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Abstract—Water Wave Optimization (WWO), as a nature-
inspired optimization algorithm, has received much attention.
In this paper, we tend to improve the algorithm by proposing
an adaptive WWO with enhanced wave interaction (AWWO-
EI). In the proposed method, two operators (namely, Gaussian-
based propagation and refraction learning) with an adaptive
mechanism are introduced to enhance the wave interaction in
the algorithm. The first operator, Gaussian-based propagation
operation, is designed to strengthen the exploration ability of the
algorithm by encouraging each individual to learn from different
exemplars. While, the second operator, refraction learning, aims
to improve the exploitation capability of WWO. Further, rather
than using a fixed breaking coefficient, an adaptive mechanism
has been employed to dynamically adjust its values during
evolution. Experiments have been carried out to evaluate the
performance of the proposed method and compare it with related
methods. The results have demonstrated the superiority of the
proposed method.

Index Terms—Water Wave Optimization, Gaussian-based
propagation, refraction learning, parameter adaptation.

I. INTRODUCTION

Water Wave Optimization (WWO) [1] is a stochastic opti-

mization algorithm based on the shallow wave theory. The

algorithm has received much attention owing to its easy

implementation and simple algorithmic framework [2]–[16].

The main idea of WWO is to assign each solution (analogous

to a wave) a wavelength that is inversely proportional to its

fitness, and make each wave propagate in a range proportional

to its wavelength.

Nevertheless, the basic WWO suffers from the issue of

premature convergence. Many WWO variants have been de-

veloped [3], [4], [7], [12] to alleviate the issue. For example,

Zheng et al. [3] proposed a modified version of WWO by re-

moving the refraction operator, which decreases the possibility

of premature convergence. Zhang et al. [4] tried to improve

WWO by designing a comprehensive learning mechanism for

the refraction process with the purpose of preserving solution

diversity. Wu et al. [7] proposed an elite opposition-based

WWO, in which an elite opposition-based learning scheme

is devised to increase population diversity. Zhang et al. [12]

proposed a sine cosine WWO algorithm, in which a sine cosine

algorithm is combined with WWO to balance the exploration

and exploitation. The above methods could be used to alleviate

the premature convergence. However, they are typically time-

consuming and could have a limited performance.

Another issue with WWO is that the critical parameters of

WWO are kept fixed during the run of WWO. Since the run

of WWO is a dynamic process, using a fixed parameter could

also significantly restrict the performance of WWO [17], [18].

It is therefore desirable to set these parameters dynamically.

Although parameter control has been extensively studied for

other nature-inspired algorithms, such as genetic algorithm, no

work has been carried out to control the parameters in WWO.

In this paper, we propose an adaptive WWO with enhanced

wave interaction, denoted as AWWO-EI, to tackle the issues.

In the proposed method, Gaussian-based propagation, refrac-

tion learning, and adaptive parameter control mechanisms have

been devised. The idea of Gaussian-based propagation is to

allow each individual to learn from different exemplars, thus

strengthen the exploration ability of WWO. The refraction

learning is designed to be based on the best current individual

with the purpose of improving the exploitation capability.

While the parameter adaptation scheme is devised to dy-

namically adjust the critical parameter of breaking coefficient

in WWO. Numerical results on benchmark suites [19], [20]

show that the proposed method has a good performance and

outperforms related methods.

The remainder of the paper is structured as follows. Section

II briefly reviews related works. Section III describes the

proposed AWWO-EI algorithm in detail. Section IV presents

the numerical experiments, and finally Section V concludes

with a summary and future work.
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Fig. 1. Illustration of the relationship between wavelengths and wave energy
(fitness) in WWO.

II. RELATED WORK

A. The Basic WWO

WWO is an algorithm borrowing ideas from shallow water

wave models for continuous optimization, in which each

solution x is analogous to a wave. When a wave propagates

from deep water (a location with low fitness) to shallow water

(a location with high fitness), its wave height h increases and

its wavelength λx decreases, as illustrated in Fig. 1.

At each generation, for each wave x, the propagation

operator gets a new wave x′ by creating a different offset

at each dimension d and adds it to the original wave:

x′(d) = x(d) + λx · rand(−1, 1) · L(d) (1)

where rand is a function producing a random number uniform-

ly distributed within a specified range, and L(d) is the length

of the dth dimension in search space.

