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Abstract—Recently, there has been increased research on
adaptive control systems for vehicles that operate on autonomous
vehicle only roads. Specifically, roads without current infrastruc-
ture constraints of traffic lights, stop signals at intersections or
vehicle lanes. This study investigates controller automation for
vehicles that must navigate and coordinate with each other on
such autonomous vehicle only roads. We comparatively evaluate
fitness-function (objective) versus behavior-based (novelty search)
versus hybridized objective-novelty evolutionary search for syn-
thesizing autonomous vehicle coordinated driving behavior. The
goal of such evolved coordinated driving behavior is to maximize
effective (safe) and efficient (expedient) autonomous vehicle traffic
throughput for given roads. Results indicate that while novelty
and hybrid search evolved effective and efficient driving behav-
iors, these behaviors did not generalize to new roads as well as
driving behaviors evolved with objective-based search.

I. INTRODUCTION

Recently there has been increasing academic and industry
research attention on producing adaptive control systems for
autonomous vehicles [1]. To accommodate such autonomous
vehicles there have been proposals that current road and
highway infrastructure undergo significant changes. For ex-
ample, replacing traffic lights and stop signs and allowing
autonomous vehicles to coordinate their own interactions so
as to avoid collisions and safely navigate through intersections
[2]. One method is to design vehicle controllers such that
desired coordinated driving behaviors automatically emerge for
vehicles driving and interacting on any given road [3], [4].

This study investigates the efficacy of evolutionary con-
troller design methods for enabling effective and efficient
coordinated driving behavior for autonomous vehicle traffic
on roads built exclusively for autonomous vehicles. That is,
roads and highways without the current road infrastructure of
traffic lights, intersection stop signals and vehicle lanes [2].

In the theme of autonomous vehicle only roads in future
metropolitan transportation systems, the Autonomous Intersec-
tion Management (AIM) control protocol was proposed for
coordinating autonomous vehicle traffic through intersections
without traffic signals [5]. AIM enabled many autonomous
vehicles to concurrently and efficiently transit through inter-
sections, effectively reducing the delay of vehicles by orders
of magnitude compared to intersections with traffic signals [6].

However, a key limitation of AIM and related work [7],
is it only managed autonomous vehicle traffic flow through
intersections and with few exceptions did not account for

uncertainty or dynamic obstacles such as pedestrians [2] or
mechanical failures [8]. Perfect traffic conditions and sen-
sory information was assumed, whereas incomplete and noisy
sensory environments must be accounted for if autonomous
vehicles are to be deployed on public roads and highways.

In this study, individual vehicle driving behavior was
adapted so as all vehicles elicited effective and efficient co-
ordinated driving behaviors for traversal of any given road.
Effectiveness and efficiency were performance metrics, equat-
ing to the number of collisions and time taken to traverse a
given road. Task difficulty was the number of vehicles (traffic
density) and obstacles (static and dynamic) on the road. The
goal was thus to evolve individual vehicle controllers such
that when multiple vehicles interacted, desired coordinated
driving behavior emerged for the given task environment (road
configuration and other vehicles and obstacles on the road).

Previous work applied neuro-evolution methods for evolv-
ing coordinated vehicle driving on roads [3], and through
intersections [4], without stop signals or traffic lights to assist
vehicle coordination and navigation. In such cases, evolution-
ary search for optimal vehicle controllers was directed by
objective-based search (fitness functions). This study’s contri-
bution was a comparative evaluation of objective-based, non-
objective (behavioral diversity maintenance), and hybrid search
methods for directing controller evolution and the synthesis of
effective and efficient coordinated driving behavior.

This evolutionary search method comparison was moti-
vated by indications that behavioral diversity maintenance
improves evolved multi-agent behavior quality [9], [10]. Such
work indicated behavioral diversity to be especially beneficial
for evolving complex coordinated multi-agent behaviors in task
domains such as RoboCup [11] and swarm robotics [9].

