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Abstract—This paper investigates whether optimisation meth-
ods with the population made up of one solution can suffer from
structural bias just like their multisolution variants. Following
recent results highlighting the importance of choice of strategy
for handling solutions generated outside the domain, a selection
of single solution methods are considered in conjunction with
several such strategies. Obtained results are tested for the
presence of structural bias by means of a traditional approach
from literature and a newly proposed here statistical approach.
These two tests are demonstrated to be not fully consistent. All
tested methods are found to be structurally biased with at least
one of the tested strategies. Confirming results for multisolution
methods, it is such strategy that is shown to control the emergence
of structural bias in single solution methods. Some of the tested
methods exhibit a kind of structural bias that has not been
observed before.

Index Terms—structural bias, algorithmic design, hypothesis
testing, single solution methods, constraint handling

I. OPTIMISATION METHODS: POPULATION-BASED VS
SINGLE SOLUTION

Evolutionary computation (EC) methods draw inspiration
directly from Darwinian evolution. Following this metaphor,
candidate solutions to the optimisation problem play the role
of individuals in a population. This population evolves through
repeated application of various operators inspired by processes
of mutation, recombination and selection based on the ‘fitness’
values of the solutions, i.e., values of the objective function.

The whole plethora of EC methods capitalises on concurrent
exploration of the search domain within one run. Instead of
concentrating on a single direction of search for the optimum
inside a vast, usually multidimensional, domain, a selection of
arbitrary directions is available to the method to choose from.
This increases the exploration of the domain and decreases
the need for potentially wasteful restarts of the algorithm. The
success of EC methods is assumed to result from the following
main assumptions:
• Great solutions are easily reachable (in terms of generat-

ing operators) from the good solutions or, in other words,
there is a correlation between promising solutions.

• Algorithm’s exploratory operators are able to provide new
search directions.

• Information about good regions of the domain is ex-
changed/propagated within the population.

The extent to which these assumptions hold for a particular
combination of the method and the objective function defines
whether or not the method is capable of solving the problem.
In any case, having a pool of good solutions spread out across
the domain undoubtedly helps the search. Presence in the
population of a solution located in the promising part of the
domain forms a basis of the ‘hedging’ hypothesis of success
of the use of populations in optimisation methods [1]. The
cost of maintaining the population - where not every single
move of solutions leads to an increase in information about the
function’s landscape – is thought to be outweighed by having
multiple search directions available, thus, hedging against the
bad luck in choosing of the initial solution and other choices
made throughout the optimisation. The use of populations
provides another benefit since populations act as low-pass
filters of the landscape [2]. This feature allows the search to
ignore ‘high-frequency disturbances’ and act in a more robust
manner. Following this reasoning, increasing or decreasing the
population size allows to de-focus or re-focus the search [3].

The idea of using populations of solutions is not unique for
the field of EC – the differences lie in the accents. Old methods
such as the Nelder-Mead [4] or Solis-Wets algorithms [5]
internally operate with several solutions but do not particularly
focus on the ‘evolving population’ metaphor.

As shown by the famous No Free Lunch theorem [6], on
the whole, populations do not offer any benefit against other
search algorithms when performance is measured over all
possible search problems. This implies that there should be
problem instances for which population-based methods are
better suited than methods that maintain a single candidate
solution only, and vice versa.

Indeed, in the context of evolution strategies a population
size of one, i.e., a single candidate solution at each iteration,
has been a common strategy variant from the very beginning
in the so-called (1+1) evolution strategy [7]. Today, the (1+1)–
CMAES (with Cholesky decomposition) represents the state-
of-the-art in the domain of single-solution variants of evolution
strategies (see e.g. [8]). These methods are typically designed
with the aim of reducing the number of function evaluations
to a minimum1, e.g., when a single function evaluation is a

1In real-world applications, this can be only a few hundred evaluations.
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time-consuming simulation or even a real-world experiment.
The algorithm’s search behaviour often represents a stochastic
gradient search, (as shown by Schwefel [9] for the (1+1)
Evolution Strategy).

