MOEA/D-S’: MOEA/D using SVM-based
Surrogates adjusted to Subproblems for Many
objective optimization

Takumi Sonoda
Collage of Engineering Science
Yokohama National University
Yokohama, Japan
sonoda-takumi-gp @ynu.jp

Abstract—This paper proposes a surrogate-assisted MOEA/D
using SVM-based surrogates adjusted to subproblems (MOEA/D-
S3), which intends to achieve the following technical advantages.
Firstly, in order to construct a proper surrogate while reducing
learning cost to construct surrogates, a surrogate is an SVM-
classifier that identifies a specific region of good solutions and
thus its learning cost should be lower than a popular alternative
approach, i.e., fitness approximation. Secondly, relying on the
first advantage, multiple surrogates are constructed and each
surrogate, like an expert, is adjusted to each subproblem defined
in the MOEA/D framework in order to improve diversity and
convergence of the Pareto set. Experimental results show that
MOEA/D-S® outperforms MOEA/D on a number of many-
objective benchmark problems.

Index Terms—surrogate-assisted
many-objective optimization

evolutionary algorithm,

I. INTRODUCTION

Real-world multi-objective optimization problems often be-
long to a computationally expensive problem in evaluating
the fitness of solutions. For those problems, surrogate-assisted
evolutionary algorithms (SAEAs) [1] can be a promised
approach and many versions have been introduced in the
literature. As pointed out in [2], while some fundamental
challenges on SAEAs need to be further explored, e.g. model
selection and model-update frequency, a recent challenge is
to develop effective SAEAs for many-objective optimization
problems having more than three objective functions.

A basic idea of SAEAs is to estimate good solutions by
utilizing a surrogate in order to reduce expensive fitness
evaluations. While various functionalities of surrogate have
been proposed, e.g. fitness approximation [3] and constraint
estimation [4], we are interested in the fitness replacement
approach [5], i.e., estimation of good solutions. Since machine
learning techniques are often employed to construct those
surrogate models, SAEAs are required to efficiently solve a
machine learning task in order to construct a proper surro-
gate model. In fact, in terms of machine learning’s insight,
the following two difficulties involved in SAEAs should be
considered. Firstly, the observation of the objective space is
extremely restricted, i.e., a limited number of data samples,

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Masaya Nakata
Collage of Engineering Science
Yokohama National University
Yokohama, Japan
nakata-masaya-tb@ynu.ac.jp

to refine the surrogate model. Thus, SAEAs may suffer to
construct a proper surrogate model that provides a reliable
output to estimate a worth of unevaluated solutions, resulting
in a slow convergence towards the true Pareto set. Secondly,
the samples, i.e., evaluated solutions, tend to be sparse but also
be strongly biased in specific regions of the solution space.
Thus, the surrogate model may be undesirably adjusted to the
specific regions (i.e., overfitting) dependent on a distribution
of the samples, which degrades a diversity of the Pareto set.

Those two difficulties are even more emphasized with
the increase of the number of objective functions. This is
because that in terms of machine learning’s insight, a problem
complexity of machine learning problems defined in the SAEA
frameworks (e.g, regression), clearly increases dependent on
the number of objective functions. In 2018, Pan introduced
CSEA as a version of classification-based SAEA [6] han-
dling a lower problem difficulty than fitness approximation;
and CSEA successfully outperformed the state-of-the-art of
SAEAs e.g. MOEA/D-EGO [7] and K-RVEA [2] on most of
many-objective benchmark problems. Interestingly, MOEA/D-
EGO, which constructs multiple Kriging models, still outper-
forms CSEA on few benchmark problems [6]. This paper
is inspired by those recent results. Note that the detailed
summary of related works is described in Section II.

Consequently, we can suppose the following possible strate-
gies to relax those two difficulties on computationally expen-
sive many-objective optimization problems. For the first diffi-
culty, i.e., the limited number of samples, a low functionality
of the surrogate, e.g. classifier like CSEA, can be suitable
rather than a rich functionality such as fitness approximation.
This intends to reduce a learning cost in order to construct
as proper surrogate as possible under the limited samples. For
the second difficulty, i.e., the samples biased in the specific
regions, multiple surrogate models, like MOEA/D-EGO, may
be suitable to improve a diversity of the Pareto set. This intends
to improve a diversity of the Pareto set by exploring various
specific regions with multiple surrogates.

Accordingly, in this paper, we introduce a version of
classification-based SAEA. Our proposed method integrates



multiple SVM-based classifiers into MOEA/D [8] and each
surrogate is adjusted to each subproblem (i.e., a scalarization
function) defined in the MOEA/D framework; and so we
call it as MOEA/D using SVM-based surrogates adjusted
to subproblems (MOEA/D-S3). In detail, each SVM-based
classifier learns a specific region of good solutions to solve a
corresponding subproblem and predicts whether unevaluated
solutions exist in its region in order to identify candidates of
solutions to be evaluated with actual objective functions.

