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†Centro de Informática, Universidade Federal de Pernambuco
‡Department of Computer Science and Engineering, Bankura Unnayani Institute of Engineering

Abstract—Selecting the best architecture for a Deep Neural
Network (DNN) is a non-trivial task since there is a massive
amount of possible configurations (layers and parameters) and
great difficulty in how to choose them. To make this task more
independent of human interaction, this work addresses the DNN
architecture selection problem as a multi-objective optimization
task with different criteria in a combinatorial context. For this,
we defined a new way to represent the architecture of DNN (layer
sequence) as a solution in the optimization process. The proposed
method attempts to find the best composition and sequence of
layers for the DNN architecture satisfying two criteria: accuracy
and F1score. The method was evaluated for performance and
compared to the exhaustive and random approaches and state-
of-the-art DNN algorithms. The results obtained showed that
the proposed method is capable of achieving results close to
the optimum, and competitive when compared to those results
reached by state of the art algorithms.

Index Terms—Deep Neural Networks, Multi-objective opti-
mization

I. INTRODUCTION

The task of solving problems like the identification of
objects in images and transcription of voice into text uses more
and more a class of techniques called Deep Neural Networks
(DNN) [1]. These techniques have been very successful in
recent years, reaching out to humans in different tasks. How-
ever, these algorithms depend on their architecture (number of
layers, the type of each layer, positioning of the layers, and
parameters) to obtain a satisfactory performance, which raises
the question: What is the most suitable DNN architecture for
a given classification problem?

The three most widely used methods for architecture se-
lection in DNNs are (1) manual search, (2) grid search, and
(3) random search [2]. Manual search refers to the process
of a researcher manually selecting architectures. This search
requires in-depth knowledge about the problem and algorithm,
being difficult for a non-specialist to define a good setup. Grid
search is a computational procedure that evaluates all possible
combinations of architectures for the DNN and is not efficient
in searching solutions in a high-dimensional space. Finally,
the random search attempts to find reasonable solutions by
evaluating random solutions from the set of candidates. In
this case, when the problem has a high-dimensional space,
the chance of finding a suitable architecture for DNN by
chance (randomly) is small. For this reason, there is a growing
interest in the automatic and non-exhaustive selection of the
architecture of DNNs using intelligent algorithms [3].

Some works have dealt with the DNN architecture selection
as an optimization problem. Some of these works performed
a single objective optimization of the different DNN’s param-
eters, trying to maximize accuracy or minimize the root mean
squared error (RMSE) [2], [4], [5]. Instead of considering only
parameter optimization, other works optimized the DNN’s
layer composition and sequence [6]–[8], also considering one
objective function.

Handling the current task as a single-objective optimization
problem is not adequate [9]. The optimization of DNN’s archi-
tecture is naturally a multi-objective problem where distinct
objective functions need to be satisfied, such as accuracy,
precision, recall, and others [9]. Few studies investigated the
DNN’s architecture selection as a multi-objective problem.

Liu et al. [10] proposed a Multi-Objective Convolutional
Neural Network (MOCNN) algorithm for face labeling. The
training process of this algorithm has an internal optimization
procedure, which minimizes the losses of unary and pairwise
terms, respectively, through a unified convolutional network.
Miseikis et al. [11] adapted the MOCNN for robot localization
and 3D position estimation in 2D camera images. Yang et al.
[12] proposed the Multi-objective Pruning Evolutionary algo-
rithm (MOPEA), which optimized the pruning of preexisting
DNN architectures considering the error rate, computational
cost, and sparsity as objective functions.

This work addresses the DNN architecture selection prob-
lem as a multi-objective optimization task with different
criteria in a combinatorial context. For this, we formulated a
new way to represent the architecture of DNN (layer sequence)
as a solution in the optimization process. Thus, the proposed
method attempts to find the best composition and sequence
of layers for the DNN architecture. In this research, the opti-
mization procedure maximizes the accuracy and the F1-score
simultaneously. The maximization of the accuracy favors the
DNN to achieve the desired results. While the maximization
of the F1-score guarantees the relevance and significance of
the results.

