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Abstract—The Vehicle Routing Problem with Time
Windows (VRPTW) is NP-hard which has many
real-world applications in logistics and transporta-
tion. The traditional VRPTW is defined on a com-
plete graph with customers as nodes, but in the real-
world, VRPTWs are more based on road networks.
To better simulate the real-world scenarios, this pa-
per studies the VRPTW on road networks. Most
researchers solve the VRPTW on road networks by
utilizing exact algorithms which can not deal with
large size problem. In this paper, a hybrid BSO-ACS
algorithm, which combines Brain Storm Optimiza-
tion (BSO), Ant Colony System (ACS) and Local
Search (LS), is proposed to solve the VRPTW on
road networks. A set of instances based on the road
network of southwest Shenzhen, China are generated
as benchmark problems. The computational experi-
ments demonstrate the effectiveness of the proposed
algorithm.

Index Terms—vehicle routing problem, road network,
brain storm optimization, ant colony system, local
search

1. Introduction

The Vehicle Routing Problem (VRP) is an important
combinatorial optimization problem that has attracted
wide publicity for the last decades. It has many ap-
plications in transportation, logistics, and distribution.
The VRP is a generic name given to a whole class of
problems whose objective is to find optimal routes to
service a given set of customers by a fleet of vehicles [1].
There are several variations of traditional VRP, such
as Capacitated Vehicle Routing Problem (CVRP) [2],
Vehicle Routing Problem with Pickup and Delivery
(VRPPD) [3], Vehicle Routing Problem with Time Win-
dows (VRPTW) [4], and Asymmetric cost matrix Vehi-
cle Routing Problem (AVRP) [5], etc. Traditional VRPs
are defined on a complete graph that only contains
customers and a depot. The customers are usually con-
nected with a straight line, and the distance between
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two customers is measured by the Euclidean distance.
However, in real-world scenarios, VRPs often relies on
road networks, which contain not only customers and a
depot, but also nodes of the real road. Unlike traditional
VRPs, customers are connected by road paths instead
of a straight line. Recently, there are many researchers
attempt to solve the VRP on road networks [6]–[10].
Most of them use exact algorithms, which can not solve
large-scale problems in an acceptable time.

Solving the VRP on road networks includes two
phases: path selection and vehicle routing [9]. In the
path selection, the Dijkstra’s algorithm is usually used
to find the path among customers. While in the ve-
hicle routing, like traditional VRP algorithms, there
are two main categories of approaches: exact algo-
rithms and heuristic ones. Exact algorithms include:
Column Generation (CG) [7], Mixed Integer Linear
Programming (MILP) [9], Branch-and-Price (BP) [11],
etc. These methods can get an optimal solution only
on small-sized problems. With the increase in the size
of the problem, the computational time of exact al-
gorithms grows exponentially. To get a satisfying so-
lution within an acceptable computational time for
large-scale problems, heuristic algorithms are usually
employed. VRP heuristic algorithms include two main
categories, i.e., constructive heuristics and improvement
heuristics. Constructive heuristics construct a feasible
solution as much as possible. The most popular ones
include saving algorithm [12], cluster-first route-second
algorithm [13], nearest neighbor algorithm [14], etc.
The improvement heuristics enhance the current solu-
tion by modifying solutions. It includes 2-opt [15], 3-
opt [16], chain-exchange [17], cross and relocate [18], λ-
exchange [19], etc. There are also many metaheuristics
that are used to solve VRPs, like population based
metaheuristics, Genetic Algorithms (GA) [20] and Ant
Colony Systems (ACS) [21]. Other techniques are based
on local search approaches, such as Tabu Search (TS) [6],
Simulated Annealing (SA) [22], Adaptive Large Neigh-
borhood Search (ALNS) [10], etc.