This paper is organized as follows. Section II describes
related works of the SAEAs; and we briefly introduce the
mechanisms of MOEA/D and SVM in Section III. In Section
IV, we explain the detailed mechanism of MOEA/D-S3. In
Sections V and VI, we show experimental results on many-
objective benchmark problems and an additional result as an
analysis of hyper-parameters used in MOEA/D-S3, respec-
tively. Finally, we summarize the contributions of this paper
in Section VII. All figures shown in this paper are best viewed
in color.

II. RELATED WORK

A basic approach of SAEAs is to construct a surrogate
model that approximates objective functions from evaluated
solutions. Then, an optimizer minimizes approximated objec-
tive functions in order to identify candidates of solutions to be
evaluated by actual objective functions. In [5], this approach,
e.g. GA-ANN [9], MOEA/D-RBF [10], SAMOEA/SVM [11],
is referred as Direct Fitness Replacement (DFR). While this
approach can be suitable if the systems can have a large
number of samples, it is typically hard to construct a reli-
able surrogate model with low approximation errors on the
computationally-expensive many-objective optimization prob-
lems. Very few works belonging to the DFR approach, e.g. K-
RVEA [2] and HSMEA [4], have been proposed for the many-
objective optimization problems.

In recent years, many works proposed different functionali-
ties of surrogate model as an alternative of the approximation
model, which is classified to the Indirect Fitness Replacement
approach (IFR) [5]. For instance, ParEGO [12] converts a
multi-objective optimization problem into a single-objective
function using a scalarization function; and it constructs a
response surface of the scalarization function by the Kriging
model [13]. As an extension of ParEGO, MOEA/D-EGO [7]
solves multiple subproblems with scalarization functions de-
fined in the MOEA/D framework; MOEA/D-EGO constructs
multiple surrogates for the subproblems. Hence, MOEA/D-
EGO may be suitable to improve a diversity of solutions since
the multiple surrogates are adjusted to the subproblems, i.e., to
search various specific regions. As a different approach of IFR,
PARETO-SVM [14] and CSEA [6], which are dominance-
based approach like NSGA-II [15], are designed to construct
a single classifier that identifies good solutions belonging to
the Pareto set. A classification task can be defined as having a
lower learning cost and thus be more scalable for the increase
of the number of objective functions than approximation and
regression tasks.

As mentioned in Section I, MOEA/D-S? is designed to im-
prove a diversity of solutions by adjusting multiple surrogates
to the subproblems, like MOEA/D-EGO; and to reduce the
learning cost by constructing a classifier-based surrogate, like
PARETO-SVM and CSEA.

III. BRIEF DESCRIPTIONS OF MOEA/D AND SVM
A. MOEA/D

MOEA/D is a decomposition-based evolutionary multi-
objective algorithm, and a multi-objective optimization prob-
lem is divided into /N subproblems by a scalarization function.
For instance, the Tchebycheff function as a scalarization
function, which is employed in this paper, is given by;

g(@lA,2") = max {Nilfi(x) — 21}, (1)

where A is the weight vector assigned to each subproblem,
and \; > 0,(4 = 1,---,m) such that > ;" A\, = 1; 2*
is a set of reference points used for determining the search
direction; in a minimization problem, z; is set to the minimum
value of each objective function as z; = min { fi(z)|xz € S}
(i = 1,---,m). In fact, this minimum value is not given
in advance and so the provisional minimum value z; =
min { f;(x)|z € Q} is set to the reference point, where
is a set of individuals explored so far. Then, each subproblem
has the neighborhood, which are subproblems determined by
T closest weight vectors. To generate a solution for the i-th
subproblem, a crossover is performed to individuals of the
i-th subproblem’s neighborhood, under an assumption that
the subproblems with similar weight vectors have similar
regions of optimal solutions. Those processes are summarized
in Algorithm 1. Note that Algorithm 1 describes the framework
of MOEA/D-DE [16], which will be used in this paper.
MOEA/D-DE employs the differential evolution algorithm as
a crossover operator. In detail, each element y; of offspring
y for the i-th subproblem is generated by the DE’s operator
and polynomial mutation;
[ 2l + Fx (22 —}?)  with probability CR,
Yk = { i otherwise,

@

where i is the k-th element of @’ for the i-th subproblem;
ro and r3 are randomly selected from P [16]; F' and C'R are
a scaling factor and a crossover rate, respectively. Then, based
on ¥, yi is decided by polynomial mutation;

with probability p,,,
otherwise,

Ui + or X (b — a
= { Yk k% (bk k) 3)
Yk
where aj and by, are the lower and upper bounds of the k-th
decision variable, respectively; p,, is a mutation probability.