This paper is organised as follows. Section II reviews
the concept of structural bias, existing and newly proposed
statistical procedure for testing for structural bias and existing
results. Section III contains description of experimental setup
and all single solution optimisation methods considered in this
paper together with explanation of strategies for dealing with
solutions generated outside the domain. Section IV discussed
results on the distributions of final best solutions, traditional
and new tests for presence of structural bias for all method
configurations. Finally, Section V summarises conclusions and
proposes directions for future research.

II. STRUCTURAL BIAS

Not all algorithms are created equal. And yet any two
optimisation algorithms are equivalent when their performance
is averaged across all possible problems [10]. That is the
conundrum of comparing optimisation algorithms.

As more than abundant literature [11], [12] suggests, op-
timisation methods can be compared in the light of different
aspects: best/average/worst performance, complexity, univer-
sality of application, memory usage, scalability, etc. Moreover,
performance can be evaluated on a class of functions (with
widely varying definitions of ‘class’) or over all possible
problems (which is practically impossible but theoretically
relevant in the context of global convergence proofs).

One recently suggested aspect for comparison of perfor-
mance is the presence or absence of the so-called structural
bias (SB) [13] – the tendency of an algorithm to ‘prefer’ some
parts of the search domain over others due to the non-trivial
interaction between iteratively applied individual operators of
the algorithm, regardless of the objective function. By design,
all EC methods are driven by the ranking of the objective
function of candidate solutions in the populations. However,
it has been demonstrated that the actual movement of the
population in time is a complex superposition of the ‘force’
of the objective function landscape and the ‘force’ of the SB
inherent to the optimisation method itself [13]. SB steers the
optimisation process away from specific areas of the domain,
thus reducing the exploratory search property of the method.

A structurally unbiased optimisation algorithm should be
able to locate equally well the optimum regardless of its
position in the domain. Meanwhile populations in structurally
biased algorithms are being pulled towards some areas of
the domain more than to others, thereby potentially reducing
the chances of finding certain optima. In other words, a
strongly structurally biased algorithm is expected to have more
difficulties in finding solutions located in areas of the domain
less ‘preferred’ due to the SB.

Strength and direction of such SB can hardly be deduced
due to the non-additive contributions of each operator and
the interplay between the structure of the algorithm and the
objective function [13]. This commands the need for a test

function capable of separating the aforementioned ‘forces’.
The answer to this nontrivial question has been rather trivial:
eliminate the ‘force’ of the landscape of the objective function
altogether by using maximally uncorrelated function, namely
uniform noise.

Testing for SB is thus complementary to the traditional
performance benchmarking. In fact, algorithmic design is
‘multiobjective’ – ‘good traditional performance’ and ‘struc-
turally unbiasedness’ design objective can be conflicting.

A. Testing for structural bias

The procedure proposed for testing for presence of SB is
based on a simple theoretical result presented in [13] that true
optima of f0 : [0, 1]n → [0, 1] where ∀x f0(x) ∼ U(0, 1) are
distributed uniformly in its domain. Therefore, the degree to
which the distribution of the locations of the optima identified
by the method differs from the true uniform distribution
allows meaningful conclusions regarding presence of SB in
the method.

The procedure for testing for SB works as follows [13]:
• run the method under investigation for a statistically

significant number of times minimising2 the special ob-
jective function f0;

• record the position of the final best solution found in each
run in the series;

• plot locations of all final best solutions in parallel co-
ordinates [14] and analyse the distributions of these
locations3.

B. Previous results on structural bias

A number of methods has been investigated in the past
in the light of SB: Genetic Algorithms and Particle Swarm
Optimisation in [13], [15], Nelder-Mead and Rosenbrock
algorithms [15], Differential Evolution (DE) in [15]–[17],
advanced DE variants and hybrids such as jADE, SHADE
[18] and L-SHADE-EpSin and UMOEA-II in [19], and Across
Neighbourhood Search in [20]. The majority of investigated
methods exhibit SB. It has been shown that mechanisms of
emergence of SB differ per algorithm and are difficult to be
identified without explicit examination by means of methodol-
ogy described in Section II-A. Following such analysis certain
algorithmic parameters have been shown to exacerbate SB.

In [17], the choice of constraint handling techniques –
another aspect, usually overlooked during the algorithmic
design – is found to be a contributor to the formation of SB in
DE. The current study continues this direction of investigation.
Just like in many mathematical problems, it turns out that, it
matters what happens on the domain boundaries.