This study has two key differences to previous work [3]
[4]. First, to demonstrate the efficacy of applying objective-
based versus novelty [12] versus hybrid search, to direct the
evolution of coordinated-driving behavior. Second, to evaluate
the capacity for evolved coordinated behaviors to generalize to,
effectively and efficiently operating vehicles, on a range of new
test road-ways. These objectives were motivated by a current
deficiency in research on the efficacy of comparative evolu-
tionary search methods applied to evolve autonomous vehicle
traffic behavior, where such evolved traffic behavior effectively
and efficiently operates in more general task environments. For
example, road networks necessitating more complex types of
driving behaviors and coordination between vehicles.
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Fig. 1. Left & Center: Vehicles have five pyramidal sensors fanning out from the vehicle’s front. An example of sensor 4 detecting an object is depicted in
red. Right: Example ANN controller: vehicle sensors correspond to ANN input nodes (S1 to S5). Other inputs: bias input θ, angle to the next way-point a,
current speed of the vehicle, v. This example has one hidden node, H1. ANN controller motor outputs: steer and acceleration nodes.

II. METHODS

We applied the Neuro-Evolution of Augmenting Topologies
(NEAT) [13] method to synthesize autonomous vehicle traffic
behavior for given roads1 assuming no stop signals or lanes to
assist with vehicle coordination and navigation. NEAT was the
vehicle controller design method, where multi-vehicle driving
behavior emerged in response to task (minimizing traffic
transit time and collisions) and environment (road structure)
constraints. To direct NEAT controller evolution and synthe-
size coordinated vehicle driving behaviors, we used objective,
novelty and hybrid evolutionary search (section II-A).

NEAT [13] is a direct encoding neuro-evolution method
that has been demonstrated as suitable for multi-agent behavior
evolution in a broad range of tasks [14], [4], [11]. NEAT
evolves both connection weights and Artificial Neural Network
(ANN) topologies and applies three key techniques to maintain
a balance between ANN fitness and solution diversity.

First, NEAT assigns unique historical markers to new genes
so crossover is only performed between pairs of matching
genes. Second, it speciates the population so ANNs (geno-
types) compete only within their own niches (identified by
historical markers) instead of competing with the whole pop-
ulation. Third, NEAT initially evolves a population of simple
ANNs with no hidden nodes but gradually adds new topologi-
cal structure (nodes and connections) using two special muta-
tion operators, add hidden node and add link. An advantage of
NEAT is this complexifying process is likely to find a solution
in lower dimension search spaces compared to relatively large
search spaces corresponding to large fixed topology ANNs
specified a priori. This complexification process also makes
NEAT amenable for solving a broad range of problems.

NEAT was selected as it is an established method, that
has been successfully applied to vehicle controller evolution
in related work [15], [16]. However, with notable exceptions
such as automating vehicle traffic for intersections [4], optimiz-
ing vehicle sensory configurations [3], and formation driving
(platooning) [16], there has been relatively little research on
evaluating various types of evolutionary search with NEAT for
vehicle traffic optimization on autonomous vehicle only roads.

1Road and track are used interchangeably throughout this paper.

A. Vehicle Controller Evolution

Vehicle ANN controllers were evolved with one of three
NEAT evolutionary search variants (sections II-A1, II-A2,
II-A3). The goal was to maximize average distance traversed
(measured by checkpoints passed, table I, section III-C) on
a given track while minimizing collisions with static and
dynamic obstacles (figure 2). Static obstacles represented un-
expected objects on the road and dynamic obstacles repre-
sented other vehicles and pedestrians. An extension of Uni-
tyNEAT2 [17], was used to simulate vehicles, sensors, roads
and obstacles. Vehicle controller evolution used three vehicles
(with identical controller and sensor configurations) traveling
between static start and end-points on a given track (table I).

Controller evolution began with a population of minimally
complex ANN controllers using eight sensory input nodes
and two outputs (figure 1, right). During controller evolution,
both the ANN inputs (vehicle sensors) and outputs (vehicle
speed and turn angle) remained fixed and NEAT adapted the
number of hidden layer nodes and connectivity between hidden
and input and output and hidden nodes. The output nodes
were braking and steering. High versus low activation values
denoted the degree of braking and turning left versus right
(labeled accel and steer in figure 1, right, respectively).

Given that each vehicle used the same controller, vehicle
behavior differed only according to varying sensory inputs,
resulting in different individual vehicle and thus coordinated
driving behaviors (section II-A). Thus, the evolution of high
task performance coordinated driving depended on individual
vehicles effectively avoiding collisions via adapting speed
and heading in response to the driving behaviors of other
vehicles. Vehicle and controller homogeneity was selected
as this allowed for more efficient controller evolution and
evaluation.