Here, oy, is further given by;

{ (2 x rand)"/+H) — 1
O =

1—(2—2x rand)"/0+1)
where 7 is a distribution index of polynomial mutation. After
those operations are conducted, a new offspring y is evaluated
and then, used to update the population. Then, the number of

if rand < 0.5,
otherwise,

“4)
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Fig. 1. Surrogate construction and its utilization in MOEA/D-S3

Algorithm 1 MOEA/D-DE
1:

B( ) < Set indexes of i-th subproblem’s neighborhood for each
t=1,---,N

2: Generate a population P = {x1, -+ ,&n}

3: Initialize 2; = min {f] )|z € P} for each i=1,-
4: while terminate criterion is not satisfied do

5: fort=1to N do

6: if rand < § then

7: P = B(i)

8: else

9: P={1,---,N}

10: end if

11: y < Generate offspring with parent set P
12: Evaluate y

13: Update z; = min { f;(x)|@ € P} for each j =1,--- ,m
14: c=0

15: while ¢ < n, or |[P|#0 do

16: Pick an index j from P

17: if g(y | A", 2) < g(x? | A", 2) then

18: :cjeyandcec+1

19: end if
20: Remove an index j from P

21: end while
22:  end for

23: end while
24: Output P

solutions updated by y is restricted by n,, in MOEA/D-DE. In
addition, in Algorithm 1, P is the population and B(%) is a set
of indexes to refer the neighborhood of the i-th subproblem;
the neighborhood is selected as P with a probability 4.

B. SVM

The support vector machine SVM [17] is a pattern recog-
nition technique of the supervised learning scheme and is
frequently used as a classifier for binary-class classification
tasks. In SVM, a decision boundary of classes is trained so
as to maximize the summation of the distances between the
decision boundary and given training data of each class. In this
paper, we use a nonlinear SVM with the RBF kernel given by
the following equation;

K (x;, @) = exp (= [|z; — x;]|) 5)

where v > 0 controls a complexity of the decision boundary;
the boundary tends to be a complex shape with the increase of
~. In addition, SVM involves a regularization coefficient C,
which controls a tolerance of mis-classification.

IV. MOEA/D-S3

This section describes the detailed motivation of MOEA/D-
S3 and then its mechanism. As noted in Section III, we use
MOEA/D-DE in order to boost the potential performance
of MOEA/D-S3, but our extensions are related only to the
MOEA/D framework and so we simply name MOEA/D-S3.

A. Motivation

MOEA/D-S? is inspired by the recent success of CSEA and
MOEA/D-EGO. In detail, like CSEA, MOEA/D-S3 employs
a classifier-based surrogate, which is constructed by SVM, in
order to identify candidates of solutions worth to be evaluated
with the actual objective functions. Like MOEA/D-EGO, it
constructs multiple surrogates adjusted to the subproblems
defined in the MOEA/D framework.

In addition, each surrogate, like an expert, can be adjusted to
each subproblem; suppose objective functions include hetero-
geneous dependencies between variables, we can expect that
like a divide-and-conquer strategy, each surrogate captures an
important dependency existed in its subproblem. Besides, with
the multiple surrogate scheme on MOEA/D, we can prepare
various training samples by converting the evaluated solutions
with the different scalarization functions. Consequently, we
can improve the diversity of surrogate models to explore
multiple specific regions. This can be one of main advantages
of MOEA/D-S3; CSEA constructs one surrogate model that
classifiers solutions likely to be in the Pareto set.

B. Mechanism

Fig. 1 shows the main mechanisms of MOEA/D-S3. As
shown in this figure, MOEA/D-S? consists of the following
two main mechanisms; surrogate construction, which con-
structs the SVM-based classifiers for corresponding subprob-
lems, and surrogate utilization, which generates solutions



Algorithm 2 SVM-Construction(P)

Algorithm 3 Offspring Generation(i, P)

1: for i =1to N do

2 G ={gle|N.) |z P}

3: 0* < Calculate median value of G*

4:  L'={L(x,0') |z P} _
5:  SVM' < Fit SVM model using inputs & € P and labels L*
6: end for

1:r=0

2: y < Generate offspring with parent set P

3: while Predict(y, SVM*) # 1 or r < Rpas do
4:  y < Re-generate offspring with parent set P
5 r<r+1

6: end while

suggested by the surrogates. Then, those two mechanism are
added to the MOEA/D-DE framework.

1) Surrogate construction: MOEA/D-S? constructs N
SVM-based surrogates corresponding to N subproblems de-
fined in MOEA/D. Here, i-th surrogate, denoted by SVM?,
is adjusted to the i-th subproblem with the scalarization
function g(x | A%, z). In MOEA/D-S?, we formalize a binary-
class classification task, which aims to classify unevaluated
solutions to either having a higher value of g(z | A z2)
or having a lower value than a defined threshold. In other
words, the surrogate learns a specific region of good solutions
defined by its threshold. The detailed algorithm to construct
the surrogate for each subproblem is described in Algorithm 2.