Interestingly enough, in the case of Differential Evolution,
it has been possible to pinpoint the particular mutation scheme

2As usual in iterative heuristic optimisation, no strict mathematical checks
are made whether the final solution is a true minimum. Optimisation process
runs for a predefined number of fitness evaluations and the best solution found
by then is used as the best available approximation of the true minimum.

3This is easier done when visually comparing such plots for several methods
or algorithmic configurations.



responsible for the emergence of SB [17]. Thus, it has been
shown that tests on SB can be used as an additional orthogonal
goal in algorithm design or selection.

Up until now, it has been difficult to judge the strength of
SB automatically due to the purely visual nature of comparison
used in the procedure described above. A simple Kolmogorov-
Smirnov test has been applied in [13] and the strength of this
test has been deemed unsuitable. Thus, no single universal
numerical estimate for the strength of SB has been proposed so
far. Furthermore, structurally biased algorithms can generate
drastically different distributions of the final solutions, which
complicates the automatic identification of SB additionally.

C. Estimating structural bias

As explained in the previous section, a structurally biased
optimisation method yields non-uniformly distributed optima
on test function f0. Here, we propose to test such non-
uniformity in [0, 1]n by applying statistical procedures on each
dimension of the obtained final points. Specifically, the null
hypothesis of our test is that the coordinate of the obtained
final points in each dimension is uniformly distributed in [0, 1].
Given the sample of points {x(1), . . . ,x(N)} (N being the
number of independent runs), our treatment entails:

1) choosing a proper test procedure for the goodness-of-fit
(to the uniform distribution),

2) setting a significance level α = 0.001,
3) applying the chosen test to the sample on each dimen-

sion {x(1)i , . . . , x
(N)
i } for i = 1, 2, . . . , n,

4) correcting the resulting p-values (since this is a mul-
tiple testing procedure) and rejecting the null hypoth-
esis if p < α. Instead of using the standard Bonfer-
roni correction method, we choose the so-called Ben-
jamini–Hochberg (BH) [21] procedure to control the
false discovery rate of the statistical test because the
Bonferroni procedure is considered too stringent and
might yield many false negatives [22].

For choosing the goodness-of-fit procedure, several tests
have been suggested in [23], e.g., Kolmogorov-Smirnov,
Cramér-Von Mises, and Anderson-Darling test. Here, the
Anderson-Darling test has been chosen based on the following
simple power analysis: by simulating the alternative hypoth-
esis using beta distributions with different parameters4, we
simulate the statistical power (a.k.a. true positive rate) as a
function of the sample size. The power curves are plotted in
Fig. 1, from which it is evident that the Anderson-Darling
(AD) test gives rise to a much higher statistical power when
the sample size is larger than 40.

The AD test statistic for the uniform distribution is A2 =
N

∫ 1

0
(F̂N (x) − x)2/(x(1 − x))dx, where F̂N is the em-

pirical cumulative distribution on the sample. A2 quantifies
the distance between the empirical distribution function and
the uniform distribution. However, the test statistic must be
accompanied by the p-value since a large test statistic value

4(α, β) ∈ {(0.5, 0.5), (5, 1), (1, 3), (2, 2), (2, 5)}
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Fig. 1: The estimated statistical power of the Kolmogorov-
Smirnov (KS), Cramér-Von Mises (CVM) and Anderson-
Darling (AD) test against the sample size. The 95% confidence
interval of the estimation is shown as the shade band.

might be caused by random fluctuations, if the sample size is
small.

Moreover, we validate the chosen method on the pseudo-
random (using the same generator used for all methods in
this study) and true uniform data generated from atmospheric
noise5. As those statistical tests are designed for true random
data, it is necessary to check if results on pseudorandom
data are consistent. By using a significance level of 0.05, the
validation procedure is performed by repeatedly executing the
Anderson-Darling test for some preset times (the number of
repetitions in the horizontal axis of Fig. 2) and then calculating
the empirical Type-I error rate6 as the number of rejections
divided by the number of repetitions. In Fig. 2, we plot the
empirical Type-I error rate (with the standard error shown as
the shaded area) against the number of repetitions. The Type-I
error rate obtained on pseudorandom numbers (the red one) is
consistent with the one obtained on true uniform numbers (the
blue one): as the number of repetitions increases, both of them
converge to the predetermined significance level α = 0.05 with
the same convergence rate (as indicated by the rate at which
the standard error decreases).