1) Objective-based Evolution: Controller fitness was the
number of checkpoints passed after 45 simulation iterations:

fitness(x) =
1

cars

cars∑
i=0

(
cppassed
cptotal

∗ 0.9coll) (1)

Where, cars was the number of vehicles, cppassed, check-
points passed (section III-C), cptotal the total checkpoints on
the track, and coll the number of vehicle collisions.

2Unity is a multi-platform game development engine: http://unity3d.com



TABLE I. CONTROLLER EVOLUTION PARAMETERS AND CONTROLLER GENERALIZATION TEST PARAMETERS.

Vehicle Controller Evolution Parameters
Parameter Value

Number of vehicles 3

Number of runs / Generations per run 20 / 100

Task trials per generation / Task trial duration (seconds) 6 / 45

Evolutionary search methods (section II-A) Objective, Hybrid, Novelty

Evolution tracks 1

Generalization Evaluation Parameters
Parameter Value

Generalization experiments (Fittest 20 evolved controllers per search method) 3

Number of vehicles [1, 3, 5]

Number of runs per experiment (Fittest 20 evolved controllers) 20

Maximum trial duration (seconds) 100

Evolved controllers tested per test-track 60

Test tracks / Difficulty variations per test track 3 / 3

TABLE II. NEURO-EVOLUTION AND VEHICLE SIMULATION PARAMETERS.

Parameter Value

Evolution and Test Track Starting Area Initial 100 m2

Evolution Track Length / Width 6 km / 45 m

Test Track 1, 2, 3 Width 40 m

Test Track 1, 2, 3 Length 5.6 km / 5.2 km / 6.4 km

Sensor Field of View (FOV) / Range 40◦ / 100 m

NEAT Population size / Species count / Complexity threshold 100 / 10 / 21

ANN Activation function Steepened Sigmoid

Novelty Search archive size / Addition rate Unbounded / 15 per generation

Novelty Search K-nearest neighbors 15

Behavior Characterization Sampling Rate 1/100th run length (100 Samples)

Hybrid Weighted-Sum Proportion (ρ) 0.5

Fig. 2. Left: Controller evolution track: Two static obstacles were placed between the third and forth check-points, and fifth and sixth check-points. Dynamic
(other vehicle) obstacles (a and b) crossing the road and oncoming traffic made this track difficult to complete. Center-left, Center-right, Right: Test-tracks to
evaluate how well evolved controllers generalize to new environments. All tracks have 10 checkpoints (red, green and yellow) and a starting-area (blue).

Collisions (coll) caused an exponential decay to the fitness
of a vehicle controller, where values lower than 0.9 resulted
in slow and often stagnating evolution. This had the effect of
rarely rewarding vehicles that rarely collided but penalizing
such vehicles exponentially as collision counts increased.

2) Novelty-Search: Sparseness (equation 2) was used as a
novelty metric [18]. Controller novelty was how different its
behavior was compared to others in the population and novelty
archive, which stored all novel controllers so previously novel
behaviours were not lost. The K-nearest neighbors (behav-
iorally similar solutions in the novelty archive and population)

were used to compute controller sparseness and novelty.

Sparseness(x) =
1

k

k∑
i=0

dist(x, µi) (2)

Where, µ is the ith-nearest neighbor of x with respect to the
novelty metric, and dist uses the Euclidean distance.

Novelty Archive: The 15 most novel solutions (of the
current population, table II) at each generation were added
to the archive. The novelty archive was unbounded meaning
its maximum size was 15×ngenerations at the final generation.



Fig. 3. Left, center, right: Least to most difficult test tracks. Left: Test track 1: Easiest, medium, difficult tracks used 3, 4, 9 obstacles. Center: Test track 2:
Easiest, medium, difficult tracks used 3, 9, 17 obstacles. Right: Test track 3: Easiest, medium, difficult tracks used no obstacles, 7 and 16 obstacles.

Behavior Characterization (BC) and Behavior Sampling:
Parameter tuning experiments compared three behavior char-
acterizations: speed3, speed and cohesion and location as
potential behavioral dimensions to describe controller behavior
and be used by the novelty metric to select for novel behaviors.
In these experiments, speed yielded the highest mean fitness,
so it was selected as the BC used in hybrid and novelty search
directed controller evolution experiments (section III).