The contributions of this works are two-fold: i) the proposal
of a multi-objective optimization to choose the best architec-
ture for a DNN; ii) a novel candidate solution representation
that characterizes the sequence of the layers. Moreover, an
experimental study was carried out using different classes of
problems and the results show that the proposed approach is
more efficient and effective than the grid search (exhaustive),
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the random search, and state-of-the-art algorithms.
This article is organized as follows: Section II introduces

DNN and Multi-objective Optimization. Section III presents
the related works. Section IV describes the proposed method.
Section V presents the experimental methodology used to
evaluate the proposed method. Section VI presents the results
of the experimental study. Finally, Section VII highlights the
conclusions and future work.

II. BACKGROUND

This section presents fundamental concepts about DNN and
Multi-objective optimization for a better understanding of the
proposed work.

A. Deep learning

Different from conventional machine-learning algorithms,
deep learning belongs to the class of methods called
representative-learning methods. These methods allow a ma-
chine to be fed with raw data and to discover the representa-
tions needed for detection or classification automatically [1].
Deep-learning methods are representation-learning methods
with multiple levels of representation, achieved by composing
simple but non-linear modules that each modify the repre-
sentation at one level (starting with the raw input) into a
representation at a higher, slightly more abstract level. With
the composition of enough such transformations, very complex
functions can be learned.

For classification tasks, higher layers of representation am-
plify aspects of the input that are important for discrimination
and suppress irrelevant variations [1]. Figure 1 shows an
example of a DNN with different layers, which is a sequence
of layers, where the ith layer receives its input from the layer
i−1, and its output serves as the input for the layer i+1. So,
each layer trains a distinct set of features based on the previous
layer. The more advanced the network, the more complex
the characteristics that the layers may recognize since they
aggregate and recombine characteristics of previous layers.

Fig. 1. Example of a DNN with different layers. Source: [3]

The architecture of a DNN is composed of different types
and numbers of layers. The types of layers and where each one
is positioned generate a great influence on the performance
of the network. Herein, we discuss three popular kinds of
layers: Convolutional, Pooling, and Dense. The Convolutional
layer has a set of learnable filters. Convolution is the simple
employment of a filter to an input that results in an “acti-
vation”. Repeated application of the same filter to an input
returns a map of activations called a feature map, indicating
the locations and strength of a detected feature in input, such

as an image. Pooling layers are responsible for calculating the
mean or maximum local and making sub-samples of the data
from the previous layer by reducing the size and selecting the
most relevant features of the input [1]. The most common type
of pooling used is the Max Pooling, which is a square-sized
filter and stride chosen according to the problem, which results
in each sub-selection of the image at the highest value within
the selected region. A Dense layer is just a regular layer of
neurons in a neural network. Each neuron receives input from
all the neurons in the previous layer, thus densely connected.
The layer has a weight matrix, a bias vector, and the activations
of the previous layer.

B. Multi-objective Optimization

Multi-objective optimization (MOO) problems refer to prob-
lems that contain more than one conflicting objectives. MOO
algorithms attempt to find solutions, in a search space of can-
didate solutions S, which satisfy all the conflicting objectives
(~f = (f1, f2, ..., fn)) at the same time, where n is the number
of objectives.

Each solution into S can be represented by a vector of de-
cision variables (~x = (x1, x2, ..., xk)), where k is the number
of decision variables. Each solution has its quality (fitness)
assessed through the execution of each objective function on
it. Thus, ~f(~x) = (f1(~x), f2(~x), ..., fn(~x)) represents a vector
of fitness values belonged to the solution ~x.

A general MOO minimization problem can be defined as:

minimize ~f(~x) := [f1(~x), f2(~x), ..., fn(~x)], (1)

subject to:
gi(~x) ≤ 0 i = 1, 2, ..., q, (2)

hj(~x) = 0 j = 1, 2, ..., s, (3)

where ~x = (x1, x2, ..., xk) is the vector on the decision search
space; and gi(~x) and hj(~x) are the constraint functions and
q + s is the number of constrains of the problem.