After the initial process of MOEA/D (or MOEA/D-DE) is
conducted, for each subproblem, MOEA/D-S? produces the
training dataset to construct S VM?. Here, in order to deal with
the classification task, we define and calculate labels of eval-
uated solutions. The training dataset for the ¢-th subproblem
consists of the population i.e., the set of decision variables
x; and a sef of labels corresponding to , denoted by £°. In
detail, £¢ is determined with the following procedures. Firstly,
to convert the evaluated solutions to the dataset specified for
the i-th subproblem, we calculate a value of g(x | A%, z) for
each ¢ € P, forming a set of g(x | A%, 2) denoted by G,
given by;

G'={g(x|N.z) |z e P} (6)

Next, we calculate the labels based on G*. In this paper, we
simply define good solutions « for the i-th subproblem as
having a higher value of g(x | A%, z) than a threshold; and we
here set a threshold #° for the i-th subproblem to the median
value of G¢. Hence, this threshold can be dynamically tuned
dependent on G'. Note that, while a determination of #* should
be further explored, we have the following reasons to employ
the median value. Firstly, we can avoid a problematic class-
imbalanced issue since the number of each class (i.e., label)
can be evenly defined. Secondly, we can expect that the local
search and the global search in the solution space can be
balanced; otherwise SVM would learn a very specific region
of good solutions. Then, we calculate Lt as;

L= {L(x,0") | x € P}, (7
where L(x,6") returns a binary label of x as;

i1 ifg(z | A 2) <6
L(=,0") = { 0 otherwise.

Finally, MOEA/D-S3 fits the SVM classifier so that SVM®
can classify the inputs & € P to its correct label L(x, 6%) € L.

®)

Note that in MOEA/D-S?, the SVM hyper-parameter ~ (see
Equation (5)) controls the complexity of the shape of the
decision boundary. However, it is unclear how this complexity
affects the performance of MOEA/D-S3; and so we will
investigate the impact of  in Section VI

2) Surrogate utilization: MOEA/D-S? utilizes the surrogate
to identify candidates of offspring worth to be evaluated with
the actual objective functions. Specifically, we defined that the
candidate solutions must exist in the specific region learned by
the surrogate. Accordingly, for the ¢-th subproblem, MOEA/D-
S3 repeats the offspring-generation process until it generates
the offspring identified as existing in the specific region, i.e., as
having the label “1” (see Equation (8)). To avoid an infinite
loop in our implementation, we employ the termination to
finalize the offspring-generation process; when the number of
regenerations is larger than R, .., we accept the latest to be
evaluated (even when its offspring does not have the label “17).
However, this is an exceptional case, as MOEA/D-S? does not
meet this termination in the experimental results reported in
Section V. This algorithm is described in Algorithm 3. For
the i-th subproblem, the offspring y is generated based on
the parent’s index set P by the same offspring-generation
process as in MOEA/D-DE. Then, SVM' predicts the class of
y, represented by Predict(y, SVM*); and MOEA/D-S? repeats
to generate y until the termination is met.

In addition, we here introduce an optional modification
of the parent-selection process to build the parent’s indexes
P = {P,P,,---,Pp}, which intends to enhance the local
search applied to the specific regions learned by SVM, i.e,
an evolutionary propagation of good solutions having the
label “1”. In detail, as described in Algorithm 4, for the ¢-th
subproblem, SVM® predicts a label of the P;-th parent solution
xFi. Then, we further add P; to a modified index set P’ if
x5 is predicted as having the label “1”. Note that, to apply
the offspring-generation process of MOEA/D-DE, |P’| must
be at least two; and so we randomly select and add unselected
indexes to P’ if |P’| < 2. Then, the offspring-generation
process described in Algorithm 3 is performed with P’ instead
of P; and thus Algorithm 4 can be inserted next to the first
line (i.e.,, before calculating y) of Algorithm 2.

As the overall procedure, MOEA/D-S? can be implemented
by adding Algorithm 2 next to 3th and 22th lines in Algorithm
1, respectively; and replacing the line 11 with Algorithm 3.

V. EXPERIMENT

In this section, we test MOEA/D-S? on many-objective
optimization problems, i.e., the WFG test suite [18]. In the
WEFG problems including k position variables and [ distance



Algorithm 4 Parent selection(i, P)
1. PP ={}

2: for j=1to |[Pldo

3. if Predict(x™i, SYM") = 1 then
4 Add P; to P’

5 end if

6: end for
7
8
9

10

: while |P’| < 2 do

: P, < Select unselected P, € P randomly
Add P, to P’

: end while

variables, the previous work recommends that the problem
dimension n can be tuned dependent on the number of
objective functions m; k = m—1,1 =10, and n = k+1 [18].
Here, we set m = 4, 6,8 as the many-objective problems and
so we can get n = 13,15, 17.