BC values were sampled at fixed simulation time-steps and
controller behavior vectors were compared with each other
to determine a controller’s sparseness [18]. BC was a vector
comprising values sampled at fixed intervals of 1/100th of total
simulation time-steps per generation. For each behavior vector,
100 samples were collected (sampling rate, table II), where
the vector of BC values were combined into a final vector for
sparseness calculation (equation 2).

3) Hybrid-Search: This method linearly combined novelty
and fitness to create a weighted sum [19], where the score that
an individual controller (i) received was:

score(i) = ρ.fit(i) + (1− ρ).nov(i) (3)

Where, ρ = 0.5, equally combining fitness and novelty for i:

fit(i) =
fit(i)− fitmin

fitmax − fitmin
, nov(i) =

nov(i)− novmin

novmax − novmin
(4)

Where, novmin, fitmin were the lowest novelty and fitness
values in the population, respectively and novmax, fitmax

were the highest. Previous work [19] indicated that large
variations of ρ biased the results to either novelty or objective-
based search. Other work using similar hybrid evolutionary
search indicated ρ = 0.5 to be a suitable value [11].

III. EXPERIMENTS

Two sets of experiments were conducted. First, controller
evolution experiments and second controller generalization test
experiments. Controller evolution experiments applied NEAT
for vehicle driving behavior evolution directed by objective,
novelty or hybrid search (section II-A), where average task
performance was calculated over 20 runs. One experiment
comprised NEAT controller evolution directed by one evolu-
tionary search method. Each evolutionary run was 100 gen-
erations and each generation consisted of six simulation task
trials that initialized three vehicles at starting positions within
the starting area of the evolution track (figure 2).

3Vehicle velocity was measured in meters per second (m/s).

Each generation, controller task performance was calcu-
lated as an average over six simulation task trials. A simulation
task trial was completed when all vehicles passed the final
checkpoint or after 100 simulation iterations. After each con-
troller evolution experiment was concluded, the 20 controllers
yielding the highest task performance, were selected at the end
of each of three evolution (that is, defined by a different search
method) experiment’s 20 runs, and applied to the controller
generalization test experiments. All experiment, simulation and
evolutionary parameters are presented in tables I and II.

For controller generalization test experiments, the evolved
controller yielding the highest average task performance (after
20 runs), was transferred to a non-evolutionary simulation test
run using either one, three or five vehicles. Each generalization
test run was the 20 best controllers (evolved by NEAT with
either objective, novelty or hybrid search functions), run in a
non-evolutionary task trial simulations on three increasingly
difficult variations of three test tracks (figure 2).

These generalization experiments evaluate an evolved con-
troller’s ability to traverse previously unseen tracks. As for
controller evolution experiments, each test track used check-
points to measure vehicle task performance (figure 2). How-
ever, instead of penalizing controllers on collisions, the vehicle
was immediately stopped upon collision, and if a vehicle
collided with another, the other vehicle was also stopped. The
rationale was to mimic real-world instances where vehicles
should completely avoid collisions. Generalization experiments
were non-evolutionary, though included dynamic obstacles,
where controller task performance was calculated as the
average task performance yielded by the fittest 20 evolved
controllers for all variations of a given test track (figure 2).
For each NEAT search method, an overall generalization task
performance average was calculated as the average over all 20
controllers tested on the three variations of each test track.

A. Vehicle Simulation

Simulated vehicles had a maximum steering angle of 25◦

to left or right from the vehicle’s current heading, and used
five radar sensors on the vehicle’s front (figure 1, left-center).
A sensor’s Field Of View (FOV) was a pyramidal shape, where
the sensor reading was the inverse distance to the closest
obstacle in the sensor’s range (table II). This sensor reading
was then fed into a corresponding ANN controller input node
(figure 1). A vehicle’s ANN controller also received as inputs:
a bias value θ, an angle to the next way-point, and the vehicle’s
current velocity (figure 1, right). A detailed description of
vehicle simulation can be found in previous work [18].



