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Abstract—Intelligent transportation is a cornerstone of smart
cities’ infrastructure. Its practical realisation has been attempted
by various technological means (ranging from machine learning
to evolutionary approaches), all aimed at informing urban
decision making (e.g., road layout design), in environmentally
and financially sustainable ways. In this paper, we focus on
traffic modelling and prediction, both central to intelligent trans-
portation. We formulate this challenge as a symbolic regression
problem and solve it using Genetic Programming, which we
enhance with a lag operator and transfer learning. The resulting
algorithm utilises knowledge collected from other road segments
in order to predict vehicle flow through a junction where traffic
data are not available. The experimental results obtained on the
Darmstadt case study show that our approach is successful at
producing accurate models without increasing training time.

Index Terms—Genetic Programming, Transfer Learning, Sym-
bolic Regression, Intelligent Transportation, Traffic Prediction

I. INTRODUCTION

Intelligent transportation [1], [2] is a technology-driven ap-
proach to road traffic management, a critical milestone on the
path towards realising the smart cities vision [3]. When imple-
mented, Intelligent Transportation Systems (ITS) would fea-
ture increased traffic fluidity, ultimately leading to a significant
reduction in pollution, delays, infrastructure costs and accident
frequency. There are several computational tools with a well
documented potential to underpin the practical realisation of
ITS, namely, vehicular-infrastructure communications [4]–[7],
evolutionary algorithms [8]–[11], machine learning [12]–[14],
blockchain [15], [16] and game theory [17], to name just the
well established ones.

Amongst these, Genetic Programming (GP) [18], [19] -
a particular type of evolutionary algorithm - shows remark-
able promise when it comes to urban traffic modelling and
prediction, which are central to ITS implementation. Traffic
modelling is essentially a symbolic regression problem, thus
offering the ideal application space for GP. The crux of its
appeal is best communicated by Sipper and Moore, in their
analysis of GP’s recent history [19]. The very first item they
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include in a list of themes and challenges extracted from 15
years of GP theory and practice is symbolic regression. This
is deemed to be “at the heart of many complex, real-world
problems”, a category that traffic modelling and prediction
fall neatly under. The second item in the list recommends that
“in real life one must progress beyond pure, vanilla GP.” Our
take on this guideline is to enrich traditional GP with transfer
learning for traffic modelling.

Transfer learning [20], [21] employs knowledge acquired
on a previous problem to solve new problems that are similar
to the original one. We apply this to traffic modelling, by
training a model on data collected from a source junction
and using it to predict traffic on a topologically similar, target
junction, that is geographically distinct from the source. This
is necessary in a variety of practical situations, e.g, missing or
faulty sensors, leading to the absence or unreliability of traffic
flow readings on the target junction. In such cases, the only
solution for predicting future traffic through the target junction
is to build a model on data collected from topologically similar
source junctions. The question arising is whether the models
obtained via transfer learning are competitive (of similar
accuracy and/or produced in a similar amount of time) when
compared to those one could train exclusively on the target
junction (native or reference models), should the necessary
data exist. From a methodology perspective, we investigate
two approaches to answer the above question:

• Use one source junction for training and transfer the fittest
model over to the target junction. We will refer to this
approach as Single Source Transfer Learning (SSTL).

• Use several source junctions for chain training (transfer
the fittest model obtained on the first source to the second
source, where training is resumed, and then transfer the
final model over to the target junction). We will refer
to this approach as Multiple Source Transfer Learning
(MSTL).

We propose the GENetic Programming with Transfer LEarn-
ing (GENTLE) algorithm to generate SSTL and MSTL mod-
els. We evaluate GENTLE models on a set of target junctions
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(for which complete and reliable traffic readings exist) selected
from the road network of Darmstadt, Germany. Based on our
results, we propose that GENTLE is adopted as a decision
support tool for urban traffic prediction, whenever junction
data are not available.

The following section presents a concrete example where
transfer learning models are the only way to predict traffic
through a target junction. The current research on traffic mod-
elling and prediction is discussed in the background section,
which also provides a description of transfer learning and
its use in GP. Section IV explains the GENTLE algorithm
and is followed by the analysis of the experimental results
obtained by deploying GENTLE on the Darmstadt case study.
The conclusions are outlined in section VI.