Result of the procedure for testing the uniformity outlined
above are shown in Sec. IV-B for all experiments performed
in this study.

III. METHODS USED, EXPERIMENTAL SETUP

To cover all aspects of single solution optimisation, 13
diverse methods, amongst metaheuristics and their variants,
are considered in this investigations. Similarly to what has
been done for the population-based methods in [13], [16], [17],
the aforementioned 13 methods are investigated for presence
of SB with the experimental setup outlined in Section III-F
and for each correction strategy amongst those described in
Section III-E.

5https://www.random.org/decimal-fractions/
6The rate at which the null hypothesis is rejected when it is true.
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Fig. 2: Validation of the Anderson-Darling test on pseudoran-
dom data with a significance level 0.05: the empirical type-
I error rate obtained on pseudorandom uniform numbers is
consistent with the one obtained from true uniform numbers.

A brief description of the employed methods is reported
in the reminder of this section. These optimisation methods
are implemented and tested, with the parameter configurations
suggested in their original papers, using the software platform
[11]. Details on their implementations can be obtained from
the source code made available in the online repository [24],
thus facilitating the replicability of the results presented in this
study.

It is worth mentioning that most of the methods described in
this section are designed for global optimisation but currently
find their use as local search routines in various hybrid
algorithmic structures. In particular, the deterministic methods
in Section III-D are particularly suitable to this purpose due
to their fast convergence speed and sensitivity to the quality
of the initial solution.

A. Simulated Annealing methods

1) Standard Simulated Annealing (SA) [25]: is a well-
known probabilistic metaheuristic method for approximating
the global optimum of a function which draws inspiration from
the physical process of annealing – heating and controlled
cooling of a material to increase the size of its crystals and
reduce their defect. At each step, the simulated annealing
method considers some neighbouring state of the current
state and non-deterministically decides whether to move. In
this implementation, the new state is drawn from a uniform
distributions and the cooling mechanisms is linear [26].

2) Non-Uniform Simulated Annealing (nuSA) [26]: is a
variant of general Simulated Annealing algorithm which
makes use of a non-uniform operation for generating new
state (i.e. candidate solution) whose working mechanism is
borrowed from adaptive evolutionary algorithms as this oper-
ator progressively reduces the neighbourhood size to control
the range of search of the algorithm.

B. Evolutionary Computing and Swarm Intelligence methods

1) Intelligent Single Particle Optimizer (ISPO) [27], [28]:
is a ‘degenerative’ variant of the popular Particle Swarm

Optimisaton (PSO) method [29] in which the swarm size is re-
duced to a single particle. In this light, this minimalist version
lacks interaction between global and local bests solutions, but
displays an adaptive heuristic to update an additive ‘velocity’
vector used to perturb the the position of the particle within
the search space.

2) Re-sampled Inheritance Search (RIS) [30]: is a very
simple yet efficient Memetic Computing iterated local search
algorithm based on a modification of the Hooke-Jeeves direct
search method [31], referred to as ‘short distance exploration’
(operator S) to perform the local search. Operator S moves
forward and, if needed, backward along each axis and adjusts
the exploratory step length after a complete round (i.e. all axis
have been perturbed). It works on a greedy logic according to
which at each step the exploration stops if a fitter location is
visited and then perturb the next design variable. Such search
continues until a given precision is met, and never longer
than a prefixed amount of fitness function evaluations (usually
expressed as a percentage of the total budget). When a restart
occurs, a new start point for the next local search is uniformly
sampled within the domain, and subsequently crossed over
with the best ever found solution, by means of the exponential
crossover operator from Differential Evolution [16], [17], to
retain some promising components.

C. Methods based on Evolution Strategies

1) (1+1)–Evolution Strategy with 1/5 Success Rule [32]:
is based on adjusting a single standard deviation σ of a
normal distribution according to the fraction ps of successful
mutations. If ps < 1/5, σ is decreased by multiplying by a
factor 0 < c < 1, otherwise increased by dividing by c. The
theoretical derivation of the optimal standard deviation 1/5 is
given in [7]. The two variants in [32], one accepting the new
solutions only if fitter, while the second one also if it displays
the same fitness value of the previous one, are both tested and
referred to as (1+1)–ESv1 and (1+1)–ESv2 respectively.