As in MOO, each solution’s quality is represented by a
vector of fitness values, the comparison between two different
solutions to know which one is the best is different when
compared to a single-objective optimization. In an MOO, the
solutions are usually compared to each other through the
Pareto dominance [13]. Given two vectors ~x, ~y ∈ Rn, ~x
dominates ~y (denoted by ~x ≺ ~y) if ~x is better than ~y in at
least one objective and ~x is not worse than ~y in any objective.
~x is not dominated if does not exist another current solution
~xi in the current population, such that ~xi ≺ ~x. The set of
non-dominated solutions in the objective space is known as
Pareto front. Figure 2 shows some candidate solutions in a two
dimensional optimization problem (two objective functions f1
and f2). Those solutions in the circle format are considered
non-dominated among themselves, dominating the squared
solutions. These circled solutions compose the Pareto front
and are considered the best solutions among all [14].

For a better understanding of how MOO algorithms works,
Algorithm 1 presents general steps of the whole search pro-
cess. It is important to mention that there are MOO algorithms



Fig. 2. Pareto front in a two dimensional optimization problem. Source: [14]

with different inspirations, and the algorithm discussed here
is an evolutionary population-based approach that uses Pareto
Dominance. Initially, a population of pop size solutions is
generated randomly. Next, each solution has its fitness values
assessed by each objective function, and the Pareto front,
empty at first, is updated with non-dominated solutions from
candidates. After, an iterative procedure begins, and while
the stop condition is not satisfied, evolutionary operators of
selection, crossover, and mutation are applied. Once offspring
are generated from the selected candidates, each one of them
has their fitness assessed. Those promising offspring replace
dominated solutions from candidates so that the population
size pop size is the same. Finally, the Pareto front is updated.
The output of the MOO algorithm is the resultant Pareto front.

Algorithm 1: MOO algorithm.
PARAMETERS:
pop size: number of candidates per generation.
front: Non-dominated solutions found.

candidates = random initialization(pop size)

evaluate fitness(candidates)

front = []

update front(front, candidates)

1: while !stop criterion do

parents = select(candidates)

offspring = crossover(parents)

mutate(offspring)

evaluate fitness(offspring)

candidates = replace(candidates, offspring)

update front(front, candidates)
end
return front

III. RELATED WORK

It is important to mention that the optimization of Artificial
Neural Networks (ANNs) architecture and parameters is not
a recent problem. Different optimization algorithms already
have been successfully employed for optimizing ANNs [9].
However, architectures of DNNs have become increasingly
complex, there are still few studies that attempt to optimize
them, and some gaps need to be better-investigated [9]. In this
context, next, we present important works which tackled the
problem of optimizing DNNs.

A. Single-objective Optimization Approaches

David and Greental [4] used a Genetic Algorithm (GA)
to optimize the weights of the DNN’s encoding layer, and
adopted the root mean squared error (RMSE) as an objective
function. Young et al. [2] used a GA to optimize the kernel
size and the number of filters of each of the convolutional
layers and considered the error rate as an objective function.
Lorenzo et al. [5] used a Particle Swarm Optimization (PSO)
algorithm to optimize the parameters of a SimpleNET (existing
model). The parameters considered were the size and number
of receptive fields of convolutional layers and the stride and
receptive field size of the max-pooling layer. They used the
classification error rate as an objective function. The previous
works optimized parameters of DNNs considering a predefined
DNN architecture.

The following works considered not only the optimization
of DNN parameters (as the previous works) but also their
layer composition and sequence. Diniz et al. [6] proposed
an approach that uses Grammar-Based Genetic Programming
(GGP) technique to optimize convolutional neural network
architectures (parameters and layers) considering the accuracy
as an objective function. Miikkulainen et al. [7] proposed the
CoDeepNEAT, a Neuroevolution technique to optimize DNN
architectures. This approach evolves the 15 hyperparameters,
and the architecture of Convolutional Neural Networks, con-
sidering as fitness function the mean across three metrics
(BLEU, METEOR, and CIDEr) normalized by their baseline
values. Assunção et al. [8] recently proposed an approach to
develop DNNs applied to convolutional neural networks. They
combined GA with the Grammatical Evolution to evolve a
sequential list of layers and their parameters. This work used
the accuracy as an objective function.