II. MOTIVATING SCENARIO

We consider urban traffic through the road network of Darm-
stadt, Germany1. For this case study, we selected junction
A13, located on a busy main road (Fig. 1a), alongside junc-
tions A21, A36 and A51, of a similar structure (Fig. 1b).
Normally, a junction would be equipped with sensors (e.g.,
induction loops) to count vehicles passing through all inflow
and outflow lanes. This would make it possible to model
the traffic flow through each outflow lane as a function of
the traffic flow through the inflow lanes, provided that good
quality data are collected by the sensors, over a sufficiently
long period of time. For example, the A13 traffic flow model,
F (X0, . . . , X4), evolved by our GP based algorithm on the
training data available, will produce an output (prediction)
which we will compare to the values in the validation data
set. A close correspondence will indicate that the model could
be reliably used to predict future traffic through A13’s lanes,
thus supporting long term urban infrastructure planning. We
envisage that our proof-of-concept GENTLE method is one
of many novel computational tools that can improve urban
long-term decision making.

In practice, A13 data may be unavailable, due to sensor
related issues (equipment is faulty, improperly installed or
missing altogether) or because the junction has not yet been
built. A model of traffic flow through A13 is still needed to
predict future vehicle counts, in order to support real time
decisions, such as modifying planned travel routes due to
large volumes of expected traffic, short term decisions, e.g.,
investing in sensor repairs or replacements, and long term
decisions, such as determining where to build a new junction
to minimise congestion. The solution is to generate the model
using traffic data collected on nearby junctions with a topology
similar to A13 (similar number of inflow and outflow lanes).
For instance, the model could be trained on junction A21 (Fig.
1b), which thus becomes the source junction, and deployed
to predict traffic through A13, the target junction. This is a
case of single source transfer learning. Alternatively, several
source junctions (e.g., A21 and A36 or any other combination
of junctions with a similar layout) could be used to train the

1https://darmstadt.ui-traffic.de/faces/TrafficData.xhtml

model for target A13, which is a case of multiple source
transfer learning.

Without data available for the target junction A13, the
transfer learning models cannot be validated. In other words,
there is no reliable basis to determine which junction(s) – A21,
A36, A51 or a specific combination of these – make for the
best sources. We show – through full factorial experiments (see
section V-B), conducted on Darmstadt junctions where reliable
data are available – that most GENTLE models are similar
quality predictors. Therefore, the choice of source junction(s)
can rely solely on the quality of available data.

III. BACKGROUND

A. Traffic Modelling and Prediction

Practical ITS implementations, such as interACT and CoEXist,
both EU projects for connected automated driving [22], or
the European vehicle-to-vehicle and vehicle-to-infrastructure
communications network [23], mostly rely on direct interpre-
tation of sensed data. This enables the development of short-
term improvements: notifying drivers of a car stopped ahead,
tracking high occupancy vehicles with cameras, providing live
updates on traffic density as sensed by road level induction
loops, etc. However, the true power of data analytics (data-
driven traffic modelling and future pattern prediction for long
term decision making, such as infrastructure planning) is not
fully embraced, in a strategically relevant way, by the world’s
major municipalities. This is disappointing, given the wealth of
promising research results available, where the proposed algo-
rithms are successfully deployed on publicly available traffic
data collected from major cities. In that vein, we mention a
few of the most recent efforts: traffic congestion detection in
downtown Ottawa [5], road link speed prediction in Rome
[12], traffic flow calculation throughout the road network of
Malaga (with a customised evolutionary algorithm) [10], traffic
assignment in Springfield, IL (employing a Genetic Algorithm
in combination with other computational tools) [24], traffic
lights control in Stockholm (also with a Genetic Algorithm)
[25] and in Bologna (via epigenetics inspired GP) [26], [27]
and traffic flow and pollution modelling in Montevideo [28].

Transfer learning can add value to existing approaches by
increasing the overall model robustness (accuracy and shelf-
life), whilst maintaining (or even reducing) the training time
necessary.