There are many comparison studies [23]–[25] that
have analyzed the performance of different heuristic
and metaheuristic algorithms for VRP. Their results
showed that no single heuristic or metaheuristic could
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be better than others at any time, but the hybridization
of different algorithms can overcome the shortcoming
of a single method. In this paper, a hybrid BSO-ACS
algorithm to solve the VRPTW on road networks is
proposed. At first, Dijkstra’s algorithm is employed in
path selection to obtain the shortest path between two
customers. Then we use a saving heuristic algorithm to
initialize solutions. The core of the proposed algorithm
is BSO, which contains three phases: 1) Clustering;
2) Generating new solutions; 3) Disrupting solutions.
In phase 2), the ACS is performed to generate a new
solution from parents like the combination operation in
the memetic algorithm. In phase 3), a local search is
used to improve individuals like local improvement in
the memetic algorithm. There are some advantages in
this hybrid algorithm: 1) The clustering operator of BSO
can help ACS learn more similarity properties in one
cluster, which accelerates the exploitation of ACS. 2)
Since the ACS is easy to fall into local optimum by using
deposited pheromones, a set of local search heuristics is
used to disrupt the solution to avoid local optimum.

The main contributions of this paper are:

• A hybrid BSO-ACS algorithm is proposed, in
which ACS is used to help BSO to combine
advantages of solutions in one cluster, and local
search is used to disrupt solutions to better ex-
plore the search space and avoid local optimum;

• 30 instances of VRPTW on real road networks
from Shenzhen, China are adopted for experi-
mental study, with the results demonstrate the
better performance of the proposed algorithm
than the compared approaches.

The remainder of this paper is organized as follows.
Section 2 presents the definition of the problem. Sec-
tion 3 firstly describes BSO, ACS, and Local Search
which includes 2-opt, exchange and relocate neighbor-
hoods, then proposes a hybrid BSO-ACS algorithm.
Section 4 evaluates the performance of the proposed
algorithm. Conclusions are provided in Section 5.

2. Problem description

2.1. Standard VRPTW

VRPTW is an important generalization of the VRP.
It is a combinatorial optimization problem in logistics.
The VRPTW can be formally defined as follows. Firstly,
there is a directed complete graph G(V,E), where V =
{v0, v1, . . . , vn} is the vertex set to represent the depot
v0 and customers {v1, v2, . . . , vn}, and each vertices vi
located at coordinates (xi, yi); E = {(vi, vj)|vi, vj ∈
V, i ̸= j} is the edge set, the edge is normally just a
straight line between two vertices, and the cost costij in
edge (vi, vj) equals to the Euclidean distance between
vi and vj . The speed of the vehicle is often assumed
to be one unit without loss of generality, so the time

cost equals to the Euclidean distance between vi and vj .
Each customer has a demand qi, a time window [ei, li],
and each vehicle has a capacity Q. The vehicle should
arrive at customer i within the time window [ei, li], and
the vehicles’ capacity should be satisfied. The objective
of VRPTW is to minimize the total distance cost of all
vehicles.

2.2. VRPTW on road networks

The standard VRPTW assumes customers on a com-
plete graph and sets the cost to euclidean distance.
However, in the real world, most VRPTWs take place
on road networks, and customers are connected by road
paths instead of a straight line. Some researchers [7],
[9], [11] focus on the VRPTW on road networks to be
more suitable for practical application. The VRPTW
on road networks can be formally defined as follows.
First, there is a road network graph G(V,C,E), where
V = {v0, v1, . . . , vm} is the vertex set to represent the
depot v0 and road nodes {v1, v2, . . . , vm}, the customer
set C = {c1, c2, . . . , cn} is the subset of the vertex set
V . E = {(i, j)p; i, j ∈ V, i ̸= j, p = 1, . . . , |E(i,j)|} is
the path set representing the alternative paths between
vertex i and j. The distance between the two vertices is
the path length, and the cost time equals the distance
divided by vehicle’s speed, The mathematical model of
VRPTW on road networks is defined as follows [11].