B. Multi-objective Optimization Approaches

Treating the selection of DNN architecture problem as a
single-objective optimization problem is not adequate. The
current problem is naturally a multi-objective problem where
different objective functions need to be satisfied. Unlike the
works mentioned above, next, we present works that dealt with
the DNN selection as a multi-objective problem. Liu et al.
[10] used the Multi-Objective Convolutional Neural Network
(MOCNN) algorithm. This algorithm is not evolutionary. The
training process has an internal optimization procedure, which
minimizes the losses of unary and pairwise terms, respectively,
through a unified convolutional network. This work applied the



MOCNN for face labeling. Miseikis et al. [11] also used the
MOCNN for robot localization and 3D position estimation in
2D camera images. This work considered four specific objec-
tives related to the problem. Finally, Yang et al. [12] used a
Multi-objective Evolutionary Algorithm (MOEA) to optimize
the pruning of preexisting DNN architectures according to the
multi-objective trade-off among error rate, computational cost,
and sparsity.

Few studies investigated the DNN architecture selection
as a multi-objective problem. Differently, from the studies
above, we propose a multi-objective evolutionary method for
the automatic selection of DNN architectures, able to build
novel DNN architectures satisfying multiple criteria. In this
optimization process, our method returns a DNN architecture
with an optimized sequence of layers. Table I summarizes each
related work, contrasting it with the proposed work. The aim is
to facilitate understanding of the contribution of the proposed
approach in relation to others.

IV. PROPOSAL

In this work, we treat the problem of selecting a suit-
able architecture for DNNs as an optimization task with
multiple criteria. Our goal is to find the best composition
and sequence of layers for the DNN architecture, satisfying
different objectives. The current problem is a combinatorial
problem and demands a space of solutions of high dimension.
Because of the nature of the problem, we decided to adopt a
widely used evolutionary algorithm, the Nondominated Sorting
Genetic Algorithm II (NSGA-II). NSGA-II is a multi-objective
optimization algorithm adequate for combinatorial problems
(details of this algorithm can be found in [15]). This algorithm
showed to be a good choice for this work because it achieved
much better performance compared to other restricted multi-
objective optimizers [15].

The problem of selecting architectures for DNNs is a
difficult task because a single architecture can be composed of
different numbers and types of layers, each one with different
hyper-parameters, and the order, in which the layers are
placed, matters. Thus, the main contribution of this work is an
approach that attempts to find the best sequence of layers for
DNN architectures, without human intervention, using multi-
objective optimization algorithms for a given problem.

Next, we present how the DNN architecture selection
problem was formulated to be solved by a multi-objective
evolutionary algorithm.

A. Individual Representation

An individual or chromosome C in an evolutionary algo-
rithm is a solution to the problem one wants to solve. In the
problem in question, it is intended to allocate a sequence of
layers:

C = (L1, L2, ..., Ls), (4)

where Li is the ith layer in the chromosome, and s is
the total number of layers. In this case, each chromosome
represents a possible sequence of layers (candidate) for the
DNN architecture.

In this work, the architecture optimization process of a
DNN considers the number of layers, order, and type. The
chromosome is a vector of integers of size s, and each position
can assume a value into the range [0, 3]. The value 0 (zero) in-
dicates that in that position of the vector, no layer was chosen,
and values 1, 2, and 3 represent the Max Pooling (MaxPool),
Convolutional (Conv), and Dense layer types respectively. All
these layers are configured with their default parameters. It is
important to mention that the first and last layers were fixed
as Convolutional and Dense respectively. This restriction was
defined to avoid incorrect architectures. Figure 3 shows an
example of chromosome (considering s = 10). As can be seen,
the first and last layers (black slots) are fixed as Convolutional
and Dense layers respectively, and the other eight slots have
values in the range [0, 3]. In this example, the chromosome has
five values different from zero, so it has five layers exactly in
the same order presented in the vector.

Still considering the example in Figure 3, where each
chromosome is represented by a vector of size s = 10 (being
s − 2 variable and 2 fixed layers), there are 65, 538 possible
combinations of architectures. The goal of the MOO algorithm
is to search in the solutions space those non-dominated ones
that satisfy the objectives. As the calculation of the vector of
fitness of each solution is the execution of the DNN itself
configured with the sequence of layers represented by the
solution in the input problem, the optimization becomes very
costly, mainly when the value of s is large.