B. Transfer Learning

As the term suggests, transfer learning aims to transfer what
was learned on a previous problem in the past to a new,
but similar problem now. The goal is to make the learning
faster or more effective [20], [21]. The number of real-world
applications is growing fast, examples include reinforcement
learning for videogame AI [29], text-mining [30], [31], cancer
subtype discovery [32], and building-space optimisation [33].

The knowledge is transferred from a so-called source task to
a so-called target task, and these may be the same or different.
The broad motivation for this area has been to achieve lifelong
machine learning, namely, faster and more effective machine



(a) Map view of junction A13. Arms X0 through X4 flow into the junction,
arm Y flows out of the junction.

(b) Map view of all Darmstadt junctions used for the case study. Black arrows
mark inflow, blue arrows mark outflow.

Fig. 1: Section of the Darmstadt road network retrieved from https://darmstadt.ui-traffic.de/faces/TrafficData.xhtml.

learning built on previous knowledge instead of starting from
scratch, similarly to human learning.

Transfer learning is categorised based on the questions of
”what to transfer”, ”how to transfer” and ”when to trans-
fer”. The first two questions are relatively straight-forward
to answer, however, the third one requires predicting when
the transfer will be beneficial (or not). In inductive transfer
learning, the source and target tasks are different, while the
source and target domains may be the same or different. In
transductive transfer learning, the source and target tasks are
the same, while the source and target domains are differ-
ent [20]. A lot of transfer learning involves initial training
on the source domain and is followed by – possibly shorter –
training on the target domain, and this relies on the availability
of labelled target domain data. Transfer is still possible in the
more challenging case where labelled target domain data is
scarce or not available at all [34].

The domain is defined as the combination of input space,
output space and associated probability distribution. Two do-
mains are considered different if they differ in at least one
component. In the general case for transfer learning, the source
and target domain may differ in any of the three components.
The particular case where the input and output space are the
same for source and target domains and only the probability
distributions change is called domain adaptation.

When transferring models between junctions with the exact
same topology, both input and output space are identical
between the junctions and our traffic modelling problem is
a domain adaptation problem. However, if the topologies are

similar, but not identical, the input space of the two domains
is not the same and the more general transfer learning term
applies.

C. Transfer Learning in Genetic Programming

Investigations on the potential of GP, and in particular sym-
bolic regression, for transfer learning are under way and the
results on specifically designed benchmarks for three types of
transfer (namely, relational-knowledge transfer, feature trans-
fer and model transfer, relevant to the ”how to transfer”
question) are promising [35].

Historically, we can trace back transfer learning in GP
to population seeding [36], [37] and layered learning [38].
Instead of random individuals, Langdon and Nordin started
GP with a set of perfect individuals, solving all or a subset
of the fitness cases and then used a multiobjective approach
for the two objectives of fitness and size to obtain generalised
solutions [36]. They demonstrated success on three classifica-
tion problems. Schmidt and Lipson investigated methods for
employing expert knowledge in evolutionary search, based on
simulating the collection of expert knowledge for problems,
by optimising an approximated version of the exact solution
to each problem [37]. Their methods included using the entire
approximate model at once and breaking it into pieces. They
found that using just parts of a solution was often more
effective than using the full expert solution.

Layered learning is a technique designed for the effective
evolutionary solving of difficult problems, which are decom-
posed into simpler ones, each associated with one layer. The



solution to the complex problem is then incrementally built
from a solution to a simple problem. Jackson and Gibbons
identified two approaches that do not require prior under-
standing of a problem’s functional decomposition into sub-
goals. One of these led to a solution-finding performance that
is significantly better than that of standard GP systems and
of those incorporating automatically defined functions [38].
Thus, in essence, this method achieved positive transfer of
knowledge.

One of the earliest explicit applications of transfer learning,
as such, in GP involved transferring best solutions or parts of
solutions from the final generation of a GP run to a target
problem, using various heuristics and hyper-parameters to
guide the amount of transfer [39]. This method outperformed
standard GP on two sets of symbolic regression problems.
O’Neill et al. propose transferring common subtrees from
solutions to two source problems to the target problem, by
adding these to the function set for the target problem [40].
They demonstrate success on benchmark symbolic regression
and Boolean even-N parity problem domains, by reaching
either improved or similar quality solutions, when compared to
standard GP or Dinh et al’s method [39]. Thus, when training
data on the target domain are available, GP with transfer
learning is a promising avenue to explore.