B. Controller Evolution and Generalization Test Tracks

Controller evolution and generalization experiments used
separate evaluation and test task tracks. Figure 2 (left) illus-
trates the evolution track and figure 2 (left-center to right),
presents the three tracks used for controller generalization
experiments. Figure 3 presents the three variations of each of
these three test tracks. Each test track simulated increasing task
difficulty (number of obstacles on the track). Generalization
experiments also tested one, three, and five vehicles to account
for increasing traffic density. For added difficulty, test tracks
also simulated merging lanes and height variances in tracks to
introduce vehicle blind-spots in sensory coverage.

C. Checkpoints

Checkpoints were placed along each track to guide vehicles
and determine the distance traveled by vehicles. Controller task
performance was equated to the number of checkpoints all
vehicles had passed relative to the total number of checkpoints
(section II-A1, II-A2, II-A3). To ensure normalization across
all tracks, each track used 10 checkpoints spread equally apart.

IV. RESULTS AND DISCUSSION

This section presents comparative results for NEAT con-
troller evolution directed by objective-based, hybrid and nov-
elty search, (section II-A1, II-A2, II-A3, respectively) and
results of the controller generalization tests. Figure 4 (left)
presents average maximum fitness progression over 100 gener-
ations of controller evolution. This fitness progression indicates
that controller evolution directed by hybrid search (section
II-A3) was significantly more expedient at evolving effective
controllers compared to objective-based and novelty search
(Mann-Whitney U, p ≤ 0.05). An average (normalized) fitness
of approximately 0.75 was reached by hybrid search after 20
generations, compared to 0.43 and 0.46 yielded by objective-
based and novelty search, respectively.

Figure 4 (right) presents box plots of the average fitness
(over 20 runs) of controllers evolved by each search method.
These controller evolution results indicate that all search
methods yielded just above 60% of optimal task performance,
where hybrid evolutionary search significantly out-performed
(Mann-Whitney U, p ≤ 0.05) the objective and novelty search
methods. However, there was no significant difference between
objective and novelty search directed controller evolution
(figure 4, right). This result supports the benefits of hybrid
evolutionary search in this coordinated driving task, and is
supported by previous work demonstrating benefits of hybrid
search in multi-agent behavior evolution [20], [10], [11].

To better elucidate the efficacy of comparative evolutionary
search methods, we investigated search space exploration via
visualizing portions of genotypes (controllers) evolved by each
search method with an average fitness in a given range. Figure
5 presents, for objective, hybrid, and novelty search, heat-maps
illustrating portions of genotypes within 0.20 ranges of normal-
ized task performance: [0.0, 1.0]. Figure 5 (left) indicates for
objective search, that approximately 70% of controllers yielded
an average fitness of 0.20 between generations 5 and 65. A
large portion of objective evolved controllers retained this low
average fitness until generation 50 when approximately 35%
of controllers yielded an average fitness of at least 0.40.

Objective search yielded approximately 60% of evolved
controllers in the fitness range: [0.2, 0.4] (figure 5, left), with
an average maximum fitness of 0.77 (figure 4, right, objective-
based). Figure 5 (center) indicates that hybrid search evolved
an approximate even-spread of solutions across the whole
fitness range. This held except for between generations 0 to 20,
where 40% of controllers had an average maximum task per-
formance of 0.20. The efficacy of this broad controller search
space exploration and thus near-optimal evolved controllers, is
reflected in the average maximum fitness of 0.99, of hybrid
search (figure 4, right, hybrid). Whereas, for all generations
of novelty search (figure 5, right), 80% of evolving controllers
were in the average fitness range: [0.0, 0.3]. This low fitness
region exploration is reflected in the low average maximum
fitness of 0.63 (figure 4, right, novelty search).

Figure 6 (left) presents the generalization test results for the
fittest controllers evolved by the objective, hybrid and novelty
search methods. Task performance averages were calculated
over 20 runs for all vehicle group sizes (table I) and all
test tracks (figure 3). Figure 6 (left) indicates that vehicle
controllers evolved with objective search generalized best to
the test tracks for all vehicle group sizes (figure 3), though
controllers evolved with hybrid search were least well suited
to generalize to the test tracks. Mann-Whitney U (p ≤ 0.05)
tests indicated a significant difference between generalization
test average task performance results of each search method
(figure 6, left). The fittest controllers evolved by objective,
hybrid and novelty search yielded average task performances
of 0.29, 0.20, and 0.24, respectively, in generalization tests.