At each generation, the wavelength λx of each wave x is

updated according to its fitness f(x) as follows:

λx = λx · α−(f(x)−fmin+ε)/(fmax−fmin+ε) (2)

where fmax and fmin indicate the maximum and minimum

fitness values of the current population, α is the wavelength

reduction coefficient, and ε is a small value to avoid division

by zero.

The breaking operator breaks a newly discovered current

best wave x∗ into a battery of solitary waves. Each solitary

wave is generated by randomly choosing k dimensions (where

k is a random number between 1 and a predefined parameter

kmax) and getting a newly generated offspring at each dimen-

sion d as follows:

x′(d) = x∗(d) +Gaussian(0, 1) · β · L(d) (3)

where x∗ is the current best wave in the population, β is

the breaking coefficient, and Gaussian(0, 1) is a function

producing a Gaussian random number with mean 0 and

standard deviation 1. If the fittest one among the solitary waves

is better than x∗, x′ will replace x∗ in the current population.

The refraction operator conducts on waves whose heights

h reduces to zero. It allows the stagnant waves to learn from

the current best wave x∗ at each dimension d:

x′(d) = Gaussian(
x∗(d) + x(d)

2
,
|x∗(d)− x(d)|

2
) (4)

where Gaussian(μ, σ) generates a Gaussian random number

with mean μ and standard deviation σ. After refraction, the

wavelength of wave x is generated as:

λx′ = λx
f(x)

f(x′)
(5)

B. Recent Advances
In the past few years, a variety of improved WWO algo-

rithms have been put forward [14], [15], [21]–[24]. In [21],

a hybrid algorithm by combining the Firefly with WWO

was proposed. In this work, WWO is used for adjusting

the parameters of the firefly algorithm. In [22], Shao et al.

proposed a discrete WWO to address the blocking flow-shop

scheduling problem. In this method, a two-stage propagation

is designed to direct the algorithm towards good solutions. In

[23], an adaptive wavelength reduction coefficient method is

developed to improve the exploration ability of WWO. In [14],

Zhang et al. devised a wind-driven WWO to enhance its global

search ability. This, however, could make the propagation

process of WWO complicated. In [24], the authors integrated

a min-max method with WWO to address a multi-objective

optimal bidding strategy problem. In this method, a Bare-bone

technique implemented in the refraction process is modified to

increase the search space. Further, a chaotic map is employed

to improve the convergence speed. In [15], WWO was integrat-

ed with sequential quadratic programming (SQP) for solving

constrained high-dimensional problems. This method is time-

consuming as it performs SQP on the individuals obtained by

the WWO.

III. PROPOSED ALGORITHM

An overview of the proposed method is shown in Algorithm

1. The main idea of the proposed algorithm lies in the two

newly designed operators and the introduction of adaptively

controlling the parameter of breaking coefficient. In the fol-

lowing subsections, we should describe the proposed algorithm

in detail.

A. Gaussian-based Propagation
WWO relies mainly on the propagation operator to explore

the solution space. Here, we propose a Gaussian-based propa-

gation operator to enhance the exploration capability of WWO.

The proposed Gaussian-based propagation generates a new

Gaussian wave by allowing the wave to learn from not only

the current best but also other exemplars in the population.

Specifically, when performing the Gaussian-based propagation

on a wave x, at each dimension d, we first select the one with

the best fitness from the current generation, denoted by x∗,

as the exemplar. Then, two other individuals are randomly

selected from the current population according to:

x′(d) = x(d) + (x∗(d)− x(d)) · γ + (xr(d)− xs(d)) · γ (6)



Algorithm 1: The framework of AWWO-EI

Input: Define objective function f(x),

x = (x1, x2, ..., xd)
Output: The best wave x∗

1 Randomly initialize a population P of N solutions;

2 Let x∗ be the best among the waves;

3 while the stop criterion is not satisfied do
4 for each wave x ∈ P do
5 Generate γ according to Eq. (7);

6 if rand() < 0.9 then
7 Perform the Gaussian-based propagation

operator according to Eq. (6);

8 if f(x′) > f(x) then
9 Replace x with x′;