More recently, Santana et al. have considered classifier
transferability in domain adaptation and demonstrated their
solution on the real world problem of brain decoding across
subjects [41]. Generally, with this sort of application, classi-
fiers trained on some subjects are reused on other subjects.
Their approach includes both maximising classifier accuracy
in the source domain and maximising a transferability measure
that they define for GP programs. Two of their GP-based
classifiers, specifically evolved for maximising transferability,
proved significantly better than known state-of-the-art classi-
fiers.

The goal of this section was to highlight (1) essential
landmarks in the progress of transfer learning in GP so far and
(2) some notable successes that motivated our approach. For
an up-to-date review of transfer learning in GP, the reader is
referred to the study of Muñoz et al. [42]. Following the review
of the field, they conduct an extensive study on a variety of
source and target tasks [42]. Muñoz et al. study the relationship
between success and failure and also analyse the predictability
of transfer learning performance on both classification and
regression tasks. They find that while some problems are good
as sources, others are good as targets and that transferability
is not always symmetric between two problems.

IV. THE GENTLE ALGORITHM

We have developed GENTLE as a transfer learning solution
for urban traffic prediction, however, its underlying logic may
be used to solve any symbolic regression problem. The founda-
tion of the GENTLE algorithm is the SymbolicTransformer
class from the gplearn Python library2, which implements the

2https://gplearn.readthedocs.io/en/stable/reference.html#
symbolic-transformer

classic GP loop with a twist: the API provides a way to pause
training and resume it for an additional number of generations,
which comes in handy when using two source junctions for
chain training, as is the case with MSTL. To meet the specifics
of the traffic modelling problem space, we have enhanced the
SymbolicTransformer’s library implementation with:

• A lag function. To account for temporal dependencies in
road traffic, we have added a lag function to the arith-
metic operator set. The lag function delays an input/out-
put, z(t), by one time unit, such that lag(z(t)) = z(t−1).
In GP, operators are included recursively in the evolved
models (trees), thus creating implicit scope for utilising
lags of higher orders (from 1 to the maximum allowed
depth, d, of regression trees), lagd(z(t)) = z(t−d). This
is computationally cheaper than including lagged inputs
in the terminal set.

• A memory mechanism. Let us assume an MSTL scenario,
where A13 is the target junction (this is the motivating
scenario analysed in section II). There are six possible
combinations of source junctions, out of which we will
consider two: (A21, A36) and (A21, A51). Once training
is paused on A21, the default SymbolicTransformer
allows it to be resumed on A36. This is done by transfer-
ring the final population of models obtained on A21 over
to A36, where it becomes the initial population. If we
attempt to repeat the process for the (A21, A51) pair of
source junctions, the default SymbolicTransformer
will start training on A21 from scratch. For transfer
learning, one should not need to create a new model
from the source data every time transfer is applied. For
chain training in MSTL, the same A21 model should be
available for continued training, irrespective of whether
the next junction in the chain is A36 or A51. To facilitate
this, we have adapted the library code, in order to
“remember” the final population obtained on the first
source junction and use it as a unique starting point for
continued training on any other junction that may serve
as the second source.

Algorithm 1 outlines our full factorial experiment of deploying
GENTLE to the Darmstadt case study, consisting of the
four junctions shown in Fig. 1b: A13, A21, A36 and A51.
There are two required inputs, namely, target, representing
the junction through which we wish to predict traffic, and
a boolean parameter, MSTL, indicating the type of transfer
learning employed (single, in which case MSTL is false,
or multiple, when MSTL is true). The algorithm returns
an array, RMSE, of Root Mean Squared Error values, one
for each single or multiple source transfer learning model
produced (the array will contain 3 elements if MSTL is
false and 6 otherwise). After initialisation, the algorithm loops
through all possible source junctions (line 6) and gathers
the readings collected by their sensors. These will be used
as training data, to be fed into the estimator (line 8), an
instance of the SymbolicTransformer enhanced with “lag”
and “memory”, as described above. The fit method called on