Parameters description:

K the set of all vehicles
V the set of all vertices
C the set of all customers
E the set of all paths
N total number of customers
Q maximum vehicle capacity
costij cost from vertex i to vertex j
tij travel time from vertex i to vertex j
qi demand of customer ci
ei earliest arrival of the time window of customer ci
li latest arrival of the time window of customer ci
si service time of customer ci
ti arrival time of vertex vi
t′i leave time of vertex vi
wi wait time of customer ci

Objective function:

min
∑
k∈K

∑
(i,j)p∈E

costijx(i,j)pk (1)

subject to:

x(i,j)pk =

{
1 if vehicle k uses path (i, j)p

0 otherwise (2)

∑
i∈V

∑
p∈E(i,0)

x(i,0)pk =
∑
j∈V

∑
p∈E(0,j)

x(0,j)pk = 1 (∀k ∈ K)

(3)



∑
k∈K

∑
i∈C

x(i,j)pk = 1 (∀j ∈ C) (4)

∑
i∈C

qi
∑

j∈C,j ̸=i

x(i,j)pk ≤ Q (∀k ∈ K) (5)

t′i = ti + wi + si (6)

wj =

{
max{ej − t′i − tij , 0} if j ∈ C
0 if j /∈ C

(∀i, j ∈ V )

(7)

ti + si + tij + wi ≤ tj (∀i ∈ V, j ∈ C, i ̸= j) (8)

ei ≤ ti + wi ≤ li (∀i ∈ C) (9)
The objective function (1) minimizes the total cost

of all routes. Equation (2) shows a binary variable to
represent whether a vehicle uses the path (i, j)p. Equa-
tion (3) means the vehicle should start from and end in
the depot. Equation (4) represents that each customers
should only be serviced once by vehicles. Constraint (5)
implies that the vehicle capacity should be satisfied.
Constraint (8) is the travel time relationship between
vertex vi and its successor cj , and Inequality (9) means
the vehicle should arrive at customer ci within time
window [ei, li].

3. Hybrid BSO-ACS Algorithm
This section describes the proposed algorithm for the

VRPTW on road networks. Firstly we briefly introduce
the BSO algorithm, local search heuristics used in the
proposed algorithm, and the ACS algorithm. Then, a
hybrid BSO-ACS algorithm is proposed to solve the
VRPTW on road networks.

3.1. Brain Storm Optimization

Brain Storm Optimization (BSO) [26] is firstly pro-
posed by Shi, which belongs to swarm intelligence algo-
rithms [27]. It is based on the brainstorming process and
has been used to solve traditional VRPs [28], [29]. The
main idea of this algorithm is to divide solutions into
clusters that the same cluster has similar properties. In
the new solutions generation procedure, the cluster com-
bines with each other to enhance the solution quality,
while the disruption of one cluster’s solutions help the
algorithm search more space to avoid stuck into local
optimum. The procedure of BSO is shown in Fig. 1.

3.2. Local Search

Local search is a widely used method to solve VRPs.
It starts from the current solution s, and moves to
another solution in its neighborhoods N(s). This section
will introduce some classical neighborhood strategies.

Start 

Initialization: Randomly generate n individuals 
(solutions), and evaluate the individuals

Clustering: Cluster n individuals into m clusters 

New individuals's generation : Randomly 
select one or two cluster(s) to generate a child 

Selection : Store the individuals with the better 
fitness in the same individual index

Meet termination 
conditions ?

Yes

No

End

Figure 1. BSO Procedure

3.2.1. 2-opt. 2-opt [15] is a widely used neighborhood
approach first proposed by Croes for solving TSP (Trav-
elling Salesman Problem). The main idea is to remove
the intersecting edges in the routes and reverse the
nodes between these edges. In VRPs, the 2-opt has two
different operations for the single route or two routes,
these two operations are shown in Fig. 2.

3.2.2. Exchange and Relocate. The exchange and
relocated neighborhoods are firstly proposed by Savel-
sobergh [18]. In these neighborhoods, the sub-routes
between routes may exchange and relocate, which are
shown in Fig. 3.

3.3. Ant Colony System

Ant Colony Optimization (ACO) [30] is a swarm
intelligence algorithm. It is inspired by the behavior
of ants searching the shortest path to get food by
pheromones. When searching food, firstly ants wander
randomly and leave pheromones when a route is found.
Shorter routes have more pheromones and are more
attractive for ants to select since ants travel more fre-
quently between food and nest.