A. Experimental setting

We compare MOEA/D-S3 with MOEA/D-DE. While the
state-of-the-art of SAEAs, e.g. CSEA, MOEA/D-EGO have
been compared [6], this paper aims to understand the pure
effect of our modifications and focuses on its analysis as
conducted in the next section. So, we leave an intensive
comparison with the alternative SAEAs as future works. We
use Hypervolume (HV) [19] as an evaluation criterion to verify
the performance of the optimizer; we use the DEAP [20]
package to calculate the HV score. For each problem, we
repeat 30 trials with different random seeds and then we report
median values of 30 trials. We also apply the Wilcoxon signed
rank sum test to find the significant difference. The reference
point of HV is set to {ry,- - ,r,}t = {11}

We use the following parameter settings; for MOEA/D-DE,
N =100, T =20,0 =09, p,, =1/n,n =20, CR=1.0
and F = 0.5; for MOEA/D-S3, Ry = 10000, v = 1.0,
C = 100000 and other parameter settings are the same as
in MOEA/D-DE. Note that we set C' = 100000 in order to
reduce the mis-classification rate, i.e., to construct an accurate
surrogate model; and we use v = 1.0 as a default value but we
will investigate a dependency of the performance of MOEA/D-
S3 to ~ in the next section. In addition, we use our modified
parent selection mechanism introduced in Algorithm 4. The
maximum number of generations is set to 300 and thus the
total fitness evaluations can be 30000. However, as SAEASs aim
to reduce fitness evaluations, we also compare the HV scores
at 5th and 10th generation, corresponding to 500 and 1000
fitness evaluations, respectively. In addition, we also report
the HV scores at 50th and 100th as well as 300th generation
to investigate the performance at later generations.

B. Results

Table I reports the median values of the HV scores. We ap-
plied the Wilcoxon signed rank sum test to a pair of MOEA/D-
S3 and MOEA/D-DE for each generation and we confirmed
that MOEA/D-S? significantly outperforms MOEA/D-DE on
the WFG1-9 problems for all the generations, i.e., Sth, 10th,

50th, 150th, 300th (p < 0.001). Note that MOEA/D-S? always
generated all offspring having the label “1”.

As shown in this table, MOEA/D-S? outperforms MOEA/D-
DE on most of the employed problems. Importantly,
MOEA/D-S? improves the HV scores of MOEA/D-DE at 5th
and 10th generations i.e., 500 and 1000 fitness evaluations.
Hence, MOEA/D-S? successfully boosts the performance at
early generations; this improvement can be observed when
the number of objective functions are increasing to 8. This
is an important advantage on the computationally-expensive
many-objective optimization problems. In addition, when the
generation is further increasing, MOEA/D-S? also stably out-
performs MOEA/D-DE. For instance, for WFG1 and WFG2
(m = 8), the HV scores of MOEA/D-DE at the end of genera-
tions, i.e., 300th, are 1.00E+8 and 2.07E+S8, respectively; and
MOEA/D-S? derived the same scores with a half of fitness
evaluations required in MOEA/D-DE, i.e., 150th generation.

VI. ANALYSIS

We further provide analytical insights of MOEA/D-S3. The
first analysis is to investigate how a complexity of the shape
of decision boundary learned by SVM affects the performance
of MOEA/D-S3. The second analysis is to validate an effect
of our modified parent-selection mechanism.

A. Complexity of decision boundary

As explained in Section IV, the hyper-parameter - controls
the complexity of the shape of the decision boundary learned
by SVM. As shown in Figure 2-bottom, with a high value
of ~, the decision boundary tends to divide the region of
the class into multiple specific regions, like small clusters.
In contrast, with a low value of +, the shape of the boundary
can be smooth and tends to hold large regions compared with
the high value of v (see Figure 2-top). Hence, to investigate
the impact of the complexity of the decision boundary to
the performance of MOEA/D-S2, we here compare the three
versions of MOEA/D-S? with v = {107, 1.0, 10°} on WFG1
(m = 8) with the same experimental setting as in Section V.

Fig. 3 reports the median value of the HV scores of the three
versions (and MOEA/D-DE as a baseline) over generations.
As shown in this figure, MOEA/D-S? with v = 10° derives
the best performance compared with the other two versions.
While the performance of MOEA/D-S? with v = 1075 is
better than the case of v = 1.0 at the end of generations,
we can expect that a complex decision boundary with a high
value of v may promote the local search while improving
a diversity. This is because that a high value of ~ tends to
divide the region of class into multiple specific regions; and
then the multiple regions dispersedly exist in the solution
space. Accordingly, we further investigate the distributions of
explored solutions by those three versions. In detail, we apply
the t-SNE [21] method as a non-linear dimension reduction
technique (R® — R?). Fig. 4 showed the distributions of
solutions in the population P obtained by each version and
that of MOEA/D-DE for baseline. At the 2nd generation, all
the four versions generate solutions having a similar diversity



TABLE I
MEDIAN VALUES OF HYPERVOLUME OF MOEA/D-S3 AND MOEA/D-DE, WHICH ARE OBTAINED AT 5TH, 10TH, 50TH, 150TH, 300TH GENERATIONS,
RESPECTIVELY. THE p-VALUES CALCULATED FROM THE WILCOXON SIGNED RANK SUM TEST ARE SUMMARIZED AT THE BOTTOM.

