore, this metric
can be used as an indicator of how likely randomized operators
in a solver may find low- or high-cost solutions (Fig. 3 and
4).

2) State Variance: For computing the state variance, we
first express the state distribution X as the normalized distance
values per bin b of the cost-values histograms (Fig. 4). Per b,
we compute the mean normalized distance of all states xb,j—
j being the index of states in bin b—to the mean solution
xb within that bin. Hence, we define the mean normalized
distance of all states within a bin b—also understood as state
“dispersion”—by:

∥∥db∥∥ :=
1

#b

#b∑
j=1

(
1

n

n∑
i=1

√
(‖xb,j,i‖ − ‖xb,i‖)2

)
, (4)

where i ∈ n, n being the problem dimension, and #b being
the number of elements in bin b. The number of bins B is a

(a) Sphere function

(b) Ellipsoidal function

(c) Weierstrass function

(d) Gallagher’s Gaussian 21-hi Peaks function

Fig. 3. Input sequences X plotted as Fitness Distance Correlation plots
(Euclidean distance). Histograms show the frequency at which certain cost
value intervals occur. For each bin b (in Fig. 3a four bins are grouped for
illustrative purposes) Eq. 4 is computed.

parameter that will influence the resolution of the histogram.
We found B = 20 to be a reasonable value.

The computation of a single distance ‖db,j‖ is illustrated in
Fig. 3a. Large values for

∥∥db∥∥ mean that, at the given cost-
value range, solutions are more spread in state space and thus
possibly deceiving an optimization algorithm, as the solution
is more ambiguous. In other words, two solution vectors x(1)

and x(2) might have similar variables but very different cost
values. Small

∥∥db∥∥ indicate easier problems because the close
solutions (in variable space) are also associated by similar cost
values, i.e. a non-deceptive landscape.

Fig. 4 shows
∥∥db∥∥ plotted as solid black curves over the

cost-value histograms of four different test functions; the
dashed curves indicate minimal and maximal ‖db,j‖ per bin b.



As shown in Fig. 4d at f(x) ≈ 50 highlighted in orange, the
curve for

∥∥db∥∥ might unexpectedly spike. This is caused by
too few samples in a bin, causing ‖db,j‖ to behave seemingly
random. Since it would create a bias in the state variance
towards non-representative domains, we introduce following
condition for such cases:

∃{b ∈ B | #b < blbn} ⇒
∥∥db∥∥ := 0, (5)

which assigns a mean distance of zero to those underpopulated
bins. blb is a parameter to define the smallest cardinality of
b to be considered for the state variance metric, and B is
a parameter that defines the total number of bins. We use
blb = 1.5 and B = 20 in our later numeric experiments in
Section III.

Finally, we can compute the state variance of ‖d‖ with:

µ2(‖d‖) = E(d∼ − µd)2 , (6)

where d∼ denotes the distribution of ‖d‖ and µd is its mean.
We obtain d∼ by re-interpreting the black solid curves of∥∥db∥∥ in Fig. 4 as probability density functions, i.e. ‖d‖ 7→ P

(left Y-axis in Fig.4), with
∑B

b=1 P (b) = 1.0. Hence, d∼ ∈
{1/B, 2/B, . . . , 1} is a sequence with normalized values,
where the occurrence of each element is proportional to P (b).

C. Fitness- and State Skewness

We also propose a modified skewness metric that is com-
puted from the distribution of fitness and state values. It
maintains bias information, i.e. whether a function is more
likely to contain high- or low-cost solutions (fitness skewness),
or whether the state dispersion is higher at high- or low-cost
solutions (state skewness) (Fig. 4).

Unlike the third statistical moment, we do not center
our measure around the mean of a distribution. The dif-
ference to Pearson’s moment coefficient of skewness µ̃3 is
that the range of our measure is [−1, 1], hence allowing
a comparison between functions with different cost value-
and state dispersion ranges. However, our measure is pro-
portional to µ̃3. E.g. in Fig. 4a to 4d, we have s(y) =
{0.28, 0.39, 0.48,−0.93}, while the regular skewness µ̃3(y)
would yield {0.35, 0.82, 0.75,−3.88}.