When applying ACO to solve VRRs, ants select the
next customer one by one from the depot until it can



(a) Intra-route 2-opt

(b) Inter-route 2-opt

Figure 2. 2-opt

(a) Exchange

(b) Relocate

Figure 3. Exchange and Relocate

not select a feasible customer. Then, the ACO generates
a route and restarts from the depot to generate a new
route for another vehicle [31]. For an ant located in the
node of customer i, its probability of selecting customer
j is Eq. (10):

pkij =

{
(τα

ij)·(η
β
ij)∑

k∈Jk(i)(τ
α
ik)·(η

β
ik)

if j ∈ Jk(i)

0 otherwise
(10)

where τij is the amount of pheromone deposited on
the path from customer i to j, 0 ≤ α is a parameter
which controls the relative influence of τij , ηij is the
desirability of the state transition (typically is 1/dij , i.e.,
the reciprocal of the distance between i and j), β ≥ 1
is a parameter to control the influence of ηij , and JK(i)

is a customer set which can be traveled by ant k from
customer i.

When all ants have found their solutions,
pheromones along the edges are updated by the
performance of solutions.

τij ← (1− ρ) · τij +
∑
k

∆τkij (11)

where 0 ≤ ρ ≤ 1 is the pheromone evaporation coeffi-
cient, and ∆τkij is the amount of pheromone deposited
by ant k, which is defined by

∆τkij =

{
1/Lk if ant k uses edge (i, j) in its solution
0 otherwise

(12)
where Lk is the cost (usually distance cost) of the solu-
tion found by ant k.

Since ACO always uses the probability of pij , it can
not balance the exploration and exploitation. To han-
dles this issue, the Ant Colony System (ACS) [32] was
proposed by Dorigo. Its state transition rule is defined

s =

 arg maxj∈Jk(i) τij · η
β
ij if q ≤ q0

τij ·(ηβ
ij)∑

k∈Jk(i)(τ
α
ik)·(η

β
ik)

otherwise (13)

where 0 ≤ q ≤ 1 is a random number, 0 ≤ q0 is a
self-defined parameter which balance exploration and
exploitation.

ACS includes local and global pheromones. When a
solution is found by an ant, it is updated by the local
update Eq. (14) to refine the edges’ pheromone; when
a global best solution is found by ants, the τij of edge
(i, j) which is used by the best solution will be updated
by Eq. (15).

τij ← (1− ρ) · τij + ρ ·∆τij (14)
τij ← (1− α) · τij + α · L∗

ij (15)
where α is the pheromone evaporation rate, and L∗

ij is
the length of the best solution.

3.4. Proposed Hybrid BSO-ACS Algorithm

To solve VRPTWs on road networks, we propose
a hybrid BSO-ACS algorithm. In this algorithm, the
BSO clustering procedure can help the ACS combine
similarity properties which improves exploitation, and a
local search expands more search space to avoid stuck
into local optimal. In the proposed hybrid BSO-ACS
algorithm, we first use the Savings method [12] to gen-
erate initial solutions. In the clustering stage of BSO,
to make the process more efficient, we conduct the
clustering operation in the object space [33] with the
number of clusters set to two, i.e., better individuals,
“elitists” and worse individuals “normal”. In the new
solution generation stage, the ACS is used to generate a
new individual from two original clusters, and the local
search is used to generate a new individual from one
original cluster. More details are given in Alg. 1.



Algorithm 1 Hybrid BSO-ACS Algorithm
1: Input: G(V,C,E)
2: Output: sbest, best solution
3: use the saving method to initialize n solutions
4: while not termination do
5: evaluate solutions S and sort solutions by fitness
6: divide solutions into two clusters by fitness, set

the top perce percentage as elitists and remaining as
normals

7: if rand(0, 1) < pe then
8: if rand(0, 1) < pone then
9: randomly pick a solution si from elitists

10: s′ ← local_search(si)
11: else
12: randomly pick two solutions si and sj

from elitists
13: s′ ← ACS(si, sj)
14: end if
15: else
16: if rand(0, 1) < pone then
17: randomly pick a solution si from normals
18: s′ ← local_search(si)
19: else
20: randomly pick two solutions si and sj

from normals
21: s′ ← ACS(si, sj)
22: end if
23: end if
24: if s′ is better than the selected solution(s) s then
25: s← s′