10 if f(x′) > f(x∗) then
11 Break x′ into new waves according to

Eq. (3);

12 Update x∗ with the current best one

among the new waves and x′;

13 else
14 Perform the refraction learning operator

according to Eq. (8);

15 Update memories Tβ according to Algorithm 2;

16 Update N according to the linear population size

reduction strategy;

17 Choose top N waves for the next generation of

evolution

γ = Gaussian(μ, σ) (7)

Here, x∗ denotes the best wave found so far in the current

population. The indices r, s are randomly chosen from [1, N ],
N is the number of waves. γ is a dynamically generated

Gaussian random number with a mean μ and a standard

deviation σ. By employing this operator, every Gaussian wave

has a chance to learn from different exemplars at different

dimensions, and thus could be used to greatly increase the

solution diversity.

B. Refraction Learning

Our proposed refraction learning is based on the best wave

of the current population to improve its exploitation capability.

Specifically, when performing the refraction learning operator

on a wave x, we update the wave at each dimension d as:

x′(d) = x(d) + (x∗(d)− x(d)) · η (8)

where x∗ is the current best individual found so far in the

population, η is a predefined parameter which is used to

control the magnitude of learning. It should be noted that,

in the above process, the limitation of wave height h has been

removed. This enables refraction learning to support Gaussian-

based propagation to further enhance its search capability.

C. Adaptive Mechanism

The standard WWO contains two main parameters, namely

the wavelength reduction coefficient α and the breaking coef-

ficient β. The performance of WWO depends critically on the

settings of these parameters and the optimal values depend

on the specific problems to be addressed and may change

during the run of the algorithm. Inspired by the strategies

[25]–[33] of adaptively adjusting the control parameters during

the evolutionary process, we introduce the following adaptive

mechanism to control the critical parameter of breaking coef-

ficient β in WWO. The procedure of the proposed adaptive

control strategy is shown in Algorithm 2.

Algorithm 2: The procedure of updating β.

1 if Aβ �= ∅ then
2 Tβ ,t ,G+1 = meanL(Aβ);
3 if Tβ ,t ,G+1 < lower or Tβ ,t ,G+1 > upper then
4 Tβ ,t ,G+1 = rand(lower,upper);

5 t++;

6 if t > MS, t = 1;

7 else
8 Tβ ,t ,G+1 = Tβ ,t ,G;

At the initial stage, β is set to a random value within a

specific range (between 0.001 and 0.01) recommended in the

literature [1]. During the procedure, the βi value that succeeds

in producing a new wave x′
i,G, which is better than the parent

wave xi,G, is recorded as Tβ . At the end of each generation G,

the memory contents Aβ are updated accordingly. The index

t in the algorithm 2 is a number between 1 and MS, which

determines the position in the memory to be updated. Here,

MS is the memory size to be maintained for the control

parameters β, Tβ . The values of lower and upper are the

recommended range of β. If Aβ = ∅, the memory will not be

updated. The meanL(Aβ) is calculated as Lehmer mean:

meanL(Aβ) =

∑|Aβ |
t=1 wt ·A2

β ,t
∑|Aβ |

t=1 wt ·Aβ ,t
(9)

wt =
ΔFt

∑|Aβ |
l=1 ·ΔFl

(10)

ΔFt = |F (x′
t,G )− F (xt,G )| (11)

Here, ΔFt is fitness improvement during the evolution.

IV. EXPERIMENTS

A. Experimental Settings

To verify the performance of the proposed algorithm, we

conduct numerical experiments on the CEC’14 and CEC’15

test suites [19], [20]. We employ 30 and 100 decision variables

of the data sets, and set the maximum NFEs (number of

fitness evaluations) of 300,000 and 1,000,000 on these two test

suites, respectively. The basic WWO, two variants of WWO



TABLE I
RESULTS ON THE CEC’14 TEST SUITES WITH 30 VARIABLES.