Fig. 3. Example of chromosome where s = 10.

B. Individual Evaluation

As presented in Section II-B, in a multi-objective scenario,
each individual, ~x, has a vector of fitness values assessed by
a vector of objective functions, ~f . The number and which
objective functions will be considered in the optimization
process depends on the aspects considered relevant by the
expert. This paper aims to optimize the architecture of DNN
in terms of layers when applied to classification problems.
Thus, different quality measures can be considered as objective
functions, such as accuracy, precision, recall, F1-score, and
others.



TABLE I
CONTRASTING RELATED WORKS WITH THE PROPOSAL.

Reference Approach #Objectives Objective Function Configuration

David et al. (2014) [4] GA 1 RMSE -Weights of the deeplearning’s
coding layer

Young et al. (2015) [2] GA 1 RMSE
-Kernel’s size

-Number of filters of
the convolutional layers

Lorenzo et al. (2017) [5] PSO 1 RMSE

-Stride
-Size of the receptive field
of the convolutional layers
-Number of receptive fields
of the convolutional layers
-Size of the receptive field
of the max pooling layer

Diniz et al. (2018) [6] GGP 1 Accuracy -Layers
-Layers’ parameters

Miikkulainen et al. (2019) [7] CoDeepNEAT 1 Average among
BLEU, METEOR and CIDEr

-15 hyperparameters
-Layers

Assuncção et al. (2018) [8] GA + GGP 1 Accuracy -Layers
-Layers’ parameters

Yang et al. (2019) [12] MOEA 3
RMSE

Computational cost
Dispersion

-Pruning heuristic

Proposal MOEA 2 Accuracy
F1 score -DNN sequence of layers

V. EXPERIMENTAL ENVIRONMENT

This section presents the datasets used to assess the
proposed method, experimental settings, and experimental
methodology. All executions were performed on a laptop with
an Intel Core i5-7300U with 4M cache memory, 2.5 GHz
clock speed, and up to 3.5 GHz turbo, having two logical
threads per physical core and 8GB RAM. The language used to
implement the proposed approach was Python™; the following
libraries were adopted: Scikit learn [16] for the machine
learning use, Keras [17] for building deep learning algorithms
and Platypus [18] for the use of multi-objective optimization
algorithms. These libraries are robust and widely used for
research projects.

A. Datasets

For the experiments, two datasets are used: CIFAR 10 [19]
and MNIST [20]. These data sets are composed of several
images and are commonly used as classification problems to
evaluate neural networks. Their popularity is because the two
bases are robust and have real images.

CIFAR 10: Data set of 60,000 32x32 color training images,
labeled in 10 categories.
MNIST: Data set of 70,000 28x28 10-digit grayscale images
(0-9). The dataset was built from NIST Special Dataset 3 and
Special Dataset 1, which contain binary images of handwritten
digits.

B. Experimental Setup

In this work, we used the NSGA-II as the MOO algorithm,
and it is available in the platypus library [18]. The MOO
algorithm was set with its default parameters. The population
size equal to 10 and the maximum number of generations equal

to 50 (totalizing 500 fitness evaluations) were empirically
defined, taking into account the high computational cost of the
problem. The chromosome size was defined as s = 10, where
8 layers are variable (totalizing 65, 538 possible candidates).
The decision of using up to ten layers is supported by the
idea of creating architectures simpler than those used in
the literature; and that still be able to achieve competitive
results. Table II shows the default parameters of each layer
type. For the execution of the DNN, standard values such
as batch size = 200, epochs = 50, learningrate = 0.1,
impulse = 0.8 and shuffle = True were used. For the
experiments, the proposed method was executed ten times to
generate an average performance.