Algorithm 1: A full factorial GENTLE application on
Darmstadt junctions

1: inputs: target, MSTL
2: returns: RMSE
3: junctions← [A13, A21, A36, A51]
4: RMSE = []
5: (x test, y test)← get data(target)
6: for source1 in junctions \ {target} do
7: (x train, y train)← get data(source1)
8: P ← estimator.fit(x train, y train,NULL)
9: if MSTL == true then

10: for source2 in junctions \ {target, source1} do
11: (x train, y train)← get data(source2)
12: estimator.fit(x train, y train, P )
13: y pred← estimator.transform(y test)

14: RMSE.app(
√∑

i

(y pred[i]− y test[i])2)

15: end for
16: else
17: y pred← estimator.transform(y test)

18: RMSE.app(
√∑

i

(y pred[i]− y test[i])2)

19: end if
20: end for
21: return RMSE

line 8 will randomly generate an initial population (hence, the
third parameter is NULL) and use the training data to evolve
the trees within. After the maximum number of generations is
reached, the final population, P , is returned as well as stored
internally by the estimator. In the case of single transfer
(MSTL is false), the algorithm continues with line 17, where
the transform method extracts the best model (with the
lowest error on training data) from the estimator’s internal
copy of P and calculates its outputs, y pred, on test data,
y test. The differences between the values in the two sets
will be aggregated and appended to the RMSE array, by
calling function app (line 18). In the case of multiple transfer
(MSTL is true), an additional loop (line 10) is nested inside
the previous one, to run through all possible second sources.
The estimator continues training the models in P on each of
the available second sources. Once this is complete, the best
model from the final population, stored inside the estimator,
is validated by the transform function (line 13) in the same
way as in the case of single transfer.

V. EXPERIMENTAL ANALYSIS AND EVALUATION

Ideally, data-driven models of traffic through a target junction
should be trained on that very junction. Unfortunately, in
practice, data may not be available to train “native” models -
this is the case if the target junction has not yet been built,
or if, for some reason (e.g., related to cost or location), it
is not possible to equip it with traffic monitoring equipment,
or if existing sensors are faulty. In any of these situations,
the solution is to use models trained on similar junctions in

order to predict traffic through the target one. Our GENTLE
algorithm addresses this challenge, by training models on one
(Single Source Transfer Learning) or more (Multiple Source
Transfer Learning) nearby junctions with similar topologies.
In this section we provide numerical evidence, in the three
practical scenarios described above, that GENTLE models are
competitive, in terms of both accuracy and training time, when
compared against native models, therefore, they are viable in
the absence of native models.

A. Darmstadt Case Study and Experimental Setup
The set of junctions from Darmstadt used to evaluate GEN-
TLE is presented in the motivating scenario (section II). We
have downloaded and analysed a large volume of the traffic
measurements available for the four selected junctions, to find
that the data collected in the five weeks between the 28th of
August and 1st of October 2017 were most suitable (captured
traffic activity that is typical for a major city and featured
few missing values) for our experimental analysis. We used
the first three weeks of data for training and the final two
of the five weeks of data for testing. All data used in this
experiment are sampled every 15 minutes. Table I contains
statistical information for the test data on each junction, to
put into context the reference models’ absolute RMSE values,
as presented in Table III.

TABLE I: Test data statistics. The values represent the lowest,
highest, median and mean number of cars passing through a
given junction, across all 15 min intervals in the two weeks’
worth of test data.

Junction Min Max Median Mean
A13 0 67 28 26.31
A21 0 45 24 21.12
A36 0 127 35 33.92
A51 0 45 17 15.99

To ensure the repeatability of the experiments presented in
this section, the full set of values used to configure the
SymbolicTransformer is given in Table II.

TABLE II: GENTLE configuration

Parameter Value
population size 1000

generations 20,30
stopping criteria 0.01
crossover prob 0.5

subtree mutation prob 0.3
hoist mutation prob 0.05
point mutation prob 0.1

max samples 0.9
parsimony coefficient 0.005

To give an idea of the internal structure of GENTLE models,
we provide the mathematical expression of the A13 refer-
ence one: y = 0.42x0 + 0.42lag(x0) + 0.176lag2(x0) +
0.074lag3(x0) + x1 + 0.42x2 + 0.074lag3(x2) + 0.596.