2) (1+1)–‘Cholesky’ Covariance Matrix Adaptation ES
((1+1)–CMAES) [33]: introduces a method for adapting the
covariance matrix implicitly, using a so-called Cholesky de-
composition. It is based on a theorem proving that an update of
the Cholesky factor A is possible without explicit knowledge
of the covariance matrix C = AA>.

D. Methods that do not belong to nature-inspired computing

1) Nelder-Mead algorithm (NMA) [4]: is a popular direct
search method which progressively approximates the unknown
optimum solution through a simplex7. The algorithm keeps
a list of vertices sorted according the values of objection
function. Throughout optimisation, the algorithm attempts to
replace the worst vertex with a new solution, which depends
on the worst solution and the centre of the best vertices.

2) Solis-Wets algorithm (SWA) [5]: is another direct search
method that generates a randomised perturbation vector from
the Gaussian distribution centred on the only candidate solu-
tion with an adaptive standard deviation which decreases when

7Generalisation of a triangle to an arbitrary dimensionality



the search is no longer prolific. This vector is then added to
the candidate solution to move it within the problem’s domain
and, if a fitter position is not found, it is also subtracted to
explore in the opposite direction.

3) Powell method (PM) [34]: is a method designed to
build a set of ‘non-interfering’ directions to be optimised
with a line-minimisation approach as e.g. the suggested Brent
method [35]. Initially, these are a set of conjugated directions
which are then updated so that the rank of the corresponding
matrix is always full (i.e. the directions are linear independent
vectors). In the most recent variant of this algorithm [35],
this is done via a heuristic logic replacing the direction which
contributed most to the new direction (i.e. the one along which
the fitness function showed the largest decrease). This means
that the procedure is not mathematically accurate and the risk
of having linearly dependent directions is present.

4) Rosenbrock method (RM) [36], [37]: is a classical deter-
ministic metaheuristic for real-valued optimisation. Initially, it
probes each axis with an exploratory step which is increased
in case of success and decreased otherwise. Similarly to SWA
and RIS, if a step along an axis is not successful, a second step
is taken in the opposite direction. When a new successfully
position is found, the described process is repeated but only
after using Gram–Schmidt ortho-normalisation to rotate the
coordinate system towards the newly generate fitter solution.
As a result, the new perturbation round does not longer move
along the axis of the original search space but diagonally
across it.

5) Simultaneous Perturbation Stochastic Approximation
(SPSA) [38], [39]: is an attempt to replace classic finite-
difference gradient approximation with a stochastic equivalent
to reduce the computational cost. Unlike finite-difference
based methods, which perturb one design variable at a time,
SPSA acts on all the dimensions simultaneously by means
of a perturbation vector whose components must be drawn
from a zero mean distribution as e.g. Bernoulli ±1 with
probability 0.5 (as suggested in [39]). Before applying the
perturbation vector, two candidate solutions must be generated
to evaluate an incremental ratio and move toward the most
promising direction accordingly. In the original method, if
ten consecutive iterations are not capable of guaranteeing
significant improvements in terms of fitness value, the search
is stopped.

To perform a fair analysis, a version deprived of the stop
mechanism, referred to as SPSAv2, is also tested in this study
to make sure that SPSA results are not affected by a premature
arrest due to the random fitness value assigned by f0.

E. Strategies of dealing with solutions generated outside the
domain

12 out 13 methods discussed in the previous section can be
combined with 5 popular strategies (1 to 5 in the list below).
The remaining method, SA, makes sense only with inherent
strategy (number 6 in the list below). Thus, 61 combinations
of methods and strategies are considered in this study.

1) Dismiss strategy [16], [17]: if a newly generated solu-
tion is outside the domain, it is dismissed and replaced by one
of the parent/generating solutions.8

2) Saturation correction strategy [16], [17]: if newly gen-
erated solution is outside the domain, move only those values
of coordinates that are outside the domain to the domain
boundary; keep unchanged the original fitness value. This is a
superficial correction/repair strategy.