TABLE II
DEFAULT PARAMETERS OF EACH TYPE OF DNN’S LAYER

Layer’s Type Parameters
filter = 5

Conv2D kernelsize = 4
padding = “same′′

Max Pooling2D poolsize = [2, 2]
strides = 2

Dense units = 5
activation = “softmax′′

C. Evaluation Metrics

To evaluate the fitness of an individual, we executed it
in a given problem and applied a 10-fold cross-validation
procedure repeated 10 times. The performance of a DNN
architecture cannot be assessed considering only the accu-
racy, because it may be unrepresentative [21]. Therefore,
we adopted two criteria to evaluate the DNN architecture’s
performance:



Accuracy (Acc): Total hit rate of the classifier independently
of the classes of the examples. This criterion is evaluated
through the following equation:

Acc = (TP + TN)/(TP + FP + FN + TN), (5)

where TP and TN mean true positive and negative, and FP
and FN mean true positive and negative.

F1-score (F1): F1 (also called f-measure) is the harmonic
average between Recall and Precision (TP / (TP + FP)). The
trade-off between Recall and Precision only has a high value
when both metrics have high values. F1 is assessed by the
following equation:

F1 = (2×Recall×Precision)/(Recall+Precision). (6)

The values of each criterion range from 0 to 1 and the
multi-objective optimization algorithm tries to find a solution
that better satisfies each criterion.

D. Literature Methods

In order to evaluate the performance of the proposed
method, we considered six different methods to compare:

• Optimization methods (both in their multi-objective ver-
sions, considering the same objective functions (Acc and
F1):

– Grid search.
– Random search.
– MOPEA [12].

• State-of-the-art DNN algorithms:
– Mini GoogLeNet (GNet) [22].
– Mini VGGNet-16 (VGGNet) [23].
– ResNet-20 [24].

The grid search and random search were chosen as an upper
and lower bound. The MOPEA is an evolutionary method,
proposed in [12], that optimizes the pruning procedure in
DNN architectures, and is considered a strong competitor of
the proposed approach. In addition, we also considered three
state-of-the-art algorithms. The GNet is a DNN composed
by 22 deep layers; VGG-16 has 13 convolutional layers, 5
max pooling layers and 3 dense layers; and ResNet-20 has
21 convolutional layers, 1 max pooling layers, 1 dropout
layer and a fully-connected neural network at the end of
the network. These algorithms have a complex architecture,
achieving promising results in different classes of problems.
Our intention is to investigate if the solutions found by the
proposed method achieve competitive results compared to
these approaches. All state-of-the-art algorithms used the same
settings adopted for the execution of DNNs in the proposed
method (see Section V-B).

All algorithms were executed using the same datasets as
the proposed technique, and accuracy and F1-score were
assessed through a 10-fold cross-validation procedure repeated
ten times. It is important to mention that the random search
and MOPEA used the same methodology used by the proposed
method (a simulation with 500 fitness evaluations and executed

ten times to generate an average performance). In the case of
the exhaustive method, all 65, 538 candidate architectures were
evaluated.

VI. RESULTS AND DISCUSSION

In this section, we present: 1) results of the proposed
technique and the compared methods, and 2) an analysis of
the architectures produced by the proposed approach and their
layer composition.

A. Proposal vs Literature Methods

For practical comparisons of the results, we decided that
instead of comparing the resulting Paretos found by the opti-
mization methods (grid search, random search and proposed
technique), only one solution of each Pareto front would be
selected. This practice is prevalent in experiments involving
multi-objective methods [25]. To choose one DNN architec-
ture, from a set of non-dominated solutions, considering the
two performance criteria mentioned previously, we applied
the Borda count method [26]. This method is a single-winner
election method in which each criterion ranks each algorithm,
and then an average rank is returned, where the algorithm in
the first place is the winner. The purpose of this analysis is
to verify if one non-dominated solution (DNN architecture)
found by the proposed method can improve the classification
process. Also, it allows us to compare the results obtained by
the optimization approaches with those of the state-of-the-art.

Tables III and IV show the results of each approach consid-
ering the CIFAR 10 and MNIST dataset respectively. These
results include the average best fitness value and standard
deviation reached in each objective (Acc and F1), and the
average performance time, measured in seconds, after ten runs.
Also, the same tables show the best solution results achieved
by the exhaustive approach.