B. Results and Analysis
Table III presents the accuracy, in the form of RMSE values, of
the reference, the single source and the multiple source transfer



learning models, on the four junctions from the Darmstadt
road network. Fig. 2 shows the same data on a linear scale,
to highlight the relative difference between the precision of
various models. We consider each of the four junctions, A13,
A21, A36 and A51, as target junctions and show the RMSE
values on unseen test data for (1) the reference model trained
on data from the target junction, (2) the SSTL models, when
all other junctions are used, in turn, as source junctions, and
(3) the MSTL models, when all combination of two junctions
different to the target are used as sources. Reference and SSTL
models are trained for 30 generations, whereas MSTL ones are
trained for 15 generations on each source junction. Conducting
a full factorial experiment allows us to understand whether
transfer learning models can be reliably deployed in lieu of a
native model, in situations where no training data are available
on the target junction.

A13 results discussion: The native model’s RMSE value is
6.95, meaning that, on average, it yields a traffic volume
prediction that is off by ±6.95 cars, compared to the sensor-
measured (real) values in the test data. As expected, SSTL
models are less accurate, with the model trained on A21 being
closest to the native one - this model’s output is 2.31 cars less
precise than the reference. MSTL models perform better, with
the one trained on A21 and A36 featuring an accuracy loss of
only ±0.66 cars, compared to the reference. If we compare
the entire set of MSTL models against that of SSTL ones (Fig.
2), we find that the overlap is quite small. We can therefore
infer that, in the absence of data collected from A13, an MSTL
model is more likely to yield an accurate prediction for this
target junction.

A21 results discussion: The best single source transfer learning
model, the one trained on A36, outputs a prediction within a
margin of 1.29 cars, relative to the reference. This is slightly
more precise that the best multiple source transfer learning
model (the one trained on A51 and A36), where the accuracy
loss relative to the reference is of 2.01 cars. The least precise
models are the one trained on A36 and A51, under-performing
by 9.07 cars, and, respectively, the one trained on A51, which
lags behind the reference by 9.15 cars. Given the large overlap
between the accuracy intervals covered by single source and
multiple source transfer learning models for target junction
A21 (Fig. 2), we cannot recommend one method over the
other, in terms of predicting the flow of traffic.

A36 results discussion: The best MSTL model, trained on A13
and A21, exceeds the precision of the reference by 0.35 cars,
which represents an accuracy gain of 4.34%. This result is
the only one that surpasses the quality of the native model,
making it the absolute best prediction, across the entire set of
transfer learning models, on all four junctions considered in
this experiment. In contrast, the worst multiple source transfer
model, trained on A21 and A51, outputs a traffic flow that is
13.84 cars less precise than the reference. This is the worst
accuracy obtained in this study. The SSTL models show less
variation, in RMSE terms, with the best (trained on A21)

lagging 0.3 cars behind the reference and the worst (trained
on A51) under-performing by 13.69 cars. Comparing the two
categories of models, SSTL and MSTL (Fig. 2), the best
MSTL one outperforms the most accurate SSTL one by 0.65
cars, whereas the relative difference at the opposite end of the
accuracy spectrum is smaller - 0.15 cars. In other words, in
the absence of A36 data, the decision maker runs a slightly
smaller risk of selecting an inferior model if picking from the
MSTL lot, as opposed to the SSTL one.

A51 results discussion: The best MSTL model, trained on
A21 and A13, is 1.84 cars less precise than the reference.
The most accurate SSTL model, trained on A13, lags behind
the reference by 4.34 cars. The MSTL model trained on A21
and A13 outperforms this SSTL model by 2.5 cars. The least
accurate models are the one trained on A36 and A21 (5.02
cars less precise than the reference) and, respectively, the one
trained on A21 (5.47 cars less reliable than the reference) -
with a difference of 0.45 cars between them, with the MSTL
model being more precise. Given the relative differences in
accuracy, at both ends of the RMSE axis (Fig. 2), it is more
likely that the decision maker will select a superior model if
picking from the MSTL lot of predictors.

Overall results discussion: Fig. 2 shows that, for target junc-
tions A13 and A51, multiple source transfer learning models
significantly outperform single source transfer learning ones,
whereas, for target junction A36, this effect is only marginal.
In the case of target junction A21, there is no significant
dominance of either category of models. Given that MSTL
either outperforms SSTL or is not distinguishable from it,
where a sufficient number of topologically similar junctions
are available, multiple source transfer learning models are
recommended. Another insight that is difficult to glean from
Table III, but is clearly revealed by Fig. 2 is the distribution
of the models’ accuracy. With the exception of A51, most of
the transfer learning models are clustered towards the left hand
side of the axes - closer to the reference, with a small minority
concentrated on the far right. On the upside, knowing that
one can expect a larger number of accurate transfer learning
models than poor ones is very useful when target junction data
are missing and the decision maker needs to “blindly” pick a
substitute model. On the flip side, in case a poor model does
get selected, the accuracy loss is likely to be substantial. This
calls for further investigation into junction topology similarity,
with the aim of providing the decision maker with some
indication of which transfer learning models are likely to be
good (and which are likely to be poor) substitutes for the native
model, an aspect we will target in our future work.

VI. CONCLUSIONS AND FUTURE WORK

The United Nations project a growth in the world’s urban
population from 55% today to 68% by 2050.3 This increase
in urban areas will be accompanied by an expanding road
network infrastructure, adding more scope for existing traffic

3https://www.un.org/development/desa/en/news/population/
2018-revision-of-world-urbanization-prospects.html



TABLE III: Accuracy of GENTLE models on all target junctions. RMSE values are calculated as shown in Algorithm 1, on
line 18, where i loops over all 15 min sampling intervals in the test data.

Model Target junction A13 Target junction A21 Target junction A36 Target junction A51
type Source junction RMSE Source junction RMSE Source junction RMSE Source junction RMSE

reference A13 6.95 A21 5.26 A36 8.07 A51 7.44
single source A21 9.26 A13 7.11 A13 9.61 A13 11.78

transfer A36 12.96 A36 6.55 A21 8.37 A21 12.91
learning A51 20.63 A51 14.41 A51 21.76 A36 12.51

A21, A36 7.61 A13, A36 8.69 A13, A21 7.72 A13, A21 12.24
multiple A21, A51 9.51 A13, A51 14.18 A13, A51 21.86 A13, A36 12.35
source A36, A21 7.68 A36, A13 6.83 A21, A13 8.47 A21, A13 9.28
transfer A36, A51 8.55 A36, A51 14.33 A21, A51 21.91 A21, A36 12.02
learning A51, A21 7.9 A51, A13 7.31 A51, A13 8.99 A36, A13 9.63

A51, A36 8.43 A51, A36 6.68 A51, A21 7.82 A36, A21 12.46

Fig. 2: Relative accuracy of GENTLE models on all target junctions. The RMSE values are represented on the horizontal
axes - squares for SSTL models and circles for MSTL ones. The bars run across the accuracy interval - from the lowest to

the highest RMSE - covered by SSTL and MSTL models, respectively.

related problems, from pollution and congestion to raising
maintenance costs and accidents. This intensifies the urgency
of introducing intelligent solutions for road design and ex-
ploitation, specifically concerning long-term decision support.

In this context, we proposed the development of transfer
learning models, which we demonstrated to be effective at pre-
dicting traffic through junctions with no available traffic data.
For this, we used real data collected from a set of junctions
from the Darmstadt road network. We showed that models
transferred from topologically similar junctions, located near
the target one, predict traffic with competitive accuracy relative
to native models, with no need for supplementary training. To
generate transfer learning models, we introduced GENTLE, an
algorithm suitable for solving symbolic regression problems,
enhanced with a lag operator and a memory for storing the
population of models to be transferred from the source junction

to the target one.
We envisage that our proof-of-concept GENTLE method

is one of many novel computational tools that can improve
urban long-term decision making. If successfully integrated,
such computational support has the potential of ushering
in intelligent transportation on a significantly larger, better
coordinated scale than the isolated applications we benefit
from today.
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