
A Review and Empirical Analysis of Particle Swarm
Optimization Algorithms for Dynamic Multi-Modal

Optimization

Simon Dennis
Computer Science Division

Stellenbosch University
Stellenbosch, South Africa
simondennis9@gmail.com

Andries Engelbrecht
Department of Industrial Engineering,

and Computer Science Division
Stellenbosch University

Stellenbosch, South Africa
engel@sun.ac.za

Abstract—A number of particle swarm optimization (PSO)
variations have been developed to find multiple solutions to multi-
modal optimization problems. These algorithms have been exten-
sively evaluated in the literature. When dynamic optimization
problems are considered, only a few PSO algorithms exist that
have the ability to find and track multiple optima in dynamically
changing search landscapes. These algorithms have not yet been
rigorously evaluated on an extensive set of dynamic optimization
problems. This paper presents a review of existing dynamic multi-
modal PSO algorithms and conducts an empirical analysis of
these algorithms on a set of dynamic optimization problems of
varying dynamics. The best performing dynamic multi-modal
PSO algorithms, with respect to different performance measures,
are identified as an outcome of a formal statistical analysis.

Keywords—Particle swarm optimization, multi-modal optimiza-
tion, dynamic optimization problems

I. INTRODUCTION

Multi-modal optimization [1], [2] deals with optimization
tasks where the goal is to find all, or as many as possible, of the
optima of a multi-modal problem, instead of finding just one
of these optima. Many efficient evolutionary algorithms and
swarm-based algorithms have been developed to find multiple
solutions to static, single-objective optimization problems [1]–
[3]. The task of finding multiple solutions is somewhat more
difficult than finding a single sultion, specifically due to the
requirement that candidate solutions should not all converge to
just one point in the search space. When faced with a dynamic
multi-modal optimization problem, the task of finding multiple
solutions becomes even more difficult: in addition to locating
the positions of optima, it is now also necessary to track optima
over time, due to changes in the search landscapes. These
changes may result in new optima appearing and existing
optima disappearing. In addition, change severity and the
frequency at which the search landscape changes further adds
to the complexity of dynamic multi-modal optimization.

While research in the development of multi-modal opti-
mization algorithms is in abundance, few studies can be found
for dynamic multi-modal optimization [1], though a significant
amount of work has been done to develop algorithms to find
and track a single optimum in dynamic environments [4]–[6].

This paper focuses specifically on particle swarm opti-
mization (PSO) [7], and the extent to which PSO variations

have been developed for dynamic multi-modal optimization.
The paper provides a review of PSO variations available in
the literature for finding and tracking multiple solutions in
dynamically changing search landscapes. Only six such PSO
algorithms have been found. An empirical analysis of these
algorithms are provided in this paper, with a comparison
of these six algorithms on a large set of dynamic multi-
modal optimization problems. The paper identifies the best
PSO algorithms for dynamic multi-modal optimization with
reference to offline error and the ratio of found optima. Based
on a formal statistical analysis of the results, two of the six
PSO algorithms are identified as the best performers.

The rest of the paper is organized as follows: Section II
provides a review of the dynamic multi-modal PSO algorithms
found in the literature. Section III reviews the moving peaks
benchmark generator, which is used in the empirical analysis
to produce instances of a large number of different multi-
modal dynamic optimization problems. The empirical process
is described in Section IV, and the results are presented and
discussed in Section V.

II. DYNAMIC MULTI-MODAL PARTICLE SWARM
OPTIMIZATION ALGORITHMS

This section reviews dynamic multi-modal PSO algorithms
identified in the literature.

A. Improved Speciation PSO

Li et. al. developed the speciation PSO for multi-modal op-
timization in static environments [8]. The improved speciation
PSO (SPSO) adapts the original speciation PSO to find and
track optima in dynamic environments [9].

SPSO groups the PSO population into sub-populations,
known as species, on each iteration of the algorithm. These
groups are formed using a process known as speciation: The
list of all particles is sorted by each particle’s fitness function
value. The best particle is removed from the list and becomes
a species seed – the particle from which a species is created.
All particles within a certain radius, rs, of this species seed
are moved from the list of all particles into this species. This
process of seed identification and species creation is then
repeated until each particle is within a species. Species which

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

only contain one particle is combined to form a single species,
called the general swarm. To encourage exploration of the
search space in dynamic environments, a limit, pmax, is placed
on the size of a species. Species containing more than pmax
particles move their particles with the lowest fitness function
value into the general swarm. The general swarm behaves as
a standard PSO and focusses on exploring the search space.