3) Toroidal correction strategy [16], [17]: if newly gener-
ated solution is outside the domain, reflect only those values
of coordinates that are outside the domain off the opposite
domain boundary inwards; keep unchanged the original fitness
value9. This is a superficial correction/repair strategy.

4) Mirror correction strategy [17]: if newly generated
solution is outside the domain, move only those values of
coordinates that are outside the domain by reflecting the value
outside off the boundary inwards the domain; keep unchanged
the original fitness value. This is a superficial correction/repair
strategy.

5) Complete One-tailed normal correction strategy (COTN)
[17]: if newly generated solution is outside the domain, for all
the dimensions with coordinates outside the domain, resamples
(iteratively, until the point is inside the domain) coordinates
from |N (0, 13 )| for dimensions where coordinate is smaller
than the lower bound of the domain or from 1−|N (0, 13 )| if the
coordinate is greater than the upper bound of the domain. In
other words, this strategy nondeterministically maps solutions
outside the domain to the area close to the boundary. This is
a probabilistic complete correction strategy.

6) Inherent correction strategy: Generating operators of
some optimisation methods explicitly prohibit generating so-
lutions outside the domain – e.g. SA where positions of the
newly sampled points are explicitly truncating to be inside
the search domain. This superficial correction/repair strategy
is inherent to the method and rarely encountered in the field.

F. Experimental setup

For each of the possible combinations between methods and
strategies, 50 runs of minimisation of f0 : [0, 1]n → [0, 1],
where ∀x f(x) ∼ U [0, 1] and n = 30 have been carried
out. Each run had a budget of 10000× n fitness evaluations.
All simulations are carried out in the SOS platform [11]. The
source of all algorithms and the necessary experimental setup
for reproducing the presented results are available in [24]. For
all methods, default parameters are used as recommended in
the original publications.

IV. RESULTS

A. Traditional testing for structural bias

All methods and strategies for dealing with solutions gen-
erated outside discussed in Section III have been tested for

8In elitist single solution methods this correction strategies has the same
effect of a penalty function and could be problematic if the algorithm is
based on deterministic perturbation logic as it will keep re-assigning the same
previous feasible solution leading to an infeasible one.

9As if the boundaries are connected and the domain forms a ring.
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Fig. 3: Distribution of locations of final best solutions for methods found to be structurally biased shown in parallel coordinates
where horizontal axis shows ordinal number of the dimension and vertical axis shows the range of this dimension; fitness value
attained by the final solution is shown in colour. These distributions deviate significantly from uniform.

presence of SB as described in Section II-A and results for
structurally biased methods only are shown in Fig. 3 and
summarised in Table I. All results can be found in [40].

1) Results per strategy: COTN strategy appears to be the
second worst in terms of SB – only 5 out of 13 are clearly un-
biased. Dismiss strategy shows a slight improvement with 7
out of 13 clearly unbiased methos. Mirror strategy is second
best. Saturation strategy seems to be the least successful
one on the whole in terms of SB in single-solution meth-

ods – the majority of methods considered here are strongly
structurally biased when equipped with saturation strategy.
Distribution of locations of final best solutions from a series
of independent runs for methods with saturation strategy
varies from avoiding domain corners (NMA) to preferring
some corners (RIS) or preferring all domain corners ((1+1)–
CMAES, (1+1)–ESv1, (1+1)–ESv2). Toroidal strategy ap-
pear to be the best strategy for mitigating SB in single solution
methods – only NMA is strongly structurally biased when



TABLE I: Results of traditional test for SB: ‘++’ stands for
presence of strong SB (see the configurations in Fig. 3), ‘+’
for minor SB and ‘-’ for no SB; absence of any sign means
this combination of method and strategy is not possible. The
cell in grey shades indicates the cases where the statistical
decision in Fig. 4 agrees with this table.
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ISPO - - - + +

RIS ++ + ++ ++ -
(1+1)–CMAES - - - ++ -

(1+1)–ESv1 - - - ++ -
(1+1)–ESv2 - - - ++ -

NMA ++ - ++ ++ ++
SWA + - - - +

PM ++ ++ - ++ -
RM + - + + -

SPSA ++ ++ ++ ++ -
SPSAv2 ++ ++ - + -

equipped with such strategy. Regarding inherent strategy,
little conclusions can be made due to the lack of data.