1) Fitness Skewness: We define the fitness skewness as:

s(y) :=
1

T

T∑
j=1

(
‖y‖s

(
y̌ − yj)

))
, (7)

where ‖y‖s = |((max(y)−min(y))/2)−1| is a normalization
factor (|·| denotes the absolute value), such that s(y) ∈ [−1, 1],
y̌ = ((max(y) − min(y))/2) + min(y) is the central value of
y, and T being the population size of the input sequence X .

The fitness skewness is shown in Fig. 4 for different test
functions. A large positive skewness s(y) = 1 means that a
function has a high probability of sampling a low cost solution,
whereas a negative skewness s(y) = −1 means that it is more
likely to sample a high cost solution.

=
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=
=

(a) Sphere function

=
=

=
=

(b) Ellipsoidal function

=
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=
=

(c) Weierstrass function

=
=

=
=

||db|| := 0

(d) Gallagher’s Gaussian 21-hi Peaks function

Fig. 4. Cost histograms and state dispersion curves (black solid) for metrics
µ2(y), s(y), µ2(‖d‖) and s(‖d‖). Dashed curves indicate the max and min
‖db‖ per bin. Image modified after [2].

2) State Skewness: The fitness skewness only addressed the
distribution in function value space. With the state skewness
metric, we intend to relate cost value probabilities with how
dispersed solutions are in state space x. In accordance to Eq.
7, we define the state skewness as:

s(‖d‖) :=
1

T

T∑
j=1

(
ď−1

(
ď− d∼,j

))
, (8)

where ď = 0.5− 0.5/B is the centre of the histogram.
A positive state skewness can be interpreted as a higher

dispersion of states at low cost values, whereas a negative



state skewness means a higher dispersion at high cost values.
Gallagher’s Gaussian 21-hi Peaks function in Fig. 4d is an
example of a large negative state skewness, which means that
solutions x with high cost values can be substantially different
in state space. The Sphere function in Fig. 4a is an example
with no state skewness, as at both cost extremes states seem
to converge, meaning that solutions become less ambiguous
in such domains.

III. COMPARISON TO ALTERNATIVE STATIC FLA METRICS

In this section, we compare our proposed FLA metrics
with established ones from the literature (Section III-B). We
use an extensive set of test functions (described in Section
III-A) and conduct statistical significance tests between all
considered metrics to assess whether new perspectives and
problem characteristics are obtained with our newly proposed
metrics (Section III-C).

A. Test Functions Investigated

We apply our developed FLA metrics to an extensive
problem set that has been compiled in [7]. It contains 272
mostly continuous benchmark problems from various sources,
including 219 problems collected from [25]–[27], the 29
problems from the CEC 2017 optimization competition [28],
and the 24 problems from BBOB 2009 (also known as COCO
test set) [21], [29]. In [7] it has been shown that this set
covers a very high diversity and thus can be considered
representative for the domain of continuous optimization. We
compute FLA metrics for n = 2, 5, 10 for the entire set,
even though in [2], [7] it has been shown that n does not
have a significant impact on FLA metrics for most of the
test functions investigated. However, [7] showed that n can
still have an impact on algorithm performance on a given
problem, i.e. an algorithm that dominates a benchmark at low
dimensions may not perform as well as other algorithms on
higher dimensions.

Some functions in the set are not entirely scalable in n,
which is why we have 558 problems / problem instances (we
use 15 different instances of the COCO test set per n) in
n = 10, 556 in n = 5, and 547 in n = 2.

B. FLA Metrics Considered

Apart from our proposed metrics from Section II, we
compute the following established metrics from the literature:
Fitness Distance Correlation, FDC [17]; Autocorrelation, ρ̃
[18]; Information Content, H̃(ε); Density-Basin Information,
h̃(ε); and Partial Information Content, M̃(ε) [19].