Species update their positions by following the update
equations of the quantum PSO [10]. The quantum PSO is a
dynamic PSO algorithm inspired by quantum physics. Some
particles in the species are considered quantum particles,
while others are neutral particles. Neutral particles follow
the standard PSO update equations. Quantum particles are
positioned randomly in an area around the global best position.
The best quantum particle will become the global best position
if its position improves on the current global best position.
This allows species to track the optima they have identified.
When the neutral particles within a species have converged,
quantum particles will search around the converged position
for changes in the environment. If an improved position is
found, the neutral particles will start moving towards the new
global best position and will follow the optimum as it moves.

B. Memetic PSO

The memetic PSO (MPSO) was developed by Wang et.
al. [11]. On each iteration, sub-swarms, known as species,
are formed using a speciation mechanism. This speciation
mechanism is similar to the speciation process used in SPSO:
The list of all particles is sorted by each particle’s fitness
function value. The best particle is removed from the list and
becomes a species seed. The control parameter, rs, defines
the maximum size of a species. At most rs particles within
a certain radius, r0, of this species seed are moved from
the list of all particles into this species. The order in which
particles are selected depends on the particle’s distance from
the species seed, with closer particles being selected first. This
speciation process is repeated until each particle is within a
species. A species with a size equal to rs is known as a full
species. Species that are not full are combined into a single
global species and roam the search space using normal PSO
behaviour. The global species explores the search space. Non-
global species exploit and track the optimum they are formed
around.

Both the global species and non-global species follow the
standard PSO update equations. To encourage exploitation
within non-global species, the adaptive local search (LS) op-
erator is used. Adaptive LS operates by attempting to improve
the neighbourhood best position of each species. One of two
search methods are used, depending on the distance between
the neighbourhood best’s position and its personal best. If
this distance is smaller than the algorithm parameter, r1, non-
deterministic cognition-based local search (NCLS) is used.
NCLS is a single-particle PSO where only the cognitive com-
ponent of the velocity update is used. If this simplified PSO
results in an improvement, the neighbourhood best position
is changed to the improved value. The number of iterations
is dependent on the algorithm parameter, nls. If the distance
between the neighbourhood best position and its personal
best position is larger than r1, a random walk with direction
exploitation (RWDE) is used. RWDE creates a new position by

adding to the current position a vector with elements sampled
from the uniform distribution in the range [0, 1]. If this new
position improves the current neighbourhood best position,
then the neighbourhood best position is updated. The number
of iterations is also dependent on algorithm parameter nls.

On each iteration, the diversity of each non-global species
is calculated. A species with a diversity less than the control
parameter, r2, is considered to be converged. The solution
found by a converged species is added to a memory of
solutions. The particles from which this species was formed
are reinitialized elsewhere in the search space to search for
optima elsewhere. On each iteration, the previous fitness
value of the best particle in the entire population is checked
against its current fitness value before this particle’s position
is changed. If these two fitness values are not equal, the
algorithm assumes that an environment change has occurred.
When an environment change is detected, all solutions in the
memory are reintroduced into the search space as particles
in the global swarm. This introduces knowledge of previous
optimum positions into the population, encouraging particles
in the global species to form species around these positions.
While doing so, the global species will likely find the location
of the new optimum if it is nearby. In this way, tracking of
the optima is achieved.

C. Dynamic Vector-Based PSO

The dynamic vector-based PSO (DVBPSO), developed by
Schoeman and Engelbrecht [12], is based on the vector-based
PSO (VBPSO) [13], which was developed to find multiple
solutions to static multi-modal optimization problems. It uses
niching to find multiple optima in the search space. Niches
in VBPSO are formed from a species seed, which is the best
particle in the population not yet within a niche. For all other
particles in the population which are not within a niche, two
vectors are calculated, namely the personal best vector ~vp,
i.e. the vector between the current position and personal best
position, and the niche seed vector, ~vg , i.e. the vector between
the current position and the species seed. If the dot product,
~vp · ~vg is greater than zero, i.e. the particle’s personal best
vector is in a similar direction to the niche seed vector, then it
is included in the niche. This niching process is repeated until
all particles are within a niche. New particles are initialized in
niches with fewer than three particles to enable PSO to operate
effectively within a niche. Niches operate independently using
the standard PSO update equations.