TABLE III
COMPARATIVE PERFORMANCE ANALYSIS BETWEEN THE PROPOSED

TECHNIQUE AND THE LITERATURE METHODS IN THE CIFAR DATASET

Algorithm Acc F1 Time (s)
Exhaustive 0.92 0.49 90,000.00
Random 0.82 (±0.0804) 0.04 (±0.0772) 452.34
MOPEA 0.88 (±0.0103) 0.33 (±0.0132) 65,020.25
GNet 0.87 (±0.0354) 0.29 (±0.0213) 130
VGGNet 0.88 (±0.0378) 0.28 (±0.0272) 150
ResNet 0.88 (±0.0276) 0.29 (±0.0135) 100
Proposal 0.91 (±0.0018) 0.47 (±0.0102) 41,766.47

The first line of Tables III and IV shows the optimal values
for Acc and F1 achieved by the exhaustive approach in each
problem, CIFAR 10 and MNIST. To find the optimal values,
the exhaustive method evaluates all possible configurations for
the DNN model, a task whose cost is extremely high. On
the other hand, the random method has a smaller execution
time (452.34s in CIFAR 10 and 364.22s in MNIST) when
compared to the exhaustive method, however, due to a large
number of possible solutions, the possibility of finding a good
architecture for DNN by chance (randomly) is small. As can be



TABLE IV
COMPARATIVE PERFORMANCE ANALYSIS BETWEEN THE PROPOSED

TECHNIQUE AND THE LITERATURE METHODS IN THE MNIST DATASET

Algorithm Acc F1 Time (s)
Exhaustive 0.99 0.97 92,000.00
Random 0.88 (±0.0835) 0.01 (±0.1724) 364.22
MOPEA 0.95 (±0.0376) 0.85 (±0.0817) 40,357.89
GNet 0.94 (±0.0214) 0.85 (±0.0167) 130
VGGNet 0.95 (±0.0165) 0.86 (±0.0275) 145
ResNet 0.95 (±0.01877) 0.83 (±0.0217) 110
Proposal 0.99 (±0.0027) 0.96 (±0.0070) 36,597.99

seen, the random method achieved Acc = 0.82 and F1 = 0.04
for CIFAR 10 and Acc = 0.88 and F1 = 0.01 for MNIST, with
high values of standard deviation. Regarding the MOPEA,
can be seen it overcame the results achieved by the random
approach, costing 65, 020.25s for CIFAR 10 and 40, 357.89s
for MNIST.

The three state-of-the-art algorithms achieved close results
in terms of Acc and F1, presenting a similar standard devi-
ation. As these algorithms were meticulously crafted by an
expert, their results easily surpassed the random search, and
reached close results to the MOPEA, in both CIFAR10 and
MNIST.

Regarding the proposed method, we can see it was able
to find good solutions when compared to the exhaustive
approach. For CIFAR 10, the proposal found a solution with
Acc = 0.91 and F1 = 0.47, close to the optimal solution. The
same for MNIST, where the proposal found a solution with
Acc = 0.99 and F1 = 0.96. Concerning the other methods,
our proposal was superior in both Acc and F1 (with the lowest
standard deviation values) in both problems. The statistical
significance of the results was evaluated as suggested in [27].
The null hypothesis is that there is no difference between
the mean values of the six approaches (excluding the grid
search). The alternative hypothesis is that there is at least
one difference between the mean values. After, the Friedman
Aligned-Ranks non-parametric test was conducted, and the null
hypothesis was rejected, with a p-value = 2.2 × 10−5. This
result shows that there is a statistical difference between the
means. Finally, since the Friedman’s test rejected the null
hypothesis, a posthoc test was performed to identify which
differences are significant. We used the Finner procedure with
p-value correction (as multiple comparisons are being made),
defined the proposed approach as the control algorithm, and
compared it with the other five approaches: Random search,
MOPEA, GNet, VGGNet, and ResNet. The results of the
posthoc test showed that the proposal was superior regarding
both Acc and F1 to all the competitors.