We compute FDC using the same Sobol sequence with T =
(2+n)×10, 000 as for our proposed metrics. The tilde accent
in ρ̃, H̃(ε), h̃(ε) and M̃(ε) denote the medians of 20 random
walks with different starting points and length T = n × 100.
Their sequence is sampled as:

xt = xt−1 + σrwv̂, (9)

where σrw is the step size—we use 2% of the search domain—
and v̂ = v|v|−1 is the unit vector, with v ∈ Rn being a random

vector drawn from a normal distribution, i.e. ∀i ∈ n, vi ∼
N (0, 1).

The autocorrelation measure may fluctuate across changing
lag l. Therefore, for one random walk, we propose measuring
the median from l = 1 to n+ 1 as:

ρ := r̃l=1: n+1, (10)

which means that ρ̃ is the median of 20 ρ.
H̃(ε), h̃(ε) and M̃(ε) are functions of a tolerance parameter

ε, for which we use 0.2% throughout our experiments. In
initial experiments [2] for one instance of the 24 COCO
test functions, we have found that this value results in a
reasonable degree of discrimination of the problems, while
with a too large ε = 1% all measures converged towards
the same value. With a too small ε = 0.001%, measures
were almost uniformly distributed, with no grouping observed
among the test functions. Related to this, [6] have addressed
the issue of an appropriate step size. The authors propose
variable step sizes to improve sampling quality, but we leave
such improvements for future work.

C. Statistical Difference between FLA Metrics
In this section, we perform statistical tests for all 11 con-

sidered FLA metrics vinter, vcv, µ2(y), µ2(‖d‖), s(y), s(‖d‖),
FDC, ρ̃, H̃(ε), h̃(ε), and M̃(ε). From the test results, we can
assess whether our proposed metrics inform us on different
fitness landscape characteristics that are not covered by the
alternative metrics.

We perform the two sample T-Test for equal means (TT),
the F-Test for equal variances (FT), the Rank-Sum Test for
equal medians (RS), and the Kolmogorov-Smirnov Test for
equal continuous distributions (KS) for all M(M − 1)/2
combinations of FLA metrics, M being our 11 considered
metrics. The null hypothesis for one combination states that
two FLA metrics mi and mj have the same distributions,
H0 : mi = mj , with j, i ∈M and i 6= j. The rejection of H0

consequently means that the two tested metrics are statistically
different.

All FLA metric values are normalized beforehand between
the maximal and minimal value found for the entire test
function set, such that they can be compared in the statistical
tests (not necessary for KS). This procedure is required, since
most FLA metrics have inherently different value ranges (see
Fig. 2 and 4). It assumes that the minimal and maximal values
represent the true upper and lower bounds for a theoretical
complete set of functions, otherwise there is a risk of losing
bias information of distributions. Naturally, we cannot know
the true bounds. However, as has been shown in [7], the test set
has a very large coverage and thus we rely on the assumption
of this test set being representative enough for the class of
continuous optimization problems. It should also be noted that
by normalizing our data, we skew the test towards a more
conservative direction. Thus, it would only become more likely
to not find any statistical difference.

Fig. 5 shows a scatterplot matrix and p-values for all tests
and metrics at n = 10, Table I shows the p-values for n = 2
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Fig. 5. Scatterplot matrix for n = 10. p-values marked with ** are significant at α = 0.05 and marked with * at α = 0.1. Values in red font indicate cases
for which the Null-hypothesis is accepted (i.e. no significant difference). TT = T-Test; FT = F-Test; RS = Rank-Sum Test; KS = Kolmogorov-Smirnov Test.
Values are rounded to 2 decimal places.

and n = 5. As already shown by [7], problem dimensionality
does not noticeably change FLA metrics, therefore we omit
scatterplots for n = 2 and 5.