Sth generation 10th generation 50th generation 150th generation 300th generation
MOEA/D MOEA/D | MOEA/D MOEA/D | MOEA/D MOEA/D | MOEA/D MOEA/D | MOEA/D MOEA/D
problem | m | -S3(ours) -DE -S3(ours) -DE -S3(ours) -DE -S3(ours) -DE -S3(ours) -DE

4 | 8.94E+03 8.85E+03 | 9.18E+03  9.04E+03 | 9.50E+03  9.42E+03 | 9.70E+03  9.62E+03 | 9.84E+03  9.73E+03

WFG1 6 | 9.12E+05 9.05E+05 | 9.31E+05 9.22E+05 | 9.71E+05  9.56E+05 | 9.88E+05 9.77E+05 | 1.00E+06  9.88E+05
8 | 9.29E+07 9.23E+07 | 9.49E+07 9.37E+07 | 9.82E+07 9.73E+07 | 1.00E+08 9.91E+07 | 1.02E+08  1.00E+08

4 | 8.94E+03 1.28E+04 | 9.18E+03 1.33E+04 | 9.50E+03 1.41E+04 | 9.70E+03  1.44E+04 | 9.84E+03 1.45E+04

WFG2 6 | 1.45E+06 1.44E+06 | 1.54E+06 1.53E+06 | 1.68E+06 1.66E+06 | 1.73E+06 1.72E+06 | 1.75E+06  1.74E+06
8 | 1.60E+08 1.59E+08 | 1.75E+08 1.73E+08 | 1.98E+08 1.93E+08 | 2.07E+08 2.03E+08 | 2.10E+08  2.07E+08

4 | L.15E+04 1.15E+04 | 1.18E+04  1.18E+04 | 1.23E+04  1.23E+04 | 1.25E+04 1.25E+04 | 1.27E+04  1.26E+04

WFG3 6 | 1.08E+06 1.07E+06 | 1.11E+06 1.10E+06 | 1.17E+06 1.16E+06 | 1.21E+06 1.19E+06 | 1.24E+06  1.22E+06
8 | 920E+07 9.13E+07 | 9.65E+07 9.53E+07 | 1.03E+08 1.02E+08 | 1.07E+08 1.05E+08 | 1.10E+08  1.08E+08

4 | 1.19E+04 1.16E+04 | 1.27E+04 1.24E+04 | 1.37E+04 1.35E+04 | 1.40E+04 1.38E+04 | 1.42E+04 1.40E+04

WFG4 6 | 827E+05 7.70E+05 | 9.82E+05 9.37E+05 | 1.32E+06 1.21E+06 | 1.49E+06 1.38E+06 | 1.58E+06 1.47E+06
8 | 2.31E+07  2.15E+07 | 3.52E+07 2.92E+07 | 6.53E+07 5.60E+07 | 9.51E+07  7.55E+07 | 1.17E+08  9.02E+07

4 | 1.18E+04  1.18E+04 | 1.21E+04 1.21E+04 | 1.29E+04 1.26E+04 | 1.36E+04 1.31E+04 | 1.39E+04  1.35E+04

WFGS5 6 | 1.16E+06 1.14E+06 | 1.26E+06 1.23E+06 | 1.38E+06  1.35E+06 | 1.48E+06 1.42E+06 | 1.57E+06 1.47E+06
8 | 8.72E+07 8.25E+07 | 1.07E+08 1.02E+08 | 1.34E+08 1.28E+08 | 1.52E+08 1.43E+08 | 1.64E+08 1.51E+08

4 | 1.20E+04 1.19E+04 | 1.26E+04 1.25E+04 | 1.35E+04 1.34E+04 | 1.39E+04 1.38E+04 | 1.41E+04  1.40E+04

WFG6 6 | 1.06E+06 1.01E+06 | 1.21E+06 1.15E+06 | 1.45E+06 1.39E+06 | 1.59E+06 1.52E+06 | 1.64E+06 1.60E+06
8 | 5.46E+07 5.25E+07 | 7.01E+07 6.86E+07 | 1.16E+08 1.08E+08 | 1.42E+08 1.31E+08 | 1.59E+08  1.46E+08

4 | 1.25E+04 1.25E+04 | 1.31E+04 1.29E+04 | 1.38E+04 1.37E+04 | 1.41E+04 1.40E+04 | 1.43E+04 1.42E+04

WEG7 6 | 1.09E+06 1.06E+06 | 1.25E+06 1.23E+06 | 1.51E+06 1.45E+06 | 1.62E+06 1.55E+06 | 1.65E+06  1.60E+06
8 | 5.08E+07 4.83E+07 | 7.27E+07 6.85E+07 | 1.26E+08 1.13E+08 | 1.50E+08  1.38E+08 | 1.62E+08  1.54E+08