26: end if
27: end while
28: return sbest in solutions S

4. Experiments and Discussions

We use the road network in Nanshan district, south-
west of Shenzhen, China from OpenStreetMap. The road
network graph has 8214 nodes and 18558 road arcs.
We generate 30 instances like the Solomon benchmark,
which contains C1, C2, R1, R2, RC1, RC2, and all
instances have 100 customers, respectively. Customers
in “C” problems are clustered, and customers in “R”
problems are random. In “RC” problems customers are
partially clustered and partially randomly distributed.
In problem sets 1 (i.e., R1, C1, and RC1), the schedul-
ing horizon is short because of the low capacity of
vehicles. In contrast, problem sets R2, C2 and RC2
have longer scheduling horizons. More instances can
be obtained at https://github.com/lmingde/VRPTW_
on_Road_Network_Benchmark.

To evaluate the performance of the proposed algo-
rithm, we compare the proposed algorithm with ACS
and ALNS in the total distances. The ALNS is a pop-
ular algorithm, and have shown its promise on various
problems [10], [34]–[37].

4.1. Experiment Setup

The proposed algorithm is implemented in the
Python programming language, and all experiments are
conducted on an Intel Xeon E5-2650 CPU@2.30GHz PC
with 16GB RAM.

There are some parameters in the hybrid algorithm.
The parameters of BSO are pere, pe, pone. A small pere
value with a large pe value, conduct the algorithm to
search in the neighborhood of elitists. This operation
can facilitate exploitation, but may result in falling
into local optimum. The pone is used to control the
strength of disruption, which enhances the exploration.
The parameters of ACS are M, β, ρ, q0. Large β and q0
indicate greed strategy. When ρ is small, the exploration
of the algorithm will be reduced. When ρ is a large value,
the exploitation of the algorithm will be enhanced. The
parameter setting is given in Table 1. All parameters
are selected by tuning to balance the trade-off between
computational cost and solution quality.

TABLE 1. Parameters of the Hybrid Algorithm

parameter value parameter value
M 20 perce 0.1
β 2 pe 0.2
q0 0.1 pone 0.6
ρ 0.1 max_iter 150

4.2. Result Analysis

The comparison results for all instances are given in
Table 2, where “NV” represents the number of the used
vehicles, “TD” represents the total distances. We use the
gap metric to represent the cost reduction between our
method and others, the gap is computed according to
Eq. (16).

Gap =
TDours − TDothers

TDours
(16)

As it can be observed from Table 2, the average
number of vehicles obtained by the proposed algorithm
is 10.33, which is better than ACS (10.83) and ALNS
(10.37). The average total distance obtained by the
proposed algorithm is 223648.04, which is superior to
the ACS (249310.02) and ALNS (228705.44). For all in-
stances, the total distance obtained by the hybrid BSO-
ACS algorithm is smaller than ACS, and the gap ranges
from -18.36% to -2.23%. The total distances obtained by
the hybrid BSO-ACS algorithm are reduced by -9.13% to
1.13% comparing to ALNS. Counting the number of the
best solutions in the three methods, the hybrid-BSO-
ACS gets best in 25 out of 30 cases, while the ALNS
obtains the best in the remaining five instances. There
are some results which attained by hybrid algorithm are
shown in Fig. 4, where the black point is the depot and
the grey points are customers.



(a) C (b) R

(c) RC

Figure 4. Results of the Hybrid Algorithm

Table. 3 summarizes the average cost and gap in
each problem set. The experiments were run 10 times in
each instance. In Table 3, compared with ACS, the hy-
brid BSO-ACS obtains solution results smaller -3.68%,
-12.49%, -12.88%, -13.94%, -9.57% and -15.17% for C1,
C2, R1, R2, RC1 and RC2. Gaps between hybrid BSO-
ACS and ALNS are -0.91%, -3.77%, -2.24%, -4.06%, -
0.52% and -3.39% for C1, C2, R1, R2, RC1, and RC2.
It can be observed that gaps in C2, R2, and RC2 are
bigger than that in C1, R1, and RC1. The reason is that
the scheduling horizon is longer in C2, R2, RC2, i.e., the
average length of routes are longer since the capacity of
vehicles is larger. Local search in the proposed hybrid
BSO-ACS algorithm generates a new solution from one
single solution that is effective to deal with such long
route cases.