2) Results per method: nuSA which exhibits SB only with
dismiss strategy and three ES-based methods for which only
saturation strategy appears to be unsuitable, are the most-free-
of-SB ‘winners’ of this study. ISPO and SWA possess minor
SB only for two strategies each – saturation and toroidal
and COTN and toroidal, respectively. Final solutions from
RIS tend to strongly ‘prefer’ one or another side of each
dimension. RM possesses minor SB for COTN, mirror and
saturation strategies – distribution of position of final solutions
for all of these corrections spans the whole domain but ‘leaves
more gaps’ than should be expected. PM exhibits SB for three
strategies – COTN, dismiss and saturation – and always shows
a strong preference to the corners of the domain including the
exact zero solution in multiple independent runs. Meanwhile,
NMA is unbiased only for dismiss strategy and strongly biased
for the other four. The nature of SB in NMA is the same regard-
less of the chosen strategy – solutions tend towards the centre
of the domain, avoiding all the corners. SPSA is unbiased only
for toroidal strategy; meanwhile remaining strategies lead to
the previously unobserved kind of SB – the method generates
identical solutions in a series of independent runs. For SPSA
COTN and mirror, multiple groups of identical solutions are
generated in a series of independent runs; meanwhile dismiss
and saturation result in strong ‘preferences’ of the region
around zero or corners, respectively. Out of two structurally
biased versions of SPSAv2, COTN is strongly biased towards
the centre of domain and dismiss generates zero solution in 49
out of 50 runs, also exhibiting previously unseen behaviour.

B. Statistical testing for structural bias

In this section, result of the statistical procedure described
in Section II-C are presented. Firstly, the Anderson-Darling
is applied to the sample for each pair of dimension and

method configuration. Note that for the most of methods, 50
independent runs are conducted (hence the sample size is 50
here), while 100 runs are performed to achieve a good level of
statistical power for the following methods: RIS-dismiss,
RM-toroidal, RIS-mirror, and ISPO-mirror.

Values of test statistic A2 are shown in Fig. 14 of the
extended results document [40] where a higher value indicates
a larger effect of SB. Note that in some cases the test statistic
takes an infinite value. When the test statistic is relatively
small, the resulting value of A2 might be caused by random
fluctuations, instead of the SB. Thus, it is necessary to use
the calculated p-values to decide on which pair of dimension
and method configuration a significant SB is observed. Such
statistical decision is shown in Fig. 4, where only methods
with at least one rejection of the null hypothesis ‘the sample
points follow a uniform distribution” are included.

From this figure, some methods show significant SB
in all dimensions, e.g., (1+1)-CMAES saturation,
RIS-dimiss and PM-saturation. On some other meth-
ods, for instance SPSA-COTN the null hypothesis is only
rejected on a few dimensions. This potentially connotes that
such a method works differently in each dimension, or the
sample size is not big enough and therefore false negatives
(where the null hypothesis fails to be rejected) are made here.
This point is subject to further investigation.

Comparing the statistical decisions in Fig. 4 with the results
of traditional test for SB discussed in Section IV-A leads to
some disagreements. This comparison is illustrated in Table I,
in which the cells in the grey shade indicate there is an
agreement between those two methods. For the cases where
disagreements arise, the authors argue that this could be
affected by the insufficiency of the sample size, which should
be studied in the future work.

C. Further observations

Our main observation is that despite considering a wide
range of single-solution optimisation methods in this study,
none of those is found to be free of SB.

It is remarkable to see that a number of methods considered
in this study are indeed highly structurally biased towards the
zero region. It is even more remarkable in the light that initial
solutions of these methods are forcefully not seeded in the
zero point but sampled uniformly across the domain. Thus, it
is SB that is responsible for the solutions aggregating around
zero, and not the inability of these methods to leave the region
on the initial sampling.

Majority of methods considered in this study generate
remarkably little solutions in experiments carried out for this
study. The authors attribute this to the inability of generating
operators to produce promising solutions from the current
solution due to limited exploration of the domain within a
single run. Lack of hedging the search through the use of a
population mentioned in Section I is another reason.