On the first iteration of DVBPSO, VBPSO is executed
using randomly initialized particles to find the optima in the
current environment. The fitness function value of these optima
is calculated. On subsequent iterations, the fitness of each
optimum is recalculated and is compared to the fitness from the
first iteration. If these two fitness values are not equal, then
the algorithm assumes an environment change has occurred.
When an environment change occurs, VBPSO is executed
with particles initialized at the previous optima and with three
more particles per optimum initialized in the space around
these optima. By using this re-initialization scheme, optima
can be tracked because VBPSO is assisted with knowledge
of where the previous optima were. The fitness of these new
optima is calculated and is used to detect future changes in the

environment. When the next environment change is detected,
VBPSO is executed under the same conditions.

D. Fractional GBest Multi-Swarm PSO

The fractional gbest multi-swarm PSO (FGBMSPSO) was
developed by Pulkkinen et. al. [14]. FGBMSPSO uses a multi-
swarm method to find multiple optima. Each sub-swarm of
the multi-swarm method is created before execution of the
algorithm begins. All particles in the population are distributed
evenly among the sub-swarms. The number of sub-swarms is
determined by the control parameter, nswarms. Sub-swarms
operate separately from each other. They follow the standard
PSO rules with fractional gbest formation (FGF). FGF is a
process that extends PSO by attempting to improve the gbest
particle of a sub-swarm on each iteration. It does so by con-
sidering the positions which can be created by combining the
dimensional components of different particles in the swarm.
The best combination of dimensional components is known as
the artificial gbest. If the artificial gbest has a better fitness
function value than the current gbest, the current gbest is
replaced with the artificial gbest.

The only interaction between each sub-swarm is a re-
pelling mechanism, executed on each iteration, which prevents
two sub-swarms from converging to the same optimum. The
repelling mechanism operates by calculating the Euclidean
distance between the gbest positions for each sub-swarm pair.
If this distance is less than the minimum allowable distance
between two sub-swarms, defined by control parameter rrep,
then the sub-swarm with the worse gbest position is randomly
re-initialized in the search space. This repulsion mechanism
encourages the algorithm to explore the search space for other
optima, and not to waste computational effort exploiting an
optimum that another sub-swarm is already exploiting.

On each iteration, the previous fitness function value of
the best particle in the population is compared to its current
fitness function value before the position of this particle is
modified. If these two values are not equal, the algorithm
assumes that an environment change has occurred. When an
environment change occurs, each particle in the population
obtains a new random velocity. This forces each sub-swarm
out of the convergent state and allows it to track changes to
the optimum which it was previously converged to.

E. Multi-Swarm Quantum PSO

The multi-swarm quantum PSO (MQSO) was developed by
Blackwell and Branke [15]. MQSO uses a multi-swarm method
to find multiple optima. Each sub-swarm of the multi-swarm
method is created before execution of the algorithm begins.
All particles in the population are distributed evenly among the
sub-swarms. The number of sub-swarms is determined by the
control parameter, nswarms. Each sub-swarm acts separately
and follows the rules of the quantum PSO [10]. This is the
same quantum PSO used within the species of SPSO, described
in section II-A. The quantum PSO enables MQSO to track
changes in the optima as they occur.

To prevent multiple sub-swarms converging to the same
optimum, an exclusion mechanism is used. The exclusion
mechanism is the same as the repulsion mechanism of the
FGBMSPSO, described in section II-D. It operates similarly by

calculating the Euclidean distance between the gbest positions
for each sub-swarm pair. If this distance is less than the
minimum distance allowed between sub-swarms, defined by
control parameter rexcl, then the sub-swarm with the worse
gbest position is randomly re-initialized in the search space.
This exclusion mechanism encourages sub-swarms to search
for other optima, and not to waste unnecessary effort exploiting
an optimum that another sub-swarm is already exploiting.

F. Adaptive Multi-Swarm PSO

The adaptive multi-swarm PSO (AMSPSO), developed by
Li et. al. [16], uses a multi-swarm method where the number
of swarms, and therefore the number of particles, changes
dynamically over time. Particles are initially grouped into sub-
swarms using a clustering process: The distance between each
pair of particles in the population is calculated. Each sub-
swarm is formed by grouping the particles which are closest
to each other together into a sub-swarm. Each sub-swarm
executes separately from the other sub-swarms to allow each
sub-swarm to converge to a different optimum.

Sub-swarm behaviour is governed using standard PSO
update equations and a global best improvement operator,
called gBestLearn, which executes when a particle improves
its personal best. When gBestLearn is executed on a particle,
each dimension in the personal best has a small chance to
be exchanged with the corresponding dimension value in the
global best. If this new gbest position improves the fitness
function value of the existing gbest, then the change is kept.
Otherwise, the original gbest is kept. The chance to exchange
dimensional values depends on the difference between the two
values. Exchanges are more likely to occur when the difference
is small, and less likely when the difference is large.