To elucidate evolutionary mechanisms responsible for these
results, we visualized the topological network complexity of
each search method’s fittest evolved controllers. Figure 6
presents the three fittest controllers evolved by NEAT with
objective, hybrid and novelty search, where blue and red lines
denote positive and negative weights, respectively, and line
thickness denotes weight magnitude. Figure 6 indicates that
the fittest controllers evolved by hybrid search were simple
reactive ANN controllers with direct connections between
sensory inputs and motor outputs and no hidden layers. In
contrast, the fittest ANN controllers evolved by objective and
novelty search were relatively complex given an increased
number of hidden nodes and connections [11]. This difference
in controller complexity was consistently evident between the
fittest evolved controllers for all search methods and runs.

The efficacy of hybrid search is theorized to be a result
of thorough controller (behavior) space search as evidenced
in the approximately even spread of controllers and fitness
values (figure 5). For example, at the final generation, 80%
of hybrid search evolved controllers had fitness values in the
range: [0.1, 0.8], where half of the controller population was
in the fitness range: [0.5, 0.7]. This exploratory capability of
hybrid search is also supported by related work [20], [10], [11].
In this study, broad search space exploration enabled the dis-
covery of minimally complex controllers (figure 6) achieving
significantly higher average fitness, compared to objective and
novelty search evolved controller behaviors (figure 4). While
this simple neural complexity was effective on the controller
evolution track (figure 2), controller generalization experiments
(figure 6, left), indicated that such simple controllers were
ineffective across all test tracks (figure 3).



Fig. 4. Left: Average maximum fitness progression over vehicle controller evolution. Right: Box plots of average maximum evolved controller fitness. Averages
are over 20 runs for objective and hybrid and novelty search based controller evolution on the evolution track (figure 2, left).

Fig. 5. Heat-maps presenting portions of genotypes evolved by objective-based (left), hybrid (center) and novelty search (right), within each 20 percentile of
normalized task performance (fitness): [0.0, 1.0]. Darker shading indicates a higher portion of genotypes in the given fitness range.

The higher adapted neural complexity of the fittest objec-
tive and novelty search evolved controllers (figure 6) included
necessary behavioral functionality. Such behavior enabled
these controllers to yield significantly higher average task
performance across all generalization test roads, for all vehicle
group sizes (figure 6, left). Specifically, increased evolved
controller complexity was detrimental given specific tasks
(controller evolution track, figure 2), but generally beneficial
to task performance across several tasks of varying difficulty
(controller generalization test tracks, figure 3). This is sup-
ported by related work in multi-agent behavior evolution [11],

These results also indicate that hybrid search is least effec-
tive, whereas objective search is most effective for evolving
coordinated driving behaviors capable of generalizing to a
broader set of related task environments of varying difficulty
(road configurations and vehicle group sizes). This indicates
the coordinated driving task is not well suited to hybrid
objective-novelty or novelty search directed controller evolu-
tion, due to strict task environment constraints [21], [22]. How-
ever, the impact of other behavioral characterizations in hybrid
and novelty search and other evolutionary search variants on
evolving generalized multi-agent behaviors, remains the topic

of ongoing research. An end goal is to develop evolutionary
methods to automate the design of controllers for coordinated
autonomous vehicle traffic that operates effectively (safely) and
efficiently (expediently) on autonomous vehicle only roads.

V. CONCLUSION

This study investigated controller automation for coordi-
nated vehicle traffic on autonomous vehicle only roads. Results
indicated that controller evolution directed by hybrid search
evolved significantly more effective (high task performance)
coordinated driving behaviors, compared to those evolved by
objective (fitness function) and novelty search. However, the
fittest hybrid search evolved coordinated driving behaviors did
not generalize well to new test roads, compared the fittest
driving behaviors evolved by objective and novelty search.
These generalization test roads evaluated evolved controllers
for various coordinated driving behavior tasks, vehicle num-
bers and road configurations. The relatively poor performance
of the fittest hybrid evolved controllers in these generalization
tests indicates that while hybrid search evolution was efficient
and effective, the task constraints and test track variability were
not conducive to controllers evolved by hybrid search.



Fig. 6. Left: Average maximum (20 fittest evolved controllers) task performance from generalization tests, for all test tracks and vehicle group sizes (figure 3,
table I). Right: Fittest controllers evolved by NEAT (after 20 runs) with objective (top), hybrid (middle) and novelty (bottom) search.
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