4 | 1.15E+04  1.14E+04 | 1.20E+04 1.19E+04 | 1.29E+04 1.27E+04 | 1.33E+04 1.31E+04 | 1.35E+04  1.34E+04

WFG8 6 | 9.25E+05 9.15E+05 | 1.05E+06 1.02E+06 | 1.26E+06  1.23E+06 | 1.35E+06  1.32E+06 | 1.40E+06 1.37E+06
8 | 3.57E+07 3.85E+07 | 4.96E+07 4.71E+07 | 8.06E+07  7.63E+07 | 9.93E+07 9.14E+07 | 1.09E+08 1.01E+08

4 | 1.26E+04 1.25E+04 | 1.31E+04 1.30E+04 | 1.38E+04 1.37E+04 | 1.41E+04 1.40E+04 | 1.42E+04 1.41E+04

WFG9 6 | 1.23E+06 1.17E+06 | 1.38E+06 1.33E+06 | 1.56E+06 1.54E+06 | 1.64E+06 1.61E+06 | 1.67E+06 1.65E+06
8 | 8.46E+07 7.20E+07 | 1.17E+08 1.02E+08 | 1.67E+08 1.59E+08 | 1.84E+08 1.79E+08 | 1.91E+08  1.88E+08

p value [ 5.15E-04 [ 3.02E-05 [ 2.21E-05 [ 2.21E-05 [ 1.59E-05

to each other. However, at the 10th generation, MOEA/D-S3s
tend to explore specific regions compared with MOEA/D-DE.
This tendency can be more highlighted with the increase of
7. In particular, MOEA/D-S? with v = 10° searched very
specific regions, as some solutions are overlapped in almost
the same region but also their regions dispersedly exist in the
solution space. MOEA/D-S3 with v = 10° tends to promote
the local search while improving a diversity of solutions.
Indeed, the diversity is improved at the 50th generation while
exploring the specific regions as the local search. Hence, we
can suppose that this is why MOEA/D-S3 with v = 10°
derives the best performance as shown in Fig. 3. However,
it is still unclear for an empirical fact that MOEA/D-S? with
v = 1075 eventually outperforms MOEA/D-S? with v = 1 at
the end of generations. Our supposition is that the local search
may improve the performance in this experimental case.

In summary, when increasing the complexity of the shape
of decision boundary with a high value of ~, the local search
and the global search can be balanced well. We can consider
a risk that MOEA/D-S3 may fall into the local optima with
a less diversity of samples. However, this can be avoided in
the MOEA/D-S? framework, since it is designed to construct
the multiple surrogate models and to use the median value of
g(z | A}, 2) as the threshold. In addition, we can control the
bias of the local search by tuning the value of +. Hence, it
would be worth to develop a self adaptation of ~.

B. Analysis on parent selection

Our second analysis is to investigate the effect of our
modified parent selection described in Algorithm 4. The aim of
our modification is to enhance the local search applied to the
specific regions learned by SVM and thus it can be expected
to improve the performance of MOEA/D-S3. Here, we test
MOEA/D-S? without our modification, i.e., parent solutions
are selected with the same procedure as in MOEA/D-DE. We
use the WFG1-9 problems with the same experimental settings
as in Section V.

Table II summarizes the median values of HV scores of the
MOEA/D-S? without our modified parent-selection. Note that
in this table, “4”, “—" and “~” represent that MOEA/D-S?
without the modification derives better, worse, and competitive
performances than (or to) MOEA/D-S? (with our modifica-
tion), respectively (see Table I). Hence, we can confirm the
effect of our modification when a large number of “—” can
be observed. For 50th and 300th generations, our modification
successfully enables MOEA/D-S? to improve the performance
of MOEA/D-S? without our modification (p < 0.05). This
confirms the effect of our modification that it promotes a local
search around good parents. However, at the 2nd generation,
MOEA/D-S? without our modification outperforms MOEA/D-
S3 on 15 experimental cases. This fact indicates a drawback
of our modification. In detail, our modification may degrade a
diversity of the solutions especially at the beginning of gener-
ation since multiple surrogates may build decision boundaries
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Fig. 2. Example of decision boundaries on a two dimensional classification
task. The top and bottom figures demonstrate the decision boundaries obtained
by SVM with low and high values of +, respectively.
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Fig. 3. Median values of HV scores of MOEA/D-S? with v =

{107°,1.0,10°} and that of MOEA/D-DE as a baseline (WFG1, m = 8).

capturing similar specific regions; although early solutions
may dispersedly exist in the solution space but its diversity
would be low in terms of the objective space. However, this
drawback can be relaxed with the increase of generations,
i.e., when each solution has been optimized for its subproblem,
and thus multiple surrogates can capture their specific regions
dispersedly existed in the solution space.