Sub-swarms which converge to the same optimum are
merged into the same sub-swarm. Therefore, the number of
sub-swarms will decrease over time until there is one swarm
at each optimum. If the number of sub-swarms does not
decrease after a certain number of iterations, defined by control
parameter δ, the number of particles is changed to optimize
the search process. If more sub-swarms were created since
the previous change in number of particles occurred, then
the algorithm assumes that there are fewer sub-swarms than
optima and increases the total number of particles. If less sub-
swarms were created since the previous change in number
of particles, the algorithm assumes there are more particles
than necessary and the total number of particles is decreased.
All new individuals, if any, are then grouped into sub-swarms
using the same clustering process as before.

Sub-swarms which have a swarm diversity less than the
control parameter η are considered converged. The behaviour
of converged sub-swarms is similar to the MPSO described
in section II-B. When a sub-swarm is converged, then its
optimum is added to a list of converged positions. The sub-
swarm is then re-initialized into the search space so that it
may find new optima. Whenever the number of particles in
the search space increases, particles from the list of converged
positions are added first, and then randomly initialized particles
fill the remaining required number of particles if necessary.
This allows the positions of previous optima to be transferred
to new sub-swarms being formed, and allows these optima to
be tracked as their positions change.

III. MOVING PEAKS BENCHMARK PROBLEM GENERATOR

The moving peaks benchmark is a problem generator for
dynamic optimization problems, developed by Branke [17].
This generator creates a search landscape consisting of mul-
tiple peaks of varying size. Each peak with position ~xi peri-
odically moves a random distance in a random direction, and
randomly adjusts its width wi and height hi. The severity of
these random changes is controlled with benchmark parameters
xs, ws and hs respectively. The parameters ~xmax, ~xmin, wmax,
wmin, hmax and hmin define the upper and lower bounds
of these changes respectively. When a dynamic multi-modal
optimization algorithm is executed on a landscape produced
by the moving peaks benchmark, the algorithm’s objective is
to locate the highest point of each peak, and to then track
each peak’s movement through the search space. Equations
(1), (2) and (3) describe how peaks move in the moving peaks
benchmark; ~v in equation (1) is a vector of random values
sampled from the uniform distribution in the range [0, 1] and
scaled by xs.

xi(t+ 1) =

2 · xmin − xi(t)− ~v xi(t) + ~v < xmin
2 · xmax − xi(t)− ~v xi(t) + ~v > xmax
xi(t) + ~v otherwise

(1)

hi(t+ 1) = min(hmax,max(hmin, hi(t) + hs ·N(0, 1)))
(2)

wi(t+ 1) = min(wmax,max(wmin, wi(t) + ws ·N(0, 1)))
(3)

In the above, N(0, 10 refers to the normal distribution with a
zero mean and unit variance.

Du Plessis and Engelbrecht [18] extended the original mov-
ing peaks benchmark problem by including a mechanism to
dynamically change the number of peaks n in the environment.
When the peak positions are adjusted, n is either increased or
decreased. This change is random, but its severity is controlled
by the variability parameter, ns. The maximum and minimum
number of peaks are also defined by parameters nmax and
nmin respectively. Equation 4 describes how the number of
peaks changes in the moving peaks benchmark.

n(t+ 1) =

{
max(nmin, n(t)− n · ns · U(0, 1)) r < 0.5

max(nmax, n(t) + n · ns · U(0, 1)) otherwise
(4)

In the above, r ∼ U(0, 1), and U(0, 10) refers to the uniform
distribution in the range [0, 1].

IV. EMPIRICAL PROCEDURE

This section describes the experimental process, empirical
method, and performance measurements used used to compare
the six dynamic multi-modal PSO algorithms.

A. Experiments

The six dynamic multi-modal optimization algorithms are
evaluated and compared on 900 different parametrizations of
the moving peaks benchmark generator. Each parametrization
is a combination of the following parameters:

• Period, i.e. the number of iterations between environ-
ment changes: 10, 20, 50, 100, 200, 500, 1000, 2000,
5000, 10000. The total number of iterations is 10 times
the period.

• Movement severity, xs: 0.1, 0.2, 0.5, 1, 2, 5, 10, 20,
50, 100.

• Peak variability, ns: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9. Note that each simulation starts with 10 initial
peaks.

For each problem instance, the search space boundary is
defined as [0, 100]d, where the number of dimenions, d, is
10.