5. Conclusions

This paper proposed a hybrid BSO-ACS algorithm
to solve the VRPTW on road networks. In the proposed
algorithm, the BSO uses Local Search and ACS to
generate new solutions, and the solutions are improved
iteratively. 30 instances based on the road network on
the southwest of Shenzhen, China with 100 customers
are generated. Among 30 instances, the proposed al-
gorithm achieved 25 out of 30 better solutions than
classic ACS and ALNS algorithm. The experimental
results demonstrated the effectiveness of the proposed
algorithm.
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TABLE 2. experimental results for 30 instances

Instance ACS ALNS Ours ACS-Gap (%) ALNS-Gap (%)
NV TD NV TD NV TD

C101 10 178642.29 10 174643.13 10 169510.09 -5.39 -3.03
C102 10 164509.60 10 161987.45 10 160922.73 -2.23 -0.66
C103 9 159449.60 9 153394.83 9 152799.33 -4.35 -0.39
C104 11 199893.27 11 193817.15 11 194192.82 -2.94 0.19
C105 10 176443.25 10 171630.46 10 170328.77 -3.59 -0.76
C201 4 86760.81 4 79319.48 4 76069.36 -14.05 -4.27
C202 4 92290.71 4 83867.42 4 80522.11 -14.62 -4.15
C203 4 100014.34 4 91633.68 4 91436.24 -9.38 -0.22
C204 5 102152.46 5 96807.01 5 88708.24 -15.16 -9.13
C205 4 99525.90 4 91871.27 4 90636.40 -9.81 -1.36
R101 19 350604.44 17 330939.79 17 317895.53 -10.29 -4.10
R102 19 357345.61 17 320417.29 17 315818.89 -13.15 -1.46
R103 18 362358.72 17 329838.13 17 319660.57 -13.36 -3.18
R104 18 350986.04 16 316346.54 16 308107.30 -13.92 -2.67
R105 20 370838.08 18 325680.74 18 326149.74 -13.70 0.14
R201 7 250917.82 7 225081.07 7 218971.18 -14.59 -2.79
R202 8 279107.42 8 256822.71 8 250436.08 -11.45 -2.55
R203 7 241906.20 7 227153.38 7 214950.93 -12.54 -5.68
R204 7 251382.56 7 224213.37 7 217326.73 -15.67 -3.17
R205 7 254304.98 7 233498.18 7 219593.73 -15.81 -6.33

RC101 19 360650.38 17 320068.20 17 317129.43 -13.72 -0.93
RC102 19 410942.97 18 376564.69 18 370533.78 -10.91 -1.63
RC103 17 340871.83 16 314626.59 16 318156.02 -7.14 1.11
RC104 16 329499.95 15 311177.73 15 314723.80 -4.69 1.13
RC105 15 297460.63 15 273315.12 14 267015.35 -11.40 -2.36
RC201 8 279643.79 8 243028.61 8 240960.97 -16.05 -0.86
RC202 7 266227.40 7 247579.37 7 237674.49 -12.01 -4.17
RC203 7 235814.73 7 207468.23 7 204255.57 -15.45 -1.57
RC204 8 254073.69 8 230622.72 8 214666.03 -18.36 -7.43
RC205 8 274681.04 8 247748.97 8 240289.13 -14.31 -3.10
Avg. 10.83 249310.02 10.37 228705.44 10.33 223648.04 -11.33 -2.51

TABLE 3. average total distances

Problem Set ACS ALNS Ours ACS-Gap(%) ALNS-Gap(%)
C1 175787.6 171094.6 169550.8 -3.68 -0.91
C2 96148.84 88699.77 85474.47 -12.49 -3.77
R1 358426.6 324644.5 317526.4 -12.88 -2.24
R2 255523.8 233353.7 224255.7 -13.94 -4.06

RC1 347885.2 319150.5 317511.7 -9.57 -0.52
RC2 262088.1 235289.6 227569.2 -15.17 -3.39

61761136008, Shenzhen Peacock Plan under Grant No.
KQTD2016112514355531, Program for Guangdong In-
troducing Innovative and Entrepreneurial Teams under
grant number 2017ZT07X386.
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