VII. CONCLUSION

This paper proposed a surrogate-assisted MOEA/D frame-
work that employs multiple classifier-based surrogates. The
proposed method, i.e., MOEA/D-S? is designed to construct
reliable surrogate models under the limited number of samples
and to improve a diversity of surrogate models under the

TABLE II
MEDIAN VALUES OF HYPERVOLUME OF MOEA/D-S® WITHOUT OUR
MODIFIED PARENT-SELECTION; “+”, “~” AND “—” REPRESENT THAT
MOEA/D-S3WITHOUT MODIFICATION DERIVES BETTER, COMPETITIVE,
AND WORSE PERFORMANCES THAN MOEA/D-S3, RESPECTIVELY.

problem | m | 2nd generation | 10th generation | 50th generation | 300th generation
4 8.67E+03 + 9.12E+03 — 9.70E+03 ~ 9.84E+03 ~
WFG1 6 8.90E+05 + 9.35E+05 + 9.88E+05 ~ 9.99E+05 —
8 9.04E+07 + 9.43E+07 — 1.00E+08 ~ 1.02E+08 ~
4 1.21E+04 + 1.34E+04 + 1.45E+04 + 1.45E+04 +
WFG2 6 1.25E+06 + 1.54E+06 ~ 1.73E+06 ~ 1.75E+06 ~
8 1.19E+08 — 1.75E+08 ~ 2.06E+08 — 2.10E+08 ~
4 1.10E+04 ~ 1.18E+04 ~ 1.25E+04 ~ 1.26E+04 —
WFG3 6 1.00E+06 — 1.11E+06 ~ 1.20E+06 — 1.23E+06 —
8 8.27E+07 + 9.68E+07 + 1.06E+08 — 1.08E+08 —
4 1.03E+04 — 1.26E+04 — 1.39E+04 — 1.41E+04 —
WFG4 6 5.92E+05 + 9.86E+05 + 1.47E+06 — 1.56E+06 —
8 1.30E+07 + 3.14E+07 — 8.90E+07 — 1.10E+08 —
4 1.I0E+04 — 1.21E+04 ~ 1.35E+04 — 1.38E+04 —
WFG5 6 9.35E+05 + 1.23E+06 — 1.45E+06 — 1.51E+06 —
8 4.83E+07 — 1.00E+08 — 1.46E+08 — 1.55E+08 —
4 1.08E+04 ~ 1.25E+04 — 1.39E+04 ~ 1.40E+04 —
WFG6 6 7.97E+05 + 1.19E+06 — 1.56E+06 — 1.62E+06 —
8 2.94E+07 + 7.34E+07 + 1.45E+08 + 1.58E+08 —
4 I.ITE+04 — 1.31E+04 ~ 1.41E+04 ~ 1.42E+04 —
WFG7 6 8.07E+05 + 1.25E+06 ~ 1.59E+06 — 1.64E+06 —
8 2.14E+07 — 6.90E+07 — 1.44E+08 — 1.57E+08 —
4 1.03E+04 ~ 1.19E+04 — 1.33E+04 ~ 1.35E+04 ~
WFG8 6 6.91E+05 — 1.04E+06 — 1.33E+06 — 1.39E+06 —
8 2.03E+07 — 4.85E+07 — 9.51E+07 — 1.04E+08 —
4 1.11E+04 + 1.31E+04 ~ 1.40E+04 — 1.41E+04 —
WFG9 6 8.69E+05 + 1.38E+06 ~ 1.62E+06 — 1.65E+06 —
8 4.49E+07 + 1.05E+08 — 1.78E+08 — 1.85E+08 —
+/—I~ 15/9/3 5/13/9 2/17/8 1721/5

samples biased in specific regions of the solution space.
Accordingly, MOEA/D-S? employs the classifiers which can
be given by solving a classification task having a lower
problem complexity than fitness approximation; and each
surrogate is adjusted to each subproblem defined in MOEA/D.
We conducted the experiments on the benchmark problems,
i.e., WFGI1-9 problems. Experimental results showed that
MOEA/D-S? significantly derived the better performance than
MOEA/D-DE used in a basis of the proposed method. In
addition, we further investigated a practical effect of the
proposed parent-selection mechanism, which selects parents
identified as good solutions; and our analysis showed the
proposed selection mechanism can be an important option to
improve the performance of MOEA/D-S3.

As future works, we must compare MOEA/D-S? with the
state-of-the-art of SAEAs, e.g. MOEA/D-EGO, CSEA, K-
RVEA and we will conduct intensive experiments with differ-
ent aspects; evaluation criteria e.g. IGD and the computational
time, other benchmark problems as well as computationally-
expensive real-world optimization problems. In addition, we
can develop a self-adaptation method of the SVM parameter
v, as we revealed y can be an important parameter to improve
the performance of MOEA/D-S3.
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