Due to the random nature of PSO and the moving peaks
benchmark, 48 independent trials are performed for each
experiment. Each algorithm is executed with a total number
of 50 particles to ensure enough particles are available for
sub-populations to be formed with. The number of iterations
executed by each algorithm is set to be 10 times the benchmark
period to ensure that enough environment changes can occur
for performance in the dynamic environment to be measured.
Each algorithm is otherwise parametrized with the parameters
used by the articles they were first proposed in [9], [11], [12],
[14]–[16], and as summarized in the tables provided in the
appendix. Control parameters were not tuned, due to the fact
that environment changes are unknown, and it is not possible
to tune control parameters for solving dynamic optimization
problems [19], [20]. Control parameters that are optimal for a
current environment is not necessarily optimal for the next
environment, especially if there are significant changes in
landscape characteristics.

B. Performance Measurements

Four performance measurements are recorded:

• Offline error: Offline error, originally developed by
Branke for use in dynamic optimization algorithms
[4], is the average distance over all environment
changes between the optimum found by an algo-
rithm and the actual optimum position. The distance
is calculated at the moment before the environment
changes. In a multi-modal environment, the distance
is calculated for each sub-population as the distance
to the closest known optimum from the solution
represented by the global best position of that sub-
population. The net offline error is calculated as the
average of these distances over all sub-populations,
averaged over all environment changes. The offline
error is calculated to determine how good a solution
discovered by an algorithm is relative to the most
optimal solution possible.

• Ratio of found peaks: The ratio of the number of
sub-populations which have found an optimum at or
near a peak to the total number of peaks. This is
calculated just prior to each environment change, and
is averaged over all environment changes. This ratio
of found peaks is calculated to determine how many
of the optima in the search space are identified by
the algorithm, indicating the algorithm’s multi-modal
abilities.

• Offline diversity: The diversity of each sub-
population is measured just before each environment
change. The diversity of each sub-population is calcu-
lated as the average distance of particles in that sub-
population from the average over all of the particles
in the sub-population. These sub-population diversities
are averaged per environment. These averages are then
averaged over all environment changes. The offline
diversity is calculated to determine the level of con-
vergence an algorithm achieves.

• Infeasible particles: Particles have shown to exhibit
roaming behavior: within the very first iterations many
particles leave the boundaries of the search space
and explore infeasible space [21], [22]. This roaming
behavior wastes unnecessary computational effort by
exploring infeasible space. The average number of
particles for which at least one dimension violates a
boundary constraint is calculated as an average over
all iterations. Note that nothing is done to prevent
roaming behavior in order to evaluate the extent to
which the different algorithms have particles that
violate boundary constraints.

C. Empirical Method

The performance of each algorithm is evaluated over all
experiments: The average and standard deviation over all
trials is calculated for each experiment. Additionally, Fried-
man ranking [23] is calculated for each experiment, for each
performance measurement over all trials of each algorithm.
The ranking process is a pairwise comparison between each
pair of algorithms where an algorithm’s rank increases by one
if it performs better than the other algorithm, or decreases
by one if it performs worse than the other algorithm. The
average Friedman rank over all experiments is calculated for
each algorithm, for each performance measurement.

Since the objective of a dynamic multi-modal optimization
algorithm is to accurately locate and track multiple optima,
a low offline error is ranked higher than a high offline error.
Similarly, a high ratio of found peaks is ranked higher than a
low ratio of found peaks. Diversity is a measurement of how
converged the sub-populations within the algorithm are, and
therefore neither a high or low diversity is preferable due to
both high and low convergence being advantageous, especially
in a dynamic environment. Diversity is simply ranked with a
low diversity being ranked higher than a high diversity.

V. RESULTS AND DISCUSSION

This section analyses and compares the performance of the
existing dynamic multi-modal optimization algorithms. Due to
space limitations detailed tables with results are not provided,
and only the observed trends are discussed. However, the
section ends with a summary of the results over all the dynamic
optimization problems and different problem dynamics in
Table I.

A. General Trends

All of the algorithms have worse offline error performance
for the highly variable environments compared to the slightly
variable environments. All of the algorithms find fewer optima

for highly variable environments than for slightly variable
environments, except for MPSO which consistently finds a
low 5% of the optima irrespective of the type of environment
change. Diversity of the sub-populations within all of the
algorithms is not affected by the severity of optima movement.

B. Speciation Particle Swarm Optimization

SPSO has poor offline error performance on average. Of-
fline error performance is particularly poor for slowly changing
or large movement environments. On average, SPSO finds 23%
of the optima. More optima are found for slowly changing
environments – up to 42% of the optima. SPSO finds more
optima than any other algorithm when the period between
changes is 2000 or longer. The number of optima found by
SPSO is not affected by the severity of optima movement
within the environment. The diversity of the sub-populations
is on average lower for slowly changing environments and
higher for quickly changing environments. SPSO exhibits little
roaming behavior. However, more particles search outside the
search space for highly variable, large movement environments
than for slightly variable, small movement environments.