Some methods considered in this study have been observed
to generate identical solutions (or even sequences of identical
solutions) in a series of independent runs. Dimensionality of
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Fig. 4: The statistical decisions made in the Anderson-Darling
test with a significance level α = 0.001. The p-values
used here are corrected by the Benjamini–Hochberg (BH)
procedure. Only methods with SB in at least one dimension
are shown (i.e. with at least one rejection of the null hypothesis
overall dimensions).

the problem and frequency of such observations excludes the
possibility of a random occurrence. This phenomena has not
been observed previously in any of the studies mentioned in
Section II-B. Due to the unexpected nature of such observa-
tions in multidimensional real-valued optimisation, the authors
have paid particular attention to the correctness of the setup,
generating code and analysis10. These results are consistently
repeated for a significantly larger number of independent runs.

One method (SPSA) where this happens in particular uses a
stochastic gradient estimates for guiding the search. Similarly,
PM has been originally designed to mimic the hessian matrix
behaviour and specifically address quadratic forms. In later
years, what used to be a good estimate for a gradient, started
being used as a heuristic for any function. As a result, the
quality of the estimate is no longer guaranteed and the method
is no longer guided as originally intended. At the same time,
undoubtedly, trying to optimise f0 using gradient information
is hopeless. It must be pointed out that the lack of population
can also be responsible for triggering this mechanism, in
particular when the dismiss strategy is used with deterministic
metaheuristic such as PM, RM and the S operator of RIS.
Indeed, once the a solution is dismissed, the previous one is
fed again to the method which will end up generating the
same sequence of steps. This drawback does not occur in

10including testing the random generator’s properties and seeding it gener-
ator correctly

randomised methods such as those based on the ES.
Several methods, such as Rosenbrock, Powell, Solis-Wets

and SPSA, are designed to be global optimisers but are
currently mainly used for local search [41]–[43]. Also meta-
heuristics such as (1+1)–CMAES have been proven to show
better results when equipped with a re-start mechanism, to
move upon exploration, and run multiple times with a short
budget to refine promising candidate solutions [44].

Finally, it has bee reported previously that NMA and RM
are free of SB [15]. However, this does not agree with results
presented in this study. Unfortunately, the authors of [15] do
not indicate what happens with solutions generated outside
the domain – the authors expect correction strategy to be the
culprit of different results here and in [15].

V. CONCLUSION AND FUTURE DIRECTIONS

Results presented in this paper allow a number of clear
conclusions, summarised as follows:
• Despite considering a wide range of single-solution op-

timisation methods in this study, none of those is found
to be free of SB.

• The choice of the strategy for dealing with solutions
generated outside the domain (i.e., the boundary handling
strategy, BHS) controls the emergence of SB in single-
solution methods.

• No dominant choice of a BHS exists for the 13 methods
considered.

• The choice of a BHS is not always considered in the orig-
inal implementations of the methods. However, behaviour
of these methods strongly depends on the chosen BHS.

• Presence or absence of SB in a method is still difficult to
predict without running a thorough analysis as described
in Section II-A.

• The majority of these methods generate a remarkably
small number of solutions in experiments carried out for
this study.

• A number of methods is highly structurally biased to-
wards the zero region despite initial sampling being uni-
form in the whole domain across the series of independent
runs.

• Some methods generate identical solutions in a series
of independent runs. This phenomenon has not been
observed previously in the SB analysis.

• Some single solution optimisation methods are too spe-
cialised by design which does not justify their wide use
as non-local optimisers.

• Some widely cited and used methods do not behave as
expected.

• Classifying the distribution of locations of final best solu-
tions solely based on the visual inspection is difficult and
highly subjective without a proper quantitative measure.

• Finding a suitable sensitive statistical test to classify
methods in terms of SB is not straightforward.

• It is difficult to find one quantitative measure able to
capture all patterns assumed by the distribution of final
best solutions in a general case.



• Some methods exhibit SB of different strength per di-
mension. This requires further study.

• Despite previous speculations in [13], populations are not
among the drivers of SB in optimisation methods since
single solution methods are subject to SB as well.

• Overall, single-solution optimisation methods seem to be
more structurally biased than popular population-based
algorithms.

• Yet again [17], it matters what happens on the boundaries
of the problem or, in other words, the choice of BHS
used by the method truly matters in algorithmic design
– neither researchers nor practitioners should neglect this
aspect.
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