The results clearly show that there is a significant difference
between FLA metrics for the majority of statistical tests
conducted at a high confidence, i.e. p = 0.00. Only in few
cases is the null hypothesis accepted (p-values marked in red
font in Fig. 5 and Table I). However, accepted H0 are not
consistent throughout problem dimensions n = 2, 5, 10. While
we do not show it here, we did find that the scatterplots
for the different n exhibit similar patterns. The reason for
partly accepting H0 might be because our input sequence
also increases with problem dimension, thus possibly changing
distributions slightly. Since most tests do show a statistical

difference over n, we can still be confident in concluding that
all considered FLA metrics describe different characteristics
of a function.

Another way of comparing similarity is by studying the
scatterplots in Fig. 5. It is striking that for the metrics based
on information analysis—H̃(ε), h̃(ε), and M̃(ε)—distinct
patterns emerge, albeit no linear correlation. The same is true
for the state- and fitness-distribution metrics, which appear
to correlate. For most of the other FLA metric combinations,
points are rather scattered over the entire domain. This can
be interpreted as a high diversity of the considered test func-
tion set. Also, assuming all considered FLA metrics produce
meaningful measures, this result can be interpreted as evidence
for the new metrics describing significantly different fitness



landscape characteristics.

IV. DISCUSSION AND CONCLUSION

In this paper, we have introduced new FLA metrics based on
Sobol indices and state- and fitness-distributions. They inform
on variable sensitivities, variable interaction, state dispersion
and fitness probabilities. Such information may be used for
selecting an appropriate optimization algorithm or calibrating
its hyper-parameters for a specific problem.

We have compared our metrics to other established ones
(Fitness Distance Correlation, Autocorrelation, Information
Content, Density-Basin Information and Partial Information
Content) using an extensive set of around 550 continuous test
functions, tested in n = 2, 5, 10.

Summarizing the results of this study, the majority of
statistical tests conducted showed a significant difference of
FLA metric distributions. Thus, it is evident that the proposed
metrics result in different distributions as compared to the
existing well-established metrics. A sensible interpretation is
that all metrics reveal different characteristics and features of
fitness landscapes, thus should all be mutually considered in
FLA.

This assumes our proposed metrics result in coherent mea-
sures for the test functions, which we have demonstrated in
Section II at the example of the Sphere-, the Ellipsoidal-, the
Weierstrass-, and Gallagher’s 21-hi Peaks-function.

It should be critically noted that both empirical and theo-
retical evidence on the usefulness of the proposed metrics for
FLA tasks, such as hyper-parameter optimization or algorithm
selection, is still missing. As a first step, they should be
correlated to algorithm performance when solving benchmark
test functions or real engineering problems.

Future work should also adapt the proposed metrics for
discrete / combinatorial functions, e.g. by using the Hamming
distance. Also, the impact of soft and hard constraints on
metric values needs to be investigated, as well as the impact
of high dimensional problems n > 100. These are essential
topics especially in real-world optimization problems. Unlike
the metrics based on the Sobol indices, the state- and fitness-
distribution metrics can also be applied to exploratory /
dynamic FLA.

Finally, future work should find a means to integrate our
(and other) FLA metrics to the algorithm selection problem
and to hyper-parameter optimization. A possible approach
could be comprised of an initial screening phase, in which
approximate information of an unknown problem is obtained.
Using cross-correlation, previously conducted static FLA with
test functions could be brought into relation to the unknown
problem, and the hyper-parameters of an optimization algo-
rithm could be calibrated accordingly.
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TABLE I
STATISTICAL TESTS FOR n = 2 AND n = 5. P-VALUES MARKED WITH ** ARE SIGNIFICANT AT α = 0.05 AND MARKED WITH * AT α = 0.1. VALUES IN
RED FONT INDICATE CASES FOR WHICH THE NULL-HYPOTHESIS IS ACCEPTED (I.E. NO SIGNIFICANT DIFFERENCE). TT = T-TEST; FT = F-TEST; RS =

RANK-SUM TEST; KS = KOLMOGOROV-SMIRNOV TEST. VALUES ROUNDED TO 2 DECIMAL PLACES.
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