C. Memetic Particle Swarm Optimization

MSPO has good offline error performance on average –
the second best offline error compared to the other algorithms.
Offline error performance is better for slowly changing envi-
ronments than for quickly changing environments. MPSO has
a better offline error than any other algorithm when the period
between changes is 1000 or longer. Offline error performance
is slightly worse for large movement environments compared
to small movement environments. MPSO finds 5% of the
optima on average, with a standard deviation of 5%. This
implies that MPSO only ever locates one or two optima.
This is the fewest number of optima found by any of the
algorithms. The diversity of the sub-populations is similar for
every environment. MPSO has almost no particles (only 0.1%
on average) searching outside the search space. More MPSO
particles search outside the search space in highly variable,
large movement environments than in slightly variable, small
movement environments.

D. Dynamic Vector-Based Particle Swarm Optimization

Over all of the problems, DVBPSO ranked third with
respect to offline error performance. Change frequency does
not affect DVBPSO’s offline error. However, DVBPSO has a
worse offline error for high movement environments compare
to low movement environments. DVBPSO finds the largest
number of optima on average, i.e. 40%. Fewer optima are
found for high movement environments than for low movement
environments. DVBPSO has similar sub-population diversity
for all environments. Out of all the algorithms, DVBPSO
exhibits the strongest roaming behavior. More DVBPSO par-
ticles search outside the search space in highly variable,
large movement environments than in slightly variable, small
movement environments.

E. Fractional GBest Multi-Swarm Particle Swarm Optimiza-
tion

FGBMSPSO has the best offline error performance over
all of the problems when compared to the other algorithms.

The severity of optima movement does not effect offline error
performance. FGBMSPSO has better offline error performance
for slowly changing environments than for quickly changing
environments. FGBMSPSO finds 25% of the optima on av-
erage. The number of optima found by FGBMSPSO is not
affected by the severity of optima movement. The diversity of
the sub-populations is lower for slowly changing environments
than for quickly changing environments. Diversity is larger for
environments which are highly variable than for environments
which are slightly variable. FGBMSPSO shows no roaming
behavior.

F. Multi-Swarm Quantum Particle Swarm Optimization

Over all of the problems, MQSO has poor offline error
performance, though better than AMSPSO and SPSO. Offline
error is better for slowly changing environments than for
quickly changing environments, and worse for high movement
environments. MQSO finds the second lowest number of
optima (only 18% of the optima). MQSO finds more optima
for high movement environments than for low movement
environments. MQSO sub-populations have a lower diversity
for slowly changing environments than for quickly changing
environments. MQSO exhbits stronger roaming behavior than
FGBMSPSO, MPSO and SPSO, but less that the other al-
gorithms. More MQSO particles search outside the search
space in highly variable, large movement environments than in
slightly variable, small movement environments. Additionally,
more particles search outside the search space in slowly
changing environments than in quickly changing environments.

G. Adaptive Multi-Swarm Particle Swarm Optimization

AMSPSO has poor offline error performance over all of
the problems – the second worst. AMSPSO offline error per-
formance is the worst for quickly and moderately changing en-
vironments when compared to the other algorithms. However,
the offline error performance is better than SPSO for slowly
changing environments. AMSPSO finds the second highest
number of optima (28%) compared to the other algorithms.
Only DVBPSO finds more optima than AMSPSO. More
optima are found for slowly changing environments than for
quickly changing environments. The same number of optima
are found in low, medium and high movement environments.
The diversity of the sub-populations AMSPSO is lower for
quickly changing environments than for moderately changing
environments. However, sub-population diversity for slowly
changing environments is similar to sub-population diversity
for moderately changing environments. Sub-populations diver-
sity is larger for environments which are highly variable than
for environments which are slightly variable. AMSPSO exhibts
the second strongest roaming behavior. More particles search
outside the search space for slowly changing environments
than for quickly changing environments.

H. The Best Performing Algorithms

Table I presents the results for the performance measures
over all DOP instances. The results are presented over all
combinations of change frequencies, change severities, and
variabilities in the number of peaks.