Algorithms
CEC’14 (F1-F10)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

WWO
med 1.8402E+06 6.6527E+03 3.6494E+03 4.9570E+02 5.2000E+02 6.2374E+02 7.0001E+02 8.8507E+02 1.0070E+03 3.8902E+03
std 1.0189E+06 7.4759E+03 1.0669E+04 3.5796E+01 2.3973E-05 5.3100E+00 1.7248E-02 2.5220E+01 3.4476E+01 6.1805E+02

WWO 1
med 4.2332E+06 7.2523E+06 1.7698E+03 5.2363E+02 5.2126E+02 6.0439E+02 7.0105E+02 8.2494E+02 9.2395E+02 1.3794E+03
std 2.3496E+06 1.6561E+07 1.3734E+03 4.1657E+01 9.3408E-02 1.3278E+00 2.4286E-01 6.4433E+00 4.8205E+00 1.6853E+02

WWO 2
med 1.8935E+04 2.0000E+02 3.0000E+02 4.0001E+02 5.2007E+02 6.0261E+02 7.0001E+02 8.4676E+02 9.4378E+02 2.2705E+03
std 2.4509E+04 0.0000E+00 0.0000E+00 1.9949E+01 1.9575E-01 1.8357E+00 9.1132E-03 1.6049E+01 1.2057E+01 5.0361E+02

AWWO-EI
med 2.6327E+04 2.0000E+02 3.0000E+02 4.0001E+02 5.2001E+02 6.0244E+02 7.0000E+02 8.4328E+02 9.4378E+02 2.4782E+03
std 1.9001E+04 0.0000E+00 0.0000E+00 9.5597E+00 1.1710E-01 1.5459E+00 6.8092E-03 1.2997E+01 1.2216E+01 4.1126E+02

Algorithms
CEC’14 (F11-F20)

F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

WWO
med 4.8718E+03 1.2006E+03 1.3004E+03 1.4003E+03 1.5055E+03 1.6115E+03 7.3069E+04 4.1042E+03 1.9141E+03 1.3986E+04
std 7.9669E+02 3.5535E-01 1.1937E-01 5.0530E-02 1.8299E+00 6.7754E-01 7.3674E+04 3.2979E+03 1.6095E+01 1.2405E+04

WWO 1
med 5.3769E+03 1.2046E+03 1.3003E+03 1.4003E+03 1.5059E+03 1.6124E+03 1.0408E+04 2.0533E+03 1.9057E+03 2.0253E+03
std 1.2699E+03 1.2547E+00 8.6237E-02 4.8928E-02 2.3843E+00 5.9127E-01 1.3665E+04 4.7708E+02 1.1976E+00 9.2766E+00

WWO 2
med 3.3171E+03 1.2001E+03 1.3002E+03 1.4002E+03 1.5032E+03 1.6104E+03 2.5073E+03 1.8829E+03 1.9045E+03 2.0191E+03
std 5.7823E+02 6.5738E-02 4.5245E-02 4.2838E-02 7.2044E-01 8.5252E-01 2.9286E+02 2.2051E+01 1.3889E+00 7.7265E+00

AWWO-EI
med 3.2098E+03 1.2001E+03 1.3002E+03 1.4002E+03 1.5031E+03 1.6105E+03 2.6100E+03 1.8754E+03 1.9045E+03 2.0196E+03
std 5.9731E+02 1.0263E-01 4.9921E-02 3.5929E-02 5.9648E-01 7.8638E-01 3.2175E+02 2.7677E+01 1.3116E+00 8.0433E+00

Algorithms
CEC’14 (F21-F30)

F21 F22 F23 F24 F25 F26 F27 F28 F29 F30

WWO
med 4.4134E+04 2.6129E+03 2.6164E+03 2.6480E+03 2.7198E+03 2.7004E+03 3.1062E+03 4.4734E+03 4.4269E+03 1.0595E+04
std 2.7667E+04 1.6559E+02 1.0753E+00 7.0432E+00 6.1093E+00 1.0402E-01 2.5101E+02 6.2018E+02 4.0710E+02 2.5011E+03

WWO 1
med 4.4572E+04 2.3519E+03 2.6153E+03 2.6269E+03 2.7088E+03 2.7002E+03 3.1119E+03 3.5893E+03 4.2230E+03 4.2984E+03
std 3.0532E+04 2.9069E+01 1.4518E-01 5.9863E+00 2.4042E+00 2.7369E+01 3.8964E+01 1.6984E+02 2.6708E+02 4.1180E+02