In terms of computational cost, the proposal achieved solu-
tions close to the optimal (found by the grid search), but in
much less time when compared to the exhaustive approach.
When compared to the MOPEA and random approach (using
the same stop criterion, 500 fitness evaluations), the proposed
method overcame the results achieved by the MOPEA in less
time, but, regarding the random approach, our method had

a much higher execution time than the random, in CIFAR
10 and MNIST problems. Could it be that if the random
method had the same execution time, it could outweigh the
proposed approach? Here, we also performed this analysis.
Table V shows the results obtained by the random method,
being executed for the same execution time of the proposal in
CIFAR 10 and MNIST, respectively. As can be seen in this
table, even if we run the random method many more times, the
proposed method continues to surpass it in all the objectives.

TABLE V
COMPARATIVE PERFORMANCE ANALYSIS BETWEEN THE PROPOSED

TECHNIQUE AND THE RANDOM SEARCH (BOTH WITH THE SAME
EXECUTION TIME) IN CIFAR 10 AND MNIST.

CIFAR 10
Acc Random 0.88 (±0.0282)

Proposal 0.91(±0.0018)

F1 Random 0.03 (±0.0255)
Proposal 0.47 (±0.0102)

MNIST
Acc Random 0.90 (±0.0197)

Proposal 0.99 (±0.0027)

F1 Random 0.10 (±0.1880)
Proposal 0.96 (±0.0070)

The results showed the potential of the proposal in the
construction of simpler DNN architectures than the high end
DNNs, capable of obtaining competitive results. Given this,
the proposed method becomes an alternative for experts to
automate the definition of the architecture of DNNs for a given
classification problem.

B. Frequency of layer type per slot

In this section, we present the frequency of the most used
layer type per slot selected by the proposed approach during
the simulations.

TABLE VI
MOST FREQUENT LAYER TYPE PER SLOT IN THE ARCHITECTURES.

CIFAR10 MNIST
Slot 1 Conv (100.0%) Conv (100.0%)
Slot 2 Dense (94.2%) Empty (87.8%)
Slot 3 Empty (93.0%) Conv (96.1%)
Slot 4 Conv (91.6%) Conv (91.0%)
Slot 5 Conv (89.2%) Conv (87.4%)
Slot 6 Conv (67.0%) MaxPool (86.8%)
Slot 7 MaxPool (52.6%) MaxPool (84.6%)
Slot 8 MaxPool (95.0%) Conv (93.6%)
Slot 9 Conv (83.2%) Conv (88.5%)
Slot 10 Dense (100.0%) Dense (100.0%)

In this work, we limited the architecture to ten slots (s =
10). Table VI presents the most used layer type per slot in the
architectures, for both problems. To calculate the frequency,
we considered the Paretos of all generations. As the first and
last slot were fixed with the Convolutional and Dense layers,
their frequencies in the assessed architectures are 100%.



It is important to highlight that the best architectures for
CIFAR 10 and MNIST, generated by the proposal (whose
results were presented in Section VI-A) are composed of
the same layers as the ones presented in Table VI. For both
problems, the best DNN architectures are composed of only
nine layers (the third layer for CIFAR 10 and the second layer
for MNIST are “Empty”), and, as shown in Section VI-A,
these DNNs obtained better results than state-of-the-art DNNs
which have a complex composition of layers.

In both problems, the DNN architectures with nine layers
proved to be the most promising, since they were present in the
Pareto front at least 75% of the time during the simulations.
The average number of DNN layers of the solutions present
in the Pareto is 8.3 layers.

VII. CONCLUSION AND FUTURE WORKS

In this work, the selection of architectures for DNNs is
treated as a multi-objective optimization problem. To tackle
this problem, an evolutionary algorithm, called NSGA-II, was
adopted and adjusted to select DNN architectures considering
two different criteria: Accuracy and F1 score. The main
contributions of this work are: i) the proposal of a multi-
objective optimization method to find the best architecture
for a DNN; ii) a novel candidate solution representation that
characterizes the sequence of the layers.

The results showed that the proposed method was able to
achieve a performance close to the exhaustive method but in
much less time, and overcame the random search and state-of-
the-art algorithms in all problems. In the future, it is intended
to optimize the parameterization along with the architecture,
as this configuration also influences the performance of a
DNN. In addition, we plan to investigate further the impact
of the number of layers s. In this work s = 10 was adopted
empirically, but we believe that the optimal value of s may be
problem-dependent.
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