The two best performing algorithms are FGBMSPSO and
DVBPSO. FGBMSPSO has the best offline error performance,

but only finds 25% of the optima. FGBMSPSO performs well
for all environments and does not waste computational effort
by searching outside the search space. DVBPSO finds the most
optima – on average 40% of the optima. However, DVBPSO
has average offline error performance compared to the other
algorithms and has the storngest roaming behavior.

The DVBPSO also resulted in the smallest diversity mea-
sures. The small diversity measures of the DVBPSO is an indi-
cation that convergence may be premature, when considering
the large difference between the offline error of the DVBPSO
and the FGBMSPSO.

VI. CONCLUSIONS

This paper provided a review of particle swarm optimiza-
tion (PSO) algorithms developed to find and track multiple
optima in dynamically changing search landscapes. Six dy-
namic multi-modal PSO algorithms were discussed, and the
performance of these algorithms were analyzed on a large
number of dynamic optimization problems. These problems
differed in three main aspects, namely change frequency,
change severity, and variation in the number of peaks.

The results show that, over all of the dynamic optimiza-
tion problems, the fractional global best multi-swarm PSO
algorithm performed the best with reference to the offline
error, with the memetic PSO performing second best. The
dynamic vector-based PSO, on the other hand succeeded in
locating and tracking most of the optima, albeit at a larger
offline error. Future research should investigate the reasons for
the premature convergence of the DVBPSO. Solutions to this
problem may result in a dynamic multi-modal PSO algorithm
that still finds the most optima, and delviers better offline error.

While the results presented in this paper do show that some
dynamic multi-modal PSO algorithms were successful with
respect to offline error, the best average offline errors is still
large. More importantly, the best performance with respect
to number of optima found is not good, with only 40% of
the optima found on average. This finding provides scope for
the development of more efficient dynamic multi-modal PSO
algorithms.

REFERENCES

[1] X. Li, M. Epitropakis, K. Deb, and A. Engelbrecht, “Seeking multiple
solutions: An updated survey on niching methods and their applica-
tions,” IEEE Transactions on Evolutionary Computation, vol. 21, no. 4,
pp. 518–538, 2017.

[2] M. Preuss, Multimodal optimization by means of evolutionary algo-
rithms, ser. Natural Computing Series. Springer, 2015.

[3] O. Shir, “Niching in evolutionary algorithms,” in Handbook of Natiral
Computing. Springer, 2012, pp. 1035–1069.

[4] J. Branke, Evolutionary Optimization in Dynamic Environments.
Springer, 2002.

[5] T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic opti-
mization: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 6, pp. 1–24, 2012.

[6] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelligence
for dynamic optimization: Algorithms and applications,” Swarm and
Evolutionary Computation, vol. 33, pp. 1–17, 2017.

[7] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proceedings of the Sixth International Symposium on Mi-
cromachine and Human Science, 1995, pp. 39–43.

TABLE I. PERFORMANCE OVER ALL PROBLEM INSTANCES

Friedman Ranking
Performance Measure 1st 2nd 3rd 4th 5th 6th

Offline error FGBMSPSO MPSO DVBPSO MQSO AMSPSO SPSO
271.0320 345.6129 3956.5755 5056.3352 5223.2785 5956.8402

(370.0163) (414.4840) (4035.1685) (5146.6371) (5284.5984) (6224.5222)
Ratio of DVBPSO AMSPSO FGBMSPSO SPSO MQSO MPSO

found optima 0.3985 0.2779 0.2483 0.2344 0.1805 0.0501
(0.4187) (0.2862) (0.2525) (0.2471) (0.1860) (0.0501)

Offline diversity DVBPSO AMSPSO FGBMSPSO SPSO MQSO MPSO
0.0232 14.0299 28.7500 44.0810 94.4542 453.2879

(0.0566) (14.1137) (30.8633) (46.6114) (228.5872) (454.1332)
Infeasible particles FGBMSPSO MPSO SPSO MQSO AMSPSO DVBPSO

0.0000 0.0017 0.0348 0.1346 0.1577 0.1884
(0.0000) (0.0174) (0.1146) (0.1663) (0.1712) (0.1954)

[8] X. Li, J. Branke, and T. Blackwell, “Particle swarm with speciation
and adaptation in a dynamic environment,” in Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, 2006,
pp. 51–58.

[9] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima
by a particle swarm model using speciation,” IEEE Transactions on
Evolutionary Computation, vol. 10, pp. 440–458, 2006.

[10] T. Blackwel and J. Branke, “Multi-swarm optimization in dynamic envi-
ronments,” in Workshop on Applications of Evolutionary Computation,
2004, pp. 489–500.