WWO 2
med 2.3794E+03 2.3873E+03 2.6152E+03 2.6247E+03 2.7035E+03 2.7001E+03 3.1006E+03 3.6684E+03 3.6586E+03 4.0460E+03
std 1.1534E+02 1.0258E+02 3.2155E-12 3.9204E+00 8.3933E-01 4.8179E-02 4.1430E+01 1.4667E+02 1.8099E+02 3.3820E+02

AWWO-EI
med 2.3887E+03 2.3729E+03 2.6152E+03 2.6244E+03 2.7036E+03 2.7002E+03 3.1007E+03 3.6596E+03 3.6122E+03 3.8869E+03
std 1.1494E+02 8.5388E+01 3.2155E-12 2.9748E+00 6.7721E-01 3.6630E-02 2.4394E+01 1.6403E+02 1.6731E+02 3.6284E+02

Total number of (+/=/-): WWO (29/0/1), WWO 1 (25/0/5), WWO 2 (3/24/3)

(SimWWO and VarWWO [3]), as well as the following four

popular evolutionary algorithms are used for comparison:

• A basic DE algorithm [34].

• A basic PSO algorithm [35].

• A BBO algorithm [36].

• A TLBO algorithm [37].

For AWWO-EI, we set the memory size MS = 5, kmax = 6,

γ is dynamically generated from a Gaussian random number

with a mean of 0.5 and a standard deviation of 0.3, η = 0.005,

β is adaptively adjusted according to Algorithm 2, and N
linearly reduces from Nmax to Nmin (Nmax = 20× d, Nmin

= 3, d is the dimension). The control parameters of the other

seven algorithms are set as suggested in the corresponding

papers. All compared algorithms employ the same number of

NFEs as the termination condition.

All algorithms are run with a computer of Intel Core i7-

8700 3.20 GHz CPU, 16 GB RAM. We run each algorithm

50 times on each test problem, and record the medians (med)

and standard deviations (std) of function values among these

runs. On each problem, the best median fitness values among

the algorithms to be compared are marked with boldface in

the results.

Additionally, nonparametric Wilcoxon rank sum test at a

0.05 significance level has been performed between AWWO-

EI and each algorithm to be compared on each benchmark

function. The sign “+” in the results indicates the performance

of AWWO-EI is significantly better than the corresponding al-

gorithm, “-” vice versa and “=” denotes there is no significant

difference between the performance.

B. Exploring the Proposed Strategies
In this section, we first explore the proposed method. For

this purpose, we compare AWWO-EI with its two variants

including WWO 1, WWO 2 as well as the basic WWO.

WWO 1 is equipped with Gaussian-based propagation only.

WWO 2 is equipped with both Gaussian-based propagation

and refraction learning. AWWO-EI is equipped with all three

proposed strategies.
The results are shown in Table I. From the results, we

can see that among the 30 benchmark functions, AWWO-

EI achieves the best median values on sixteen functions,

which is significantly better than all the three algorithms to

be compared. Compared with WWO, the results also show

that the differences are statistically significant as it achieves

better performance on all functions except one. From the above

results, it is clear that the proposed three strategies could

significantly improve the performance of WWO.

C. Comparisons with Related Algorithms
In this section, we compare the performance of the proposed

method with related seven methods. Table II presents the

results of the eight algorithms to be compared.
We first examine the results on two unimodal functions.

The comparison results show that AWWO-EI achieves the best

performance on both functions in terms of the median values.

Compared with the canonical WWO, AWWO-EI can learn

from more exemplars, which enhances the wave interaction.

This could strengthen the exploration capability of the algo-

rithm. Further, the refraction learning in the proposed method

could appropriately readjust its search direction, thus promot-

ing information sharing among the waves in the population. Fi-



TABLE II
RESULTS ON THE CEC’15 WITH 30 AND 100 VARIABLES.

Algorithms
CEC’15 (F1-F10) with 30 variables

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

DE
med 4.9168E+06 1.2174E+03 3.2037E+02 4.5661E+02 3.4777E+03 1.4738E+06 7.1109E+02 3.1085E+05 1.0077E+03 2.9380E+05
std 1.5636E+06 1.7510E+03 3.9542E-02 7.2926E+00 2.8354E+02 7.7573E+05 1.5470E+00 2.6394E+05 1.2302E+00 2.2914E+05

PSO
med 5.6270E+04 3.6136E+03 3.2000E+02 4.8956E+02 3.7291E+03 2.7272E+04 7.0659E+02 1.8072E+04 1.0103E+03 8.2091E+03
std 4.1595E+04 4.0543E+03 4.6515E-02 3.5399E+01 6.3922E+02 2.3431E+04 5.3335E+00 1.9190E+04 3.8218E+01 4.8544E+03

BBO
med 1.1164E+07 2.9991E+03 3.2000E+02 4.8235E+02 3.6469E+03 2.3475E+06 7.1426E+02 8.5526E+05 1.0094E+03 9.5850E+05
std 5.9239E+06 3.7883E+03 1.6543E-02 1.7634E+01 5.9823E+02 3.1388E+06 1.1652E+01 1.2472E+06 3.6748E+01 1.4688E+06

TLBO
med 9.2532E+04 1.9184E+03 3.2095E+02 5.1094E+02 5.3023E+03 4.8865E+04 7.1122E+02 5.9950E+04 1.0108E+03 1.5164E+04
std 5.1530E+05 4.5738E+03 5.0489E-02 2.2405E+01 1.2856E+03 5.5395E+04 1.4490E+01 4.6774E+04 3.2062E+01 1.7203E+04

WWO
med 9.7146E+05 1.2748E+03 3.2000E+02 5.1641E+02 3.9663E+03 5.0976E+04 7.1730E+02 3.5054E+04 1.0080E+03 4.0195E+04
std 6.5755E+05 3.0516E+03 5.9296E-06 2.9656E+01 6.9309E+02 7.2573E+04 2.0083E+00 1.6501E+04 1.0824E+00 3.4939E+04

SimWWO
med 3.1090E+06 2.0712E+02 3.2000E+02 4.7412E+02 2.8221E+03 9.0358E+04 7.1220E+02 4.0109E+04 1.0098E+03 9.8389E+04
std 9.0251E+05 3.5852E+01 1.1285E-05 1.2462E+01 3.4523E+02 4.3652E+04 1.2483E+00 1.5844E+04 6.3132E-01 5.5414E+04

VarWWO
med 1.3288E+06 9.3770E+02 3.2000E+02 5.0700E+02 3.9701E+03 3.6613E+04 7.1642E+02 3.0775E+04 1.0085E+03 4.1187E+04
std 6.6044E+05 2.1507E+03 6.1224E-06 2.6529E+01 7.0652E+02 2.7347E+04 2.8214E+00 1.9878E+04 1.2468E+00 2.6955E+04

AWWO-EI
med 9.1011E+03 2.0000E+02 3.2004E+02 4.4577E+02 2.6309E+03 1.2890E+03 7.0402E+02 9.6210E+02 1.0064E+03 1.6587E+03
std 1.5594E+04 0.0000E+00 1.9254E-01 1.2393E+01 6.2762E+02 3.3383E+02 1.1364E+00 1.1734E+02 1.0821E+00 1.3961E+02

Algorithms
CEC’15 (F11-F15) with 30 variables and CEC’15 (F1-F5) with 100 variables

F11 F12 F13 F14 F15 F1 F2 F3 F4 F5

DE
med 1.6891E+03 1.3115E+03 1.3000E+03 3.7866E+04 1.6000E+03 6.3120E+08 1.5414E+03 3.2113E+02 1.1930E+03 2.6303E+04
std 1.2330E+02 3.3124E+00 3.1706E-04 2.8155E+03 0.0000E+00 8.6432E+07 6.2264E+07 2.9100E-02 2.6086E+01 4.7895E+02

PSO
med 1.9398E+03 1.3157E+03 1.3000E+03 4.5440E+04 1.6000E+03 4.6675E+06 3.7254E+03 3.2003E+02 9.9903E+02 1.4530E+04
std 1.1160E+02 3.9200E+01 1.2426E-03 4.5713E+03 5.4771E-01 1.3047E+06 6.9768E+03 2.7683E-02 1.0028E+02 1.4400E+03

BBO
med 1.8304E+03 1.3121E+03 1.3000E+03 4.6435E+04 1.6000E+03 2.1304E+08 1.4188E+07 3.2000E+02 8.5237E+02 1.3876E+04
std 8.7380E+01 2.9391E+01 1.5055E-03 2.2385E+03 1.0160E+00 6.2818E+07 6.0476E+07 1.8520E-02 7.7491E+01 1.1635E+03

TLBO
med 2.0452E+03 1.4009E+03 1.3000E+03 4.6385E+04 1.6070E+03 1.2914E+07 6.0286E+07 3.2135E+02 1.1435E+03 2.8680E+04
std 1.1615E+02 3.0802E+01 2.1699E-03 4.7294E+03 6.3572E+00 6.1138E+06 1.2450E+09 3.0774E-02 8.2899E+01 2.8534E+03

WWO
med 2.0461E+03 1.3146E+03 1.3000E+03 4.8628E+04 1.6000E+03 3.5245E+07 2.6073E+03 3.2000E+02 1.1049E+03 1.4646E+04
std 2.1847E+02 2.2856E+00 3.2699E-02 1.6746E+03 1.4684E-08 1.0141E+07 6.1566E+03 2.0789E-04 1.0923E+02 2.4827E+03

SimWWO
med 1.4220E+03 1.3124E+03 1.3000E+03 4.7714E+04 1.6000E+03 1.2082E+08 8.5734E+05 3.2000E+02 1.0019E+03 1.2292E+04
std 1.1316E+02 7.0967E-01 7.3617E-03 6.8540E+02 0.0000E+00 1.4212E+07 2.7532E+06 2.2712E-04 3.5757E+01 5.6406E+02

VarWWO
med 2.1018E+03 1.3137E+03 1.3000E+03 4.8055E+04 1.6000E+03 3.3280E+07 2.4477E+03 3.2000E+02 1.0562E+03 1.5079E+04
std 2.4747E+02 2.6209E+00 2.1936E-02 1.8866E+03 2.2717E-10 1.1045E+07 7.4628E+03 2.0654E-06 8.8519E+01 1.3180E+03

AWWO-EI
med 1.5415E+03 1.3084E+03 1.3000E+03 4.5692E+04 1.6000E+03 2.0228E+06 2.0000E+02 3.2087E+02 7.1739E+02 1.1951E+04
std 9.2891E+01 7.6936E-01 1.8086E-03 4.8006E+03 0.0000E+00 8.0216E+05 3.6439E-05 3.4005E-01 4.7753E+01 1.3393E+03

Algorithms
CEC’15 (F6-F15) with 100 variables

F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

DE
med 5.3803E+07 8.5495E+02 2.7055E+07 1.0087E+03 3.2946E+06 4.2601E+03 1.4004E+03 1.3001E+03 1.1028E+05 1.6000E+03
std 1.0671E+07 9.7041E+00 6.7919E+06 5.2011E-01 1.1922E+06 9.3620E+01 2.8944E+01 8.2427E-04 1.3155E+03 0.0000E+00

PSO
med 1.3030E+06 8.1253E+02 6.2019E+05 1.0178E+03 1.5231E+04 4.1567E+03 1.4004E+03 1.3002E+03 1.1034E+05 1.6321E+03
std 4.6248E+05 2.4809E+01 2.6081E+05 2.1553E+02 1.9373E+04 1.8830E+02 2.5223E+01 9.1408E-02 1.0811E+04 1.6438E+01

BBO
med 3.1251E+07 8.8847E+02 1.8060E+07 1.0156E+03 2.2426E+07 3.3984E+03 1.3593E+03 1.3003E+03 1.7868E+05 1.7515E+03
std 9.5986E+06 3.3392E+01 8.8297E+06 1.8807E+02 1.1070E+07 1.6212E+02 3.4968E+01 1.0166E-01 9.0899E+03 8.3671E+01

TLBO
med 2.0492E+06 8.7738E+02 8.5573E+05 1.0157E+03 3.7404E+05 4.8575E+03 1.4005E+03 1.3002E+03 1.4625E+05 1.6883E+03
std 7.9705E+05 3.8545E+01 4.6104E+05 1.9786E+02 7.7238E+05 1.7288E+02 4.6359E-02 1.4001E-01 1.8270E+04 4.2427E+01

WWO
med 2.8405E+06 8.7519E+02 5.3835E+05 1.0101E+03 6.3639E+05 4.5492E+03 1.3179E+03 1.3020E+03 1.7047E+05 1.6157E+03
std 9.5102E+05 3.6550E+01 4.0062E+05 9.3761E-01 2.9757E+05 5.6281E+02 3.5228E+01 2.0863E+00 5.9238E+03 4.1657E+00

SimWWO
med 7.5499E+06 8.5447E+02 3.3131E+06 1.0162E+03 3.3583E+06 4.0183E+03 1.3685E+03 1.3139E+03 1.9696E+05 1.6467E+03
std 1.6970E+06 1.9712E+01 1.0318E+06 7.0360E-01 7.7710E+05 1.2379E+03 8.7380E+00 4.0936E+00 6.7558E+03 8.4457E+00

VarWWO
med 2.4490E+06 8.8048E+02 6.2655E+05 1.0092E+03 7.0624E+05 4.6422E+03 1.3179E+03 1.3016E+03 1.7045E+05 1.6140E+03
std 9.6500E+05 3.8280E+01 3.8107E+05 7.2597E-01 4.4094E+05 2.7053E+02 3.4909E+01 6.5483E-01 5.9505E+03 3.7530E+00

AWWO-EI
med 1.9414E+05 7.7601E+02 4.7394E+04 1.0071E+03 5.6856E+03 2.9576E+03 1.3167E+03 1.3006E+03 1.1172E+05 1.6036E+03
std 8.0196E+04 4.4941E+01 1.9731E+04 5.5369E-01 6.3752E+02 4.1404E+02 3.1223E+01 1.7077E-01 1.7241E+04 6.9043E-01

nally, the adaptive strategy introduced in the proposed method

can automatically adjust the breaking coefficient, thus improve

the performance further. We then access the results on three

multimodal functions. From the comparison results, we can

see that AWWO-EI yields the best performance on two out of

three multimodal problems. Subsequently, for the third set of

experiments including three hybrid functions. Still, the results

show that AWWO-EI achieves the best performance on all

the three functions. For the fourth set of experiments including

seven composition functions, AWWO-EI could obtain the best

performance in terms of median values on F9, F10, F12, and

F15 functions. From the statistical test results in Table III,

we can see that the performance differences are statistically

significant.

Experiments with the CEC’15 benchmark problems of 100

variables have also been carried out. The results are reported

in Table II. From the results, we can find that AWWO-EI can

achieve better results than the algorithms to be compared on

eleven (F1, F2, and F4-F12) out of fifteen functions. It may

indicate that AWWO-EI is well suited to address optimization

problems with large search space. The convergence curves can

be found in Fig. 2.

V. CONCLUSIONS

In this paper, an adaptive WWO with enhanced wave

interaction (AWWO-EI) is proposed. In the proposed method,

a Gaussian-based propagation is designed to learn different

exemplars, which enhances the exploration ability of the algo-

rithm. Further, refraction learning is developed to learn from

the best current wave to enhance the exploitation capability
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Fig. 2. Convergence curves of the eight algorithms on the CEC’15 test problems with 100 variables. The x-axis denotes NFEs, and the y-axis denotes the
common logarithm of the median values.



TABLE III
THE RESULTS OF WILCOXON RANK SUM TESTS.

Results for the CEC’15 with 30 variables
Total number of (+/=/-): DE (12/1/2), PSO (11/2/2), BBO (12/1/2), TLBO (14/0/1), WWO (14/0/1), SimWWO (11/2/2), VarWWO (14/0/1)

Results for the CEC’15 with 100 variables
Total number of (+/=/-): DE (12/0/3), PSO (12/0/3), BBO (13/0/2), TLBO (14/0/1), WWO (14/0/1), SimWWO (12/2/1), VarWWO (14/0/1)

of the algorithm. Additionally, we strengthen the performance

of the proposed method by adaptively adjusting the breaking

coefficient. The experiments have demonstrated the goodness

of our proposed algorithm and it could achieve significantly

better results than related works.

In future work, we will tend to introduce niching techniques

[38]–[41] into WWO for multimodal optimization problems.
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