[11] H. Wang, S.Yang, W. Ip, and D. Wang, “A memetic particle swarm op-
timisation algorithm for dynamic multi-modal optimisation problems,”
International Journal of System Science, vol. 43, no. 7, pp. 1268–1283,
2012.

[12] I. Schoeman and A. Engelbrecht, “Niching for dynamic environments
using particle swarm optimization,” in Proceedings of the International
Conference on Simulated Evolution and Learning, 2006, pp. 134–141.

[13] ——, “A novel particle swarm niching technique based on extensive
vector operations,” Natural Computing, vol. 9, no. 3, pp. 683–701, 2010.

[14] J. Pulkkinen, S. Kiranyaz, and M. Gabbouj, “Dynamic multi-swarm
particle swarm optimization with fractional global best formulation,”
in AI and Machine Consciousness, Proceedings of the 13th Finnish
Artificial Intelligence Conference STeP, 2008, pp. 52–59.

[15] T. Blackwel and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Transactions on Evolu-
tionary Computation, vol. 10, no. 4, pp. 459–472, 2006.

[16] C. Li, S. Yang, and M. Yang, “An adaptive multi-swarm optimizer for
dynamic optimization problems,” Evolutionary Computation, vol. 22,
no. 4, pp. 559–594, 2014.

[17] J. Branke, “Memory enhanced evolutionary algorithms for changing
optimization problems,” in Proceedings of the IEEE Congress on
Evolutionary Computation, vol. 3, 2009, pp. 1875–1882.

[18] M. du Plessis and A. Engelbrecht, “Self-adaptive differential evolution
for dynamic environments with fluctuating numbers of optima,” in
Metaheuristics for Dynamic Optimization, ser. Studies in Computational
Intelligence. Springer, 2013, vol. 433, pp. 117–145.

[19] B. Leonard and A. Engelbrecht, “On the optimality of particle swarm
parameters in dynamic environments,” in Proceedings of the IEEE
Congress on Evolutionary Computation, 2013.

[20] K. Harrison, A. Engelbrecht, and B. Ombuki-Berman, “Optimal param-
eter regions and the time-dependence of control parameter values for
the particle swarm optimization algorithm,” Swarm and Evolutionary
Computation, vol. 41, pp. 20–35, 2018.

[21] A. Engelbrecht, “Roaming behavior of unconstrained particles,” in
Proceediings of the BRICS-CCI, 2013.

[22] S. Helwig and R. Wanka, “Theoretical analysis of initial particle swarm
behavior,” in Proceedings of the Tenth International Conference on
Parallel Problem Solving from Nature, 2008, pp. 889–898.

[23] M. Friedman, “The use of ranks to avoid the assumption of normality
implicit in the analysis of variance,” Journal of the American Statistical
Association, vol. 32, no. 200, pp. 675–701, 1937.

APPENDIX

This appendix summarizes the control parameter values for
the algorithms used in this study.

TABLE II. COMMON PARAMETERS FOR EVERY ALGORITHM, UNLESS
STATED DIFFERENTLY

Algorithm Parameter Value
Number of Particles 50
Number of Iterations 10 × benchmark period

w 0.7298
c1 1.4962
c2 1.4962

TABLE III. PARAMETERS FOR IMPROVED SPECIATION PSO

Algorithm Parameter Value
c1 2.05
c2 2.05
rs 0.5
r 0.5

rCore 0
pmax 10

TABLE IV. PARAMETERS FOR MEMETIC PSO

Algorithm Parameter Value
r0 10
rs 2
pls0 1
plsmin 0.1
plsmax 1
nls0 5
nlsmin 1
nlsmax 5
β 0.2
γ 0.5
r1 0.01
r2 0.001
λ 0.5
σ 0.5

TABLE V. PARAMETERS FOR DYNAMIC VECTOR-BASED PSO

Algorithm Parameter Value
g 10
k 10
c 500

TABLE VI. PARAMETERS FOR FRACTIONAL GBEST MULTI-SWARM
PSO

Algorithm Parameter Value
nswarms 6
rrep 10

TABLE VII. PARAMETERS FOR MULTI-SWARM QUANTUM PSO

Algorithm Parameter Value
c1 2.05
c2 2.05

nswarms 6
nneutral 10
rcloud 10
rexcl 10

TABLE VIII. PARAMETERS FOR ADAPTIVE MULTI-SWARM PSO

Algorithm Parameter Value
w 0.6
c1 1.7
c2 1.7
α 3
β 0.5
δ 10
η 0.0001

Change in particles step size 10
Maximum no. of particles 300
Minimum no. of particles 70
Maximum sub-swarm size 7

Initial no